Spelling suggestions: "subject:"fica"" "subject:"fina""
91 |
Preconcentration And Speciation Of Iron By Using Renewable Surface Flow Injection System (rs-fia)Tekin, Serap 01 January 2004 (has links) (PDF)
The main aim of this study is to combine the sol-gel technology and renewable surface flow injection analysis (RS-FIA) techniques for iron speciation and determination. Thus the home-made FIA system, which consists of 2 syringe pumps and 3 multi-position selection valves, is modified with two flow cells (magnetic cell and jet ring cell) in order to be suitable for renewable surface flow injection technique. All the computer programs used for flow injection analysis are modified to control the whole system automatically. Two different types of solid phase extraction materials are used for the speciation of iron in aqueous systems.
Magnetic beads coated with primary amino groups are utilized for the determination of Fe (III). The magnetic bead reactor is created within
the flowing stream by retaining the magnetic beads with a home-made electromagnet. The elution cycle for Fe (III) is done with 0.1 M EDTA solution and determined on-line by transferring to an atomic absorption spectrometer. The spent beads are collected off-line and regenerated.
For the preconcentration of Fe (II), ferrozine doped sol-gel beads are prepared as reactive and disposable surfaces. These beads are handled by the system equipped with a jet ring cell which is connected on-line to a portable UV-VIS fiber optic spectrometer.
Amino sol-gel and ferrozine-doped sol-gel beads are prepared using sol-gel technology and characterized by using surface techniques. Their performances in preconcentration and speciation of iron and the influence of different experimental parameters such as pH, the sequence of reagents, reactor lengths and reaction periods on the flow system are investigated. Renewable surface flow injection analysis is performed by either bead injection or sequential bead injection methods.
|
92 |
Uso do método do padrão interno em sistemas FIA e BIA e determinação simultânea de diclofenaco e codeína em formulações farmacêuticas por amperometria de múltiplos pulsos / Use of the internal standard method in FIA and BIA systems and determination of diclofenac and codeine in pharmaceutical formulations by multiple pulse amperometryGimenes, Denise Tofanello 25 July 2013 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / The present thesis demonstrates, for the first time, the possibility of using of the
internal standard method in FIA or BIA systems with amperometric detection. The
method allows to obtain accurate results in the presence of fluctuations in the system
parameters (injected volume, dispensing rate, ionic strength and accidental insertion of
air bubbles) and in the presence of contamination and/or gradual passivation of the
working electrode surface. Methods for determination of diclofenac (DCF) using FIA
with amperometric detection and simultaneous determination of DCF and codeine (CO)
by BIA with amperometric detection have also been developed.
The internal standard method was implemented in the flow injection analysis with
multiple pulse amperometric detection (FIA-MPA) system by applying a sequence of
potential pulses of the working electrode as a function of time. The analyte (+0.80
V/300ms) and internal standard (-0.05 V/400ms) were detected selectively, one at each
potential pulse. Significant improvements were obtained in the accuracy of the system
when the results before and after normalization (using the internal standard method),
were compared. The following errors were calculated, respectively, before and after
normalization of the results using the internal standard method. Change in flow rate
from 3.0 to 1.0 ml min-1 (-57% e < 1%); volume injection from 300 to 100 μL (-63%
and 3%); ionic strength from 0.60 to 0.77 mol L-1 (-44 and 0,2%) and before and after
the introduction of air bubbles into the system (-9,6% and 1,7%). A significant
improvement was also obtained in the correlation coefficient of the calibration curve in
the presence of problems of passivation or contamination of the working electrode. The correlation coefficient was calculated, respectively, as 0,975 and 0,998, before and after
the normalization of the results by the IS method.
The internal standard method was also applied to correct errors derived from the
injection procedure (dispensing rate and injected volume) in batch injection analysis
systems (BIA) with amperometric detection when disposable syringes were used. The
results obtained before and after normalization of the results by the IS method were the
following, respectively: repeatability test (RSD = 6.4 and 1.8%; n = 8), correlation
coefficients (R=0.954 and 0.997) and errors obtained in analysis of synthetic samples (E
= 9.4 ± 1.5 and 3.5 ± 0.7%; n = 8).
The determination of DCF by FIA-MPA was implemented by applying two
potential pulses to the BDD electrode using H2SO4 0.1 mol L-1 as supporting
electrolyte: (i) + 1.2 V / 50 ms for oxidation and quantification of DCF, and (ii) 0.0 V /
50 ms for constant electrochemical cleaning of the electrode surface. The system
showed good stability (RSD = 1.0%, n = 10) and high analytical frequency (135
injections h-1). The method showed a linear response between 5 and 50 μmol L-1 and the
detection and quantification limits were as 0.14 and 0.46 mmol L-1, respectively. The
proposed method was applied to determine of DCF in pharmaceutical formulations and
the obtained results were similar to those obtained by HPLC with a confidence level of
95%.
The simultaneous determination of DCF and CO was performed using the
following potential pulses: (i) +1.1 V / 50 ms: oxidation and quantification of DCF; (ii)
+1.4 V / 50 ms: simultaneous oxidation of DCF and CO, (iii) 0.0 V / 200 ms: for
constant electrochemical cleaning of the BDD electrode. The oxidation current from CO
was obtained by the difference between currents detected at 1.4 and 1.1 V by using a correction factor. The system showed good stability (RSD = 0.9% and 1.1 for DCF and
CO respectively, n = 10) and high analytical frequency (~ 300 injections h-1). The
method showed a linear response between 10 and 50 μmol L-1 for DCF and 7.1 and 35.7
μmol L-1 for CO. The LQ and LD were calculated, respectively, at 1.1 and 3.7 μmol L-1,
for DCF and 1.0 and 3.3 mol L-1 for CO. The proposed method was applied for
simultaneous determination of DCF and CO in pharmaceutical formulations and the
obtained results were similar to those obtained by HPLC with a confidence level of
95%.
Keywords: Multiple pulse amperometry, FIA, BIA, internal standard, simultaneous
analysis, boron doped diamond (BDD), codeine, diclofenac. / Esta tese apresenta, pela primeira vez, a possibilidade de usar o método do padrão
interno em sistemas FIA ou BIA com detecção amperométrica. O método permite a
obtenção de resultados precisos na presença de flutuações em parâmetros dos sistemas
(volume injetado, velocidade de injeção, força iônica e inserção acidental de bolhas de
ar) e na presença de contaminação e/ou passivação gradual do eletrodo de trabalho.
Métodos para determinação de diclofenaco (DCF) usando FIA com detecção
amperométrica e simultânea de DCF e codeína (CO) por BIA com detecção
amperométrica também foram desenvolvidos.
O método do padrão interno foi implementado no sistema de análise por injeção
em fluxo com detecção por amperometria de múltiplos pulsos (FIA-MPA) mediante a
aplicação de uma sequência de pulsos de potenciais ao eletrodo de trabalho em função
do tempo. O analito (+0,80 V/300ms) e o padrão interno (-0,05 V/400ms) foram
detectados seletivamente, um em cada pulso de potencial. Melhoras significativas foram
obtidas na precisão do método quando os resultados obtidos antes e após a normalização
(usando o método do padrão interno) foram comparados. As seguintes variações foram
calculadas, respectivamente, antes e após a normalização dos resultados usando o
método do padrão interno. Variação na velocidade de vazão de 3,0 para 1,0 mL min-1
(-57% e < 1%); no volume de injeção de 300 para 100 μL (-63% e 3%); força iônica de
0,60 para 0,77 mol L-1 (-44 e 0,2%) e antes e após a inserção de bolhas de ar no sistema
(-9,6% e 1,7%). Uma melhora significativa também foi obtida no coeficiente de correlação da curva de calibração na presença de problemas de passivação ou
contaminação do eletrodo de trabalho. O coeficiente de correlação foi calculado,
respectivamente, em 0,975 e 0,998, antes e após a normalização dos resultados pelo
método do PI.
O método do padrão interno também foi aplicado para corrigir erros em sistemas
de análise por injeção em batelada (BIA) com detecção amperométrica provenientes do
procedimento de injeção (velocidade de injeção e volume injetado) quando seringas
descartáveis foram utilizadas. Os resultados obtidos antes e após a normalização dos
resultados pelo método do PI foram os seguintes, respectivamente: estudo de
repetibilidade (DPR=6,4 e 1,8%; n = 8), coeficientes de correlação (R=0,954 e 0,997) e
erros obtidos na análise de amostras sintéticas (9,4 ± 1,5% e 3,5 ± 0,7; n = 8).
A determinação de DCF por FIA-MPA foi implementada através da aplicação de
dois pulsos de potenciais ao eletrodo de BDD em meio de H2SO4 0,1 mol L-1 como
eletrólito suporte: (i) +1,2 V / 50 ms para oxidação e quantificação do DCF e, (ii) 0,0 V
/ 50 ms para constante limpeza eletroquímica do eletrodo de trabalho. O sistema
apresentou boa estabilidade (RSD = 1,0%; n=10) e elevada frequência analítica (135
injeções h-1). O método apresentou resposta linear entre 5 e 50 μmol L-1 e os limites de
detecção e quantificação foram calculados em 0,14 e 0,46 μmol L-1, respectivamente. O
método proposto foi aplicado na determinação de DCF em formulações farmacêuticas e
os resultados obtidos foram similares ao obtidos por HPLC a um nível de confiança de
95%.
A determinação simultânea de DCF e CO foi realizada usando os seguintes pulsos
de potenciais: (i) +1,1 V / 50 ms: oxidação e quantificação de DCF; (ii) +1,4 V / 50 ms:
para oxidação simultânea de DCF e CO; (iii) 0,0 V / 200 ms: para constante limpeza
eletroquímica do eletrodo de BDD. A corrente de oxidação da CO foi obtida pela subtração entre as correntes detectadas em 1,4 e 1,1 V mediante uso de um fator de
correção. O sistema apresentou boa estabilidade (RSD= 1,1 e 0,9% para DCF e CO,
respectivamente, n=10) e elevada frequência analítica (~300 injeções h-1). O método
apresentou resposta linear entre 10 e 50 μmol L-1 para o DCF e entre 7,1 e 35,7 μmol L-1
para CO. O LD e o LQ foram calculados, respectivamente, em 1,1 e 3,7 μmol L-1, para
DCF e 1,0 e 3,3 μmol L-1 para CO. O método proposto foi aplicado na determinação
simultânea de DCF e CO em formulações farmacêuticas e os resultados obtidos foram
similares ao obtidos por HPLC a um nível de confiança de 95%. / Doutor em Química
|
93 |
SPECIES- TO COMMUNITY-LEVEL RESPONSES TO CLIMATE CHANGE IN EASTERN U.S. FORESTSJonathan A Knott (8797934) 12 October 2021 (has links)
<p>Climate change has dramatically altered the ecological landscape of the eastern U.S., leading to shifts in phenological events and redistribution of tree species. However, shifts in phenology and species distributions have implications for the productivity of different populations and <a></a>the communities these species are a part of. Here, I utilized two studies to quantify the effects of climate change on forests of the eastern U.S. First, I used phenology observations at a common garden of 28 populations of northern red oak (<i>Quercus rubra</i>) across seven years to assess shifts in phenology in response to warming, identify population differences in sensitivity to warming, and correlate sensitivity to the productivity of the populations. Second, I utilized data from the USDA Forest Service’s Forest Inventory and Analysis Program to identify forest communities of the eastern U.S., assess shifts in their species compositions and spatial distributions, and determine which climate-related variables are most associated with changes at the community level. In the first study, I found that populations were shifting their spring phenology in response to warming, with the greatest sensitivity in populations from warmer, wetter climates. However, these populations with higher sensitivity did not have the highest productivity; rather, populations closer to the common garden with intermediate levels of sensitivity had the highest productivity. In the second study, I found that there were 12 regional forest communities of the eastern U.S., which varied in the amount their species composition shifted over the last three decades. Additionally, all 12 communities shifted their spatial distributions, but their shifts were not correlated with the distance and direction that climate change predicted them to shift. Finally, areas with the highest changes across all 12 communities were associated with warmer, wetter, lower temperature-variable climates generally in the southeastern U.S. Taken together, these studies provide insight into the ways in which forests are responding to climate change and have implications for the management and sustainability of forests in a continuously changing global environment.</p>
|
94 |
Biologisk reducering av nitrat och nitrit i vatten / Biologic reduce of nitrate and nitrite in waterSohlberg, Thomas January 2007 (has links)
<p>During the summer 2007 was a scrubber tested at Gruvön papper mill in Grums. The scrubber reduced NO<sub>x</sub> with 90 % in flue gas. NO<sub>x</sub> was transferred from the flue gas to a scrubber liquid as nitrate and nitrite. The scrubber liquid needs to be purified from nitrate and nitrite.</p><p> </p><p>One possible solution is to clean the scrubber liquid in Gruvön biologic cleaning construction.</p><p>Microorganisms in the biologic cleaning construction need to assimilate nitrogen. There are environments free from oxygen in the cleaning construction. Microorganisms can reduce nitrate in environments free from oxygen. </p><p> </p><p>At the implementation was a labmodel built of the two first steps from Gruvön papper mill. Wastewater was collected from Gruvön papper mill. The wastewater was dosed with salts of nitrate and nitrite and pumped into the labmodel.</p><p>The results showed that nitrate and nitrite can be reduced in content with help of the biological cleaning construction.</p>
|
95 |
Biologisk reducering av nitrat och nitrit i vatten / Biologic reduce of nitrate and nitrite in waterSohlberg, Thomas January 2007 (has links)
During the summer 2007 was a scrubber tested at Gruvön papper mill in Grums. The scrubber reduced NOx with 90 % in flue gas. NOx was transferred from the flue gas to a scrubber liquid as nitrate and nitrite. The scrubber liquid needs to be purified from nitrate and nitrite. One possible solution is to clean the scrubber liquid in Gruvön biologic cleaning construction. Microorganisms in the biologic cleaning construction need to assimilate nitrogen. There are environments free from oxygen in the cleaning construction. Microorganisms can reduce nitrate in environments free from oxygen. At the implementation was a labmodel built of the two first steps from Gruvön papper mill. Wastewater was collected from Gruvön papper mill. The wastewater was dosed with salts of nitrate and nitrite and pumped into the labmodel. The results showed that nitrate and nitrite can be reduced in content with help of the biological cleaning construction.
|
96 |
La régulation des gestionnaires de hedge funds en droit européen et américain : Enjeux et perspectives. Une étude comparée des régimes juridiques issus de la directive AIFM et du Dodd Franck Act / The regulation of hedge fund advisers under EU and US laws : Challenges and perspectives. An analysis of financial regulation through the prism of the AIFM Directive and the Dodd Franck ActRivière, Anne 23 June 2017 (has links)
Plusieurs trillions de dollars d’actifs sous gestion : tel est le poids de l’industrie des hedge funds dans le système financier. Acteurs indispensables des marchés, les hedge funds sont pourtant des créatures méconnues. Réservés aux investisseurs professionnels ou qualifiés, ils ont longtemps tiré partie d’exemptions et échappé à une trop forte contrainte réglementaire. La crise financière de 2008 a bouleversé ce schéma et fait apparaître, en Europe et aux États-Unis, une même volonté d’encadrer davantage ces structures, par le biais de leurs gestionnaires. Aussi cette étude propose-t-elle une analyse comparée des dispositions introduites en la matière par la directive AIFM et par le Dodd Frank Act. Après un nécessaire éclairage sur cette industrie de l’ombre, elle examine les apports des deux textes, les confronte avant d’en dégager forces et faiblesses. Le traumatisme de la crise a fait émerger un double impératif : mieux protéger les investisseurs et prévenir le risque systémique. C’est à la lumière de ces deux objectifs que la seconde partie s’attarde sur le bien-fondé des réformes, leur portée réelle ainsi que leurs limites. Cette vue d’ensemble de la régulation applicable aux gestionnaires de hedge funds est également prétexte à une réflexion plus large sur la régulation financière, ses finalités, ses contours et ses défis. Nous concluons sur une feuille de route pour un acte II de la directive AIFM et formulons plusieurs propositions, en particulier l’interdiction totale de commercialisation auprès d’investisseurs de détail et la création d’une base de données mondiale du risque systémique. / The hedge fund industry manages several trillion dollars in assets. Though they are key players of the financial system, hedge funds remain mysterious creatures. Available only to professional or qualified investors, they managed, for a long time, to take advantage of exemptions and to avoid a heavy regulatory burden. The 2008 financial crisis profoundly changed perspectives and led the European Union and the United States to introduce new regulations targeting hedge funds, through their managers and advisers. This study is a comparative analysis of such regulations, brought about by the AIFM Directive and the Dodd Frank Act. After a brief overview of the industry, both texts are examined and compared so as to identify their respective strengths and weaknesses. Two imperatives emerged out of the crisis: increasing investor protection and preventing systemic risk. In light of these two objectives, part II discusses the validity of the reforms, their scope and their limits. This extensive analysis of hedge fund regulation also leads to broader remarks on financial regulation, its aims, contours and challenges. Finally, a roadmap for a revised version of the AIFM Directive is proposed and concrete measures are suggested, such as the total prohibition of marketing to retail investors and the creation of a global database of systemic risk.
|
Page generated in 0.0711 seconds