• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 17
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Ancient environmental DNA as a means of understanding ecological restructuring during the Pleistocene-Holocene transition in Yukon, Canada

Murchie, Tyler James January 2021 (has links)
Humans evolved in a world of giant creatures. Current evidence suggests that most ice age megafauna went extinct around the transition to our current Holocene epoch. The ecological reverberations associated with the loss of over 65% of Earth’s largest terrestrial animals transformed ecosystems and human lifeways forever thereafter. However, there is still substantial debate as to the cause of this mass extinction. Evidence variously supports climate change and anthropogenic factors as primary drivers in the restructuring of the terrestrial biosphere. Much of the ongoing debate is driven by the insufficient resolution accessible via macro-remains. To help fill in the gaps in our understandings of the Pleistocene-Holocene transition, I utilized the growing power of sedimentary ancient DNA (sedaDNA) to reconstruct shifting signals of plants and animals in central Yukon. To date, sedaDNA has typically been analyzed by amplifying small, taxonomically informative regions. However, this approach is not ideally suited to the degraded characteristics of sedaDNA and ignores most of the potential data. Means of isolating sedaDNA have also suffered from the use of overly aggressive purification techniques resulting in substantial loss. To address these limitations, I first experimentally developed a novel means of releasing and isolating sedaDNA. Secondly, I developed a novel environmental bait-set designed to simultaneously capture DNA informative of macro-scale ecosystems. When combined, we identify a substantial improvement in the quantity and breadth of biomolecules recovered. These optimizations facilitated the unexpected discovery of horse and mammoth surviving thousands of years after their supposed extirpation. I followed up these results by extracting DNA from multiple permafrost cores where we confirm the late survival signal and identify a far more complex and high-resolution dataset beyond those identifiable by complementary methods. I was also able to reconstruct mitochondrial genomes from multiple megafauna simultaneously solely from sediment, demonstrating the information potential of sedaDNA. / Dissertation / Doctor of Philosophy (PhD) / A new addition to the rapidly growing field of palaeogenetics is environmental DNA (eDNA) with its immense wealth of biomolecules preserved over millennia outside of biological tissues. Organisms are constantly shedding cells, and while most of this DNA is metabolized or otherwise degraded, some small fraction is preserved through sedimentary mineral-binding. I experimentally developed new ancient eDNA methods for recovery, isolation, and analysis to maximize our access to these biomolecules and demonstrate that this novel approach outperforms alternative protocols. Thereafter, I used these methods to extract DNA from ice age permafrost samples dating between 30,000–6,000 years before present. These data demonstrate the power of ancient eDNA for reconstructing ecosystem change through time, as well as identifying evidence for the Holocene survival of caballine horse and woolly mammoth in continental North America. This late persistence of Pleistocene fauna has implications for understanding the human ecological and climatological factors involved in the Late Pleistocene mass extinction event. This effort is paralleled with megafaunal mitogenomic assembly and phylogenetics solely from sediment. This thesis demonstrates that environmental DNA can significantly augment macro-scale buried records in palaeoecology.
42

Le microbiote rhizosphérique et racinaire du bleuetier sauvage

Morvan, Simon 08 1900 (has links)
Le bleuet sauvage (Vaccinium angustifolium Ait. et V. myrtilloides Michaux) représente un marché en plein essor au Canada, premier pays producteur et exportateur mondial de ce fruit. Pour faire face à la demande, les producteurs cherchent continuellement à adapter leurs pratiques de production dans le but d’améliorer leur rendement et l'état de santé de leurs bleuetiers. Or, les micro-organismes présents dans les racines et dans le sol jouent un rôle non négligeable en lien avec la santé des plantes. Ce microbiote est donc d’intérêt d’un point de vue agronomique, pourtant, contrairement à d’autres cultures, très peu d’études se sont penchées spécifiquement sur le microbiote du milieu racinaire du bleuetier sauvage. Ce doctorat s’inscrit donc dans l’optique d’accroître les connaissances sur les communautés bactériennes et fongiques présentes dans les bleuetières au Québec. Les objectifs de ce projet sont de détecter les taxons qui pourraient avoir un impact sur les variables agronomiques des bleuetiers telles que le rendement; d’identifier les variables physico-chimiques du sol influençant ces communautés; et d’étudier les impacts que peuvent avoir les différentes pratiques agricoles, telles que la fertilisation et la fauche thermique, sur ces micro-organismes. Nous nous sommes appuyés sur le séquençage de nouvelle génération et le métacodage à barres de l’ADN environnemental de nos échantillons de racines et de sol afin d’obtenir une analyse des communautés bactériennes et fongiques de la rhizosphère et des racines des bleuetiers. Les analyses multivariées effectuées par la suite permettent de comparer ces communautés et de voir si certaines espèces sont spécifiques à une condition particulière. Dans l’ensemble, cette thèse a donc permis de caractériser les communautés fongiques et bactériennes du milieu racinaire du bleuetier sauvage in situ dans plusieurs bleuetières du Québec. De nombreuses espèces de champignons mycorhiziens éricoïdes ont été systématiquement identifiées dans les trois études et leur prédominance suggère leur importance pour le bleuetier sauvage. Nous avons également trouvé que l’ordre bactérien des Rhizobiales, connu pour sa capacité à fixer l’azote atmosphérique, occupait une part importante de la communauté bactérienne. Les études sur la fertilisation et la fauche thermique ont démontré que ces deux pratiques agricoles avaient peu d’impact significatif sur les communautés microbiennes étudiées. Enfin, cette thèse donne des pistes de réflexion sur la fixation d’azote par les communautés bactériennes et pose les premières bases pour des essais de bio-inoculation avec les espèces fongiques et bactériennes détectées ayant un potentiel impact bénéfique sur la culture des bleuets sauvages. / The wild blueberry (Vaccinium angustifolium Ait. and V. myrtilloides Michaux) market is booming in Canada, the world's leading producer and exporter of this fruit. In order to meet the demand, growers are constantly trying to adapt their production practices to improve their yields and the health of their blueberry fields. Micro-organisms present in the roots and in the soil play a significant role in the health of the plants. This microbiota is therefore of interest from an agronomic point of view, yet, contrary to other crops, very few studies have been conducted specifically on the microbiota of the root environment of wild blueberries. This doctoral project therefore aims at increasing our knowledge of the bacterial and fungal communities present in wild blueberry fields in Quebec. The objectives of this project are to detect taxa that could have an impact on agronomic variables of wild blueberry fields such as fruit yield; to identify soil physico-chemical variables influencing these communities; and to study the impacts that different agricultural practices, such as fertilization or thermal pruning, may have on these micro-organisms. We relied on next generation sequencing and metabarcoding of environmental DNA from our root and soil samples to obtain an analysis of the bacterial and fungal communities in the rhizosphere and roots of blueberry shrubs. Subsequent multivariate analyses allow us to compare these communities and see if certain species are specific to a particular condition. Overall, this thesis has characterized the fungal and bacterial communities in the root environment of wild blueberry in situ in several Quebec wild blueberry fields. Numerous species of ericoid mycorrhizal fungi were systematically identified in all three studies, and their predominance suggests their importance to wild blueberries. We also found that the bacterial order Rhizobiales, known for its ability to fix atmospheric nitrogen, occupied an important part of the bacterial community. Studies on fertilization and thermal mowing showed that these two agricultural practices have limited significant impacts on the microbial communities studied. Finally, this thesis provides insights into nitrogen fixation by bacterial communities and lays the groundwork for bio-inoculation trials with the fungal and bacterial species detected to have a potential beneficial impact on wild blueberry cultivation.
43

The Effect of Aluminium Industry Effluents on Sediment Bacterial Communities

Gill, Hardeep 19 October 2012 (has links)
The goal of this project was to develop novel bacterial biomarkers for use in an industrial context. These biomarkers would be used to determine aluminium industry activity impact on a local ecosystem. Sediment bacterial communities of the Saguenay River are subjected to industrial effluent produced by industry in Jonquière, QC. In-situ responses of these communities to effluent exposure were measured and evaluated as potential biomarker candidates for exposure to past and present effluent discharge. Bacterial community structure and composition between control and affected sites were investigated. Differences observed between the communities were used as indicators of a response to industrial activity through exposure to effluent by-products. Diversity indices were not significantly different between sites with increased effluent exposure. However, differences were observed with the inclusion of algae and cyanobacteria. UniFrac analyses indicated that a control (NNB) and an affected site (Site 2) were more similar to one another with regard to community structure than either was to a medially affected site (Site 5) (Figure 2.4). We did not observe a signature of the microbial community structure that could be predicted with effluent exposure. Microbial community function in relation to bacterial mercury resistance (HgR) was also evaluated as a specific response to the mercury component present in sediments. Novel PCR primers and amplification conditions were developed to amplify merP, merT and merA genes belonging to the mer-operon which confers HgR (Table 5.6). To our knowledge, the roles of merP and merT have not been explored as possible tools to confirm the presence of the operon. HgR gene abundance in sediment microbial communities was significantly correlated (p < 0.05) to total mercury levels (Figure 3.4) but gene expression was not measurable. We could not solely attribute the release of Hg0 from sediments in bioreactor experiments to a biogenic origin. However, there was a 1000 fold difference in measured Hg0 release between control and affected sites suggesting that processes of natural remediation may be taking place at contaminated sites (Figure 3.7). Abundance measurements of HgR related genes represent a strong response target to the mercury immobilized in sediments. Biomarkers built on this response can be used by industry to measure long term effects of industrially derived mercury on local ecosystems. The abundance of mer-operon genes in affected sites indicates the presence of a thriving bacterial community harbouring HgR potential. These communities have the capacity to naturally remediate the sites they occupy. This remediation could be further investigated. Additional studies will be required to develop biomarkers that are more responsive to contemporary industrial activity such as those based on the integrative oxidative stress response.
44

The Effect of Aluminium Industry Effluents on Sediment Bacterial Communities

Gill, Hardeep 19 October 2012 (has links)
The goal of this project was to develop novel bacterial biomarkers for use in an industrial context. These biomarkers would be used to determine aluminium industry activity impact on a local ecosystem. Sediment bacterial communities of the Saguenay River are subjected to industrial effluent produced by industry in Jonquière, QC. In-situ responses of these communities to effluent exposure were measured and evaluated as potential biomarker candidates for exposure to past and present effluent discharge. Bacterial community structure and composition between control and affected sites were investigated. Differences observed between the communities were used as indicators of a response to industrial activity through exposure to effluent by-products. Diversity indices were not significantly different between sites with increased effluent exposure. However, differences were observed with the inclusion of algae and cyanobacteria. UniFrac analyses indicated that a control (NNB) and an affected site (Site 2) were more similar to one another with regard to community structure than either was to a medially affected site (Site 5) (Figure 2.4). We did not observe a signature of the microbial community structure that could be predicted with effluent exposure. Microbial community function in relation to bacterial mercury resistance (HgR) was also evaluated as a specific response to the mercury component present in sediments. Novel PCR primers and amplification conditions were developed to amplify merP, merT and merA genes belonging to the mer-operon which confers HgR (Table 5.6). To our knowledge, the roles of merP and merT have not been explored as possible tools to confirm the presence of the operon. HgR gene abundance in sediment microbial communities was significantly correlated (p < 0.05) to total mercury levels (Figure 3.4) but gene expression was not measurable. We could not solely attribute the release of Hg0 from sediments in bioreactor experiments to a biogenic origin. However, there was a 1000 fold difference in measured Hg0 release between control and affected sites suggesting that processes of natural remediation may be taking place at contaminated sites (Figure 3.7). Abundance measurements of HgR related genes represent a strong response target to the mercury immobilized in sediments. Biomarkers built on this response can be used by industry to measure long term effects of industrially derived mercury on local ecosystems. The abundance of mer-operon genes in affected sites indicates the presence of a thriving bacterial community harbouring HgR potential. These communities have the capacity to naturally remediate the sites they occupy. This remediation could be further investigated. Additional studies will be required to develop biomarkers that are more responsive to contemporary industrial activity such as those based on the integrative oxidative stress response.
45

The Effect of Aluminium Industry Effluents on Sediment Bacterial Communities

Gill, Hardeep January 2012 (has links)
The goal of this project was to develop novel bacterial biomarkers for use in an industrial context. These biomarkers would be used to determine aluminium industry activity impact on a local ecosystem. Sediment bacterial communities of the Saguenay River are subjected to industrial effluent produced by industry in Jonquière, QC. In-situ responses of these communities to effluent exposure were measured and evaluated as potential biomarker candidates for exposure to past and present effluent discharge. Bacterial community structure and composition between control and affected sites were investigated. Differences observed between the communities were used as indicators of a response to industrial activity through exposure to effluent by-products. Diversity indices were not significantly different between sites with increased effluent exposure. However, differences were observed with the inclusion of algae and cyanobacteria. UniFrac analyses indicated that a control (NNB) and an affected site (Site 2) were more similar to one another with regard to community structure than either was to a medially affected site (Site 5) (Figure 2.4). We did not observe a signature of the microbial community structure that could be predicted with effluent exposure. Microbial community function in relation to bacterial mercury resistance (HgR) was also evaluated as a specific response to the mercury component present in sediments. Novel PCR primers and amplification conditions were developed to amplify merP, merT and merA genes belonging to the mer-operon which confers HgR (Table 5.6). To our knowledge, the roles of merP and merT have not been explored as possible tools to confirm the presence of the operon. HgR gene abundance in sediment microbial communities was significantly correlated (p < 0.05) to total mercury levels (Figure 3.4) but gene expression was not measurable. We could not solely attribute the release of Hg0 from sediments in bioreactor experiments to a biogenic origin. However, there was a 1000 fold difference in measured Hg0 release between control and affected sites suggesting that processes of natural remediation may be taking place at contaminated sites (Figure 3.7). Abundance measurements of HgR related genes represent a strong response target to the mercury immobilized in sediments. Biomarkers built on this response can be used by industry to measure long term effects of industrially derived mercury on local ecosystems. The abundance of mer-operon genes in affected sites indicates the presence of a thriving bacterial community harbouring HgR potential. These communities have the capacity to naturally remediate the sites they occupy. This remediation could be further investigated. Additional studies will be required to develop biomarkers that are more responsive to contemporary industrial activity such as those based on the integrative oxidative stress response.
46

Identifikation von Genen und Mikroorganismen, die an der dissimilatorischen Fe(III)-Reduktion beteiligt sind / Isolation of Genes and Microorganisms Involved in Dissimilatory Fe(III)-Reduction

Özyurt, Baris 21 January 2009 (has links)
No description available.

Page generated in 0.0586 seconds