• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 66
  • 31
  • 17
  • 15
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Diagonal forms over the unramified quadratic extension of Q2

Miranda, Bruno de Paula 09 March 2018 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-04T19:56:19Z No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-09T17:43:26Z (GMT) No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) / Made available in DSpace on 2018-07-09T17:43:26Z (GMT). No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) Previous issue date: 2018-07-04 / Em 1963, e Lewis provaram que se a forma diagonal F(x) = a1xd1 +...+ aNxdN com coeficientes em Qp, o corpo dos números p-ádicos, satisfazer N > d2, então existe solução não trivial para F(x) = 0. Muito estudo tem sido realizado afim de generalizar esse resultado para extensões finitas de Qp. Aqui, estudamos o caso F(x) 2 K[x] com K sendo a extensão quadrática não ramificada de Q2 e provamos dois resultados: Se d não _e potência de 2, então N > d2 garante a existência de solucão não trivial para F(x) = 0. Além disso, se d = 6, N = 29 garante existência de solucão não trivial para F(x) = 0. / In 1963, Davenport and Lewis proved that if the diagonal form F(x) = a1xd1 +...+ aNxdN with coeficients in Qp, the field of p-adic numbers, satisfies N > d2, then there exists non-trivial solution for F(x) = 0. Since then, there has been a lot of study in order to generalize this result to finite extensions of Qp. Here, we study the case F(x) 2 K[x] where K is the quadratic unramified extension of Q2 and we prove two results: if d is not a power of 2 , then N > d2 guarantees non-trivial solution for F(x) = 0. Furthermore, if d = 6, N = 29 guarantees non-trivial solution for F(x) = 0.
12

Extensões de Ore : ideais maximas e outras questões

Cortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, ›σ an automorphism of R and d a ›σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; ›σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; ›σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
13

Extensões de Ore : ideais maximas e outras questões

Cortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, ›σ an automorphism of R and d a ›σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; ›σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; ›σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
14

Extensões cubicas ciclicas

Serrano, Rosemberg Pereira 03 August 2018 (has links)
Orientador : Antonio Paques / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T04:25:06Z (GMT). No. of bitstreams: 1 Serrano_RosembergPereira_M.pdf: 297765 bytes, checksum: 91fab6654f062303c4601daacf7fc408 (MD5) Previous issue date: 2003 / Mestrado / Mestre em Matemática
15

Extensões de marca: um estudo de caso / Brand extensions: a case study

Turatti, Luiz Fernando Andreotti 14 October 2005 (has links)
Este trabalho aborda diversos aspectos da extensão de marcas. A construção de marcas fortes tem sido uma alternativa para criar diferenciação e vantagem competitiva. O sucesso em um determinado mercado costuma ser decorrente de fatores que vão além do próprio produto; a percepção do consumidor sobre uma marca é formada por um complexo conjunto de associações onde coexistem aspectos racionais, funcionais e objetivos, bem como elementos emocionais, subjetivos e abstratos. A marca representa um código, um resumo de todas estas associações e percepções, e o posicionamento psicológico da marca influencia a decisão de compra dentro de uma categoria. Muitas empresas adotam as extensões de marca como uma estratégia de crescimento, o que resulta em uma proliferação de marcas estendidas para categorias adicionais de produto, categorias muitas vezes sem similaridade com a categoria original da marca. O objetivo principal e razão de ser da extensão é a transferência de valores da marca original para o novo produto, encurtando os caminhos que ele deve percorrer para sua consolidação e aumentando suas chances de sucesso. Entretanto, há diversos casos de extensão onde a marca não passa de um nome que caracteriza a origem do novo produto ou, pior ainda, sua aplicação naquela categoria resulta na erosão de seu significado. Sendo assim, este trabalho busca trazer referências que indiquem se faz sentido estender uma marca para outras categorias. A metodologia adotada consiste em duas etapas: uma de revisão bibliográfica, que aborda os principais aspectos da extensão de marca-suas motivantes, vantagens e riscos, resultados de pesquisas anteriores, o processo de avaliação pelos consumidores, a reciprocidade da marca estendida na marca original; e uma etapa de verificação de uma realidade específica usando a visão de uma empresa-alvo de estudo de caso. Os resultados apontam para uma relação entre o posicionamento psicológico da marca e sua extensão para categorias próximas e distantes daquela onde a marca se originou, indicando a possibilidade de que quanto mais filosófico o posicionamento da marca, isto é, menos vinculado ao produto em si e seus aspectos funcionais, maior sua capacidade em ser aplicada em categorias de produto diferentes da categoria original. À medida que a dissimilaridade entre o produto original e o estendido aumenta, é cada vez menos freqüente e intensa a transferência de valores de marca. Os valores transferidos para categorias mais dissimilares, ou seja, os valores de maior alcance de extensão, têm natureza predominantemente subjetiva ao invés de racional ou vinculada a atributos de produto. Os resultados também sugerem que os atributos e benefícios considerados relevantes dentro de cada categoria funcionam como um filtro para a transferência de associações, ressaltando a influência do contexto da categoria da extensão no processo. / This study analyzes many aspects of brand extension. Building strong brands is seen as an opportunity to create differentiation and competitive advantage. Success in certain markets is a result of factors beyond the product itself; brand consumer perception is formed by a complex set of associations of rational, functional and objective aspects as well as emotional, subjective and abstract elements. A brand represents a code, a summary of all these associations and perceptions. The psychological positioning of a brand influences the purchase decision inside a category. Many companies implement brand extensions as a growth strategy. This results in a huge list of extended brands to additional product categories, many times without any similarity to the original brand category. The main reason and objective of an extension is transferring brand equity from the original product to the new one, reducing the path towards product consolidation and improving its chances for success. Nevertheless, there are many cases when brand extension is nothing more than just a name that reminds the product\'s origin or, even worse, its application in a certain category will result in loosing brand value and meaning. Based on this assumption, this study aims at bringing new references that indicate if it makes sense to extend a brand to other categories. The adopted methodology consists of two phases: one is a reviewed bibliography about the main aspects of extension - its motivations, advantages and risks, earlier researches results, consumer evaluation process and reciprocal effect of the extended brand over the original one; and second, the verification of an specific case study with a target company. Results point out a relation between brand\'s psychological positioning and its extension to closer and farther categories in relation to the original brand. It indicates that the more philosophical the brand positioning, meaning little association to the product itself and its functional aspects, the bigger its capacity of being applied to product categories different than the original one. As soon as dissimilarities grow in between the original product and the extended one, the least frequent and intense is the brand equity transfer. Values transferred to less similar categories, or, values of bigger extension capacity have a subjective nature instead of rational one linked to product attributes. Results also suggest that relevant attributes and benefits in each category works as an associations transferring filter, reinforcing the category content influence over the extension process.
16

Condições de Contorno mais Gerais no Espalhamento Aharonov-Bohm de uma Partícula de Dirac em Duas Dimensões: Conservação da Helicidade e da Simetria de Aharonov-Bohm / More general boundary conditions in the Aharonov-Bohm scattering of a Dirac particle in two dimensions: helicity conservation and Aharonov-Bohm symmetry

Araujo, Vanilse da Silva 29 May 2000 (has links)
Nessa tese, mostramos que a Hamiltoniana H e o operador helicidade de uma partícula de Dirac que se movimenta em duas dimensões na presença de um tubo de fluxo magnético infinitamente fino na origem admitem, cada um, uma família de quatro parâmetros de extensões auto-adjuntas. Para cada extensão correspondem condições de contorno a serem satisfeitas pelas auto-fuções na origem. Apesar dos operadores H e formalmente comutarem antes da especificação das condições de contorno, para garantirmos a conservação da helicidade, não é suficiente obtermos as mesmas condições de contorno para ambos os operadores, ou seja, não é suficiente a determinação de um domínio comum a ambos. Mostramos que, para certas relações entre os parâmetros das extensões satisfeitas, é possível a determinação dos domínios mais gerais onde ambos os operadores H e são auto-adjuntos e onde a helicidade é conservada, simultaneamente com a preservação da simetria de Aharonov-Bohm ( + 1), onde é o fluxo magnético em unidades naturais. Nossos resultados implicam que, nem a conservação da helicidade nem a simetria de Aharonov-Bohn, resolvem o problema da escolha da condição de contorno fisicamente correta. / We show that both the Hamiltonian H and the helicity operator of a Dirac particle moving in two dimension in the presence of an infinitely thin magnetic flux tube admit each a four- parameter family of self-adjoint extensions. Each extension is in one-to-one correspondence with the boundary conditions (BC\'s) to be satisfied by the eigenfunctions at the origin. Althou- gh the actions af these two operators commute before specification of boundary conditions, to ensure helicity conservation it is not sufficient to take the same BC\'s for both operators. We show that, given certain relations between the parameters of the extensions it is possible to write down the most general domain where both operators H and are self-adjoint with heli- city conservation and also Aharonov-Bohm symmetry ( + 1) preserved, where is the magnetic flux in natural units. The continuity of the dynamics is also obtained. Our results im- ply that neither helicity conservation nor Aharonov-Bohm symmetry by themselves solves the problem of choosing the \"physical \"boundary conditions for this system.
17

Extensões cindidas por ideais nilpotentes / split-by-nilpotent extension

Wagner, Heily 18 April 2008 (has links)
Consideremos A e B duas álgebras de Artin tais que é uma extensão cindida de A pelo ideal Q, onde é um ideal nilpotente de B. Estudamos algumas propriedades homológicas das categorias modA e modB, tais como dimensão projetiva e injetiva. A partir disso mostramos que se B pertence a uma das seguintes classes: hereditária, laura, fracamente shod, shod, quase inclinada, colada à esquerda, colada à direita ou disfarçada; então A pertence a mesma classe. Além disso, restringindo nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, comparamos as respectivas aljavas ordinárias, bem como suas apresentações. Finalmente, após caracterizarmos o ideal Q, exibimos alguns exemplos de extensões no contexto de álgebras de caminhos com relações, que mostram que A pode ser de uma das classes citadas sem que B o seja / Let A and B be two Artin algebras such that B is a split-by-nilpotent extension of A by Q, were Q is a nilpotent ideal of B. We study some homological properties of the categories mod A and mod B such that the projetive and the injetive dimensions of their objects. Using this we show that if B belongs to one of this classes: hereditary, laura, weakly shod, shod, quasi-tilted, left glued, right glued or concealed; then A belongs to same class. Moreover restricting our study to finite dimensional algebras over algebraically closed fields, we compare the ordinary quivers and presentations of the corresponding algebras. Finally, after giving a characterization of ideal Q as above, we exhibit some exemples of split extensions in the context of path algebras bounded by relations, which shows that A can be one of the above cited algebras without B so
18

Sobre a existência ou não de bases normais auto-duais para extensões galoisianas de corpos / About the existence or not of self-dual normal bases for finite galosian extensions of fields

Coutinho, Sávio da Silva 20 March 2009 (has links)
Neste trabalho, apresentamos um estudo sobre a existência ou não de bases normais auto-duais para extensões galoisianas finitas de corpos, mostrando que toda extensão galoisiana finita de grau ímpar posui uma base normal auto-dual, enquanto que para extensões galoisianas de grau par, apresentamos algumas condições suficientes que garantem a não existência de bases normais auto-duais / In this work, we present a study about the existence or not of self-dual normal bases for finite galoisian extensions of fields, showing that all the odd degree finite galoisian extension has a self-dual normal base, whereas for even degree galoisian extensions, we present some sufficient conditions that assure the non-existence of self-dual normal bases
19

Corpos de funções algébricas sobre corpos finitos / Algebraic Function Fields over finite fields

Campos, Alex Freitas de 22 November 2017 (has links)
Este trabalho é essencialmente sobre pontos racionais em curvas algébricas sobre corpos finitos ou, equivalentemente, lugares racionais em corpos de funções algébricas em uma variável sobre corpos finitos. O objetivo é a demonstração da existência de constantes aq e bq ∈ R> 0 tais que se g ≥ aq. N + bq, então existe uma curva sobre Fq de gênero g com N pontos racionais. / This work is essentially about rational points on algebraic curves over finite fields or, equivalently, rational places on algebraic function fields of one variable over finite fields. The aim is the proof of the existence of constants aq and bq ∈ R> 0 such that if g ≥ aq ∈ aq . N+bq then there exists a curve over Fq of genus g with N rational points.
20

Extensões de Ore e álgebras de Hopf fracas

Santos, Ricardo Leite dos January 2017 (has links)
Extensões de Ore são anéis de polinômios, denotados por R[x o &], nos quais a variável x e os elementos de R não comutam necessariamente. Algebras de Hopf fracas são algebras que tamb em são coálgebras e satisfazem um conjunto de axiomas de compatibilidade entre essas estruturas. Neste trabalho investigamos extensões de Ore cujo anel base e uma algebra de Hopf fraca. Mais especi camente, dada uma algebra de Hopf fraca R, estudamos sob quais condições R[x o &] e uma algebra de Hopf fraca com uma estrutura que estende a estrutura de R. Sob certas hipóteses, obtemos condições necessárias e su cientes para que a extensão de Ore seja uma álgebra de Hopf fraca, obtendo assim um resultado que generaliza um teorema de Panov para o contexto de algebras de Hopf fracas. / Ore extensions are polynomial rings, denoted by R[x o &], in which the variable x and the elements of R do not commute necessarily. Weak Hopf algebras are algebras which are also coalgebras and satisfy a set of axioms of compatibility betweem these structures. In this work, we investigate Ore extensions whose base ring is a weak Hopf algebra. More speci cally, if R is a weak Hopf algebra then we study under what conditions R[xo &] is a weak Hopf algebra extending the structure of R. Under certain hypotheses, we obtain necessary and su cient conditions for an Ore extension to be a weak Hopf algebra, obtaining a result that generalizes a Panov's theorem to the setting of weak Hopf algebras.

Page generated in 0.0366 seconds