• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling the microbial fate and transport in rivers of South Africa / Modellering av mikrobiell transport i Sydafrikas vattendrag

Perman, Stina January 2021 (has links)
In recent years, surface water used for domestic, industrial, and irrigation purposes in South Africa has deteriorated due to inadequate wastewater treatment, urban and agricultural runoff, and rural settlements with deficient sanitation. Access to safe drinking water and sanitation is a basic human right, and if waterborne pathogens are present in the water environment, they compose a human health risk. With some hydrological models, e.g., Hydrological Predictions of the Environment (HYPE), it is possible to model microbial water quality and predict how land use and climate changes affect recipient water sources. In this thesis, waterborne pathogen transport in South Africa is investigated using World-Wide HYPE (WWH), to increase the understanding of the largest sources affecting pathogen concentration in surface water and processes affecting pathogen transport. Initially, a literature study was performed with emphasis on finding the most suitable pathogen to simulate. Because of the amount of available data, the indicator microorganism, E. coli, was chosen. Observed E. coli concentrations in surface water were used to evaluate the conformity of the simulated concentration, and contributions from separate sources were analysed. A sensitivity analysis was performed to increase the understanding of process parameters affecting the transport of E. coli in WWH. The findings of this project show that the largest contributions of E. coli originate from humans with unsatisfactory waste management, where wastewater is partially released directly to surface water. The largest deviation in average E. coli load per year was obtained when altering t1expdec, which denotes the half-life time of the simulated microorganism. The half-life time was also the process parameter with the most significant effect on the simulated concentration. In addition, when the parameter that specifies the fraction of E. coli that is released directly to surface water was altered, which affects one of the largest E. coli sources, a large deviation in average E. coli load per year was observed. This finding shows the importance of estimating the load from contamination sources accurately. The conformity of simulated and observed E.coli load was acceptable, but the simulated discharge needs to be improved to achieve better conformity of the E. coli concentration in surface water. WWH has great potential to simulate waterborne pathogens, but further developments to improve the simulated discharge are encouraged to obtain more reliable results. / Under de senaste åren har kvaliteten av ytvattnet i Sydafrika försämrats på grund av bristfälliga vattenreningsverk, avrinning från urbana miljöer och åkermark och områden med undermålig sanitet. Att ha tillgång till rent vatten och fungerande sanitet är en grundläggande mänsklig rättighet och om patogener är närvarande utgör detta en hälsorisk för människor som kommer i kontakt med dessa smittoämnen. Det är möjligt att modellera vattens kvalitet med avseende på mikroorganismer och att förutse hur markanvändning påverkar kvaliteten i recipienten. I detta arbete har transporten av vattenburna patogener i Sydafrika undersökts genom World-Wide HYPE (WWH) med syftet att öka förståelsen av de största källorna som bidrar till ökande koncentrationer av patogener i ytvatten, samt att öka förståelsen av processerna som påverkar transporten. En litteraturstudie utfördes för att hitta en passande patogen att simulera, och på grund av mängd tillgängliga data valdes indikatororganismen E. coli. Uppmätt koncentration av E. coli i ytvatten i Sydafrika användes för att utvärdera överrensstämmelsen med simulerad koncentration, och bidrag från olika källor av E. coli analyserades. En kompletterande känslighetsanalys utfördes för att öka förståelsen om transportprocesserna i WWH. Resultatet visade att de största bidragskällorna av E. coli till ytvatten i modellen är människor med otillräcklig hantering av mänskligt avfall där genererat avloppsvatten delvis släpps ut direkt till ytvattnet. Från känslighetsanalysen visade det sig att den mest känsliga modellparametern var t1expdec som beskriver mikroorganismenshalveringstid. Det var också den processparameter som också hade störst påverkan på den simulerade E. coli koncentrationen. När parametern som bestämmer andelen av E.coli som släpps ut direkt till ytvatten varierades, som påverkar en av de största källorna, resulterade det också i stor förändring i genomsnittlig belastning av E. coli per år. Detta indikerar att det är viktigt att estimera bidragskällorna korrekt. Överrensstämmelsen mellan simulerad och uppmätt belastning av E. coli per dag var acceptabel men det simulerade vattenflödet bör förbättras för att uppnå en bättre överrensstämmelse mellan simulerade och uppmätta koncentrationer av E. coli. WWH har stor potential att modellera vattenburna patogener, men vidareutveckling av simulerade vattenflöden behöver utföras att få mer tillförlitliga resultat.
2

Analys av dricksvattenrening med metoderna Mikrobiologisk riskanalys, MRA och God desinfeksjonspraksis, GDP / Analysis of drinking water purification with Quantitative Microbial Risk Assessment, QMRA and Good Disinfection Practice, GDP

Högberg, Anna January 2010 (has links)
Vatten är ett livsmedel som vi kommer i kontakt med dagligen. För att inte råka ut för sjuk-domar och infektioner renas dricksvattnet på vattenverken, främst för att reducera antalet patogener, d.v.s. sjukdomsframkallande mikroorganismer. Man brukar prata om tre grupper mikroorganismer i vattenrening; bakterier, virus och parasiter. Dessa grupper är vitt skilda i många avseenden och reduceras därför olika bra av olika reningssteg. Ju mer kunskap man kan få om reningsprocessen, desto bättre kan reningen optimeras. Därmed minimeras riskerna för konsumenterna att drabbas av infektioner. I det här arbetet används två modeller för att beskriva och utvärdera Borgs vattenverk som drivs av Norrköping Vatten AB. Modellen God desinfeksjonspraksis (GDP) är ett resultat av ett norskt projekt och baserar sig på formler och tabeller. Först avgörs råvattenkvaliteten genom att vattenverkets storlek och förekomst av mikroorganismer bedöms. Därefter görs diverse avdrag för förebyggande åtgärder, rening utöver desinfektion m.m. Slutligen bedöms desinfektionsgraden genom att det tillsatta klorets avklingning bestäms för beräkning av Ct-värdet; produkten av kontakttiden och koncentrationen. Genom att jämföra råvattenkvaliteten med avdragen och desinfektions-graden kan en bedömning göras om huruvida reningsprocessen är tillräcklig eller inte. I Mikrobiologisk riskanalys (MRA) bygger man upp en modell av sitt vattenverk i ett program och väljer patogenhalter för råvattnet. Efter det beräknar programmet renings-processens reduktion, riskerna för daglig respektive årlig sannolikhet för infektion samt DALYs, som gör att man kan jämföra risken för vattenburen smitta med exempelvis risken att förolyckas i trafiken. Det amerikanska naturvårdsverket och WHO har satt gränsen för den acceptabla årliga sannolikheten för infektion på grund av vattenrelaterad sjukdom till 1/10 000 invånare respektive 1 µDALYs. Fördelen med MRA är att när man väl byggt upp sitt vattenverk i programmet kan olika scenarion simuleras genom att patogenhalterna varieras. Tyvärr är det svårt att uppskatta patogenhalterna då de provtagningar som skulle behövas sällan är gjorda. Även litteraturvärden kan vara svårt att hitta, särskilt för virus som är så små att de är svåra att analysera. Resultatet av bägge modellerna visade på att Borgs vattenverks reduktionsförmåga är tillräcklig med avseende på bakterier, men inte för virus och parasiter. I MRA är det emellertid svårt att säga hur korrekt detta påstående är, då endast litteraturvärden kunnat användas för de två sistnämnda patogenerna. En del provtagningar har gjorts och då har inga parasiter kunnat påvisas i råvattnet, men för att inte underskatta riskerna användes litteratur-värdena ändå. GDP påvisade inga stora brister i reduceringen av virus och parasiter och i MRA låg resultatet i samma storleksordning som gränsen för DALYs. Eventuellt behöver alltså inga stora åtgärder vidtas för att minska de mikrobiologiska riskerna. De viktigaste stegen i reningsprocessen är långsamfiltrering, desinfektion med fritt klor och fällning och sedimentering med efterföljande filtrering. Infektionsrisken blir störst om fällningssteget slås ut. I samtliga simulerade scenarion låg infektionssannolikheten för bakterier fortfarande på en acceptabel nivå. Det värsta scenariot av de modellerade är om avloppsledningen från Skärblacka skulle börja läcka samtidigt som det regnar kraftigt. Det skulle leda till att förorening från betesmark spolas med ut i Motala Ström där råvattnet hämtas. Detta ger den högsta patogenhalten och därmed också den största infektionsrisken. / Water is one of the most basic things in life and is something we come in contact with on a daily basis. To prevent diseases and infections, the drinking water is purified, mainly in order to reduce the number of pathogens. The most important groups of microorganisms in water purification are bacteria, viruses, and parasites. These groups are very different in many respects and are therefore reduced most efficiently by different purification processes. If more knowledge is gained, the waterworks can optimize the purification process. This would lead to a minimization of the risk of getting infections caused by consuming the drinking water. In this paper two models are used to describe and evaluate Borg’s waterworks, run by Norrköping Vatten AB. Good Disinfection Practice (GDP) is the result of a Norwegian project and is based on formulas and tables. First, the raw water quality is determined by evaluating the presence of microorganisms and the number of people supplied. Then deductions are made due to security precautions and water treatment besides disinfection etc.  Finally the disinfection is determined by calculating the reduction of the added chlorine to gain the Ct-value, which is the product of the contact time and concentration. By comparison of the raw water, the deductions and the disinfection, the purification process can be evaluated as sufficient or not. In Quantitative Microbial Risk Assessment (QMRA) the purification process is modelled and concentrations of pathogens in the raw water are chosen. The program then calculates the reduction of the pathogens by the purification process. The result is also presented as probability of daily or annual infection and DALYs, which makes it possible to compare the risks of waterborne diseases with for example, the risk of traffic accidents. The US Environmental Protection Agency and the World Health Organization have determined the limit for the acceptable annual probability of infection due to water-related disease to 1/10,000 and 1 µDALYs. The advantage of the QMRA is that once you have modelled your purification process a variety of scenarios can be simulated. Unfortunately, it is difficult to estimate the concentrations of pathogens in the raw water and the acquired analysis are rarely made. Even literature values can be difficult to find, especially for viruses due to the difficulties in analysing them because of their small size. Both the models’ results showed that Borg’s waterworks reduction capacity is sufficient for bacteria, but not viruses and parasites. It is however difficult to say how accurate this conclusion is. In QMRA only literature values have been used as a basis to determine the risk for viruses and parasites. In fact, no parasites have been found when samples have been run on the raw water. But since an overestimation of the risk is to be preferred, literature values were used anyway. GDP showed only small shortcomings in the reduction of viruses and parasites and the values obtained from QMRA were in the same order of magnitude as the limit of DALYs. Therefore only small measures might be needed to lower the microbiological risks. The most important steps in the purification process are slow sand filtration, disinfection with free chlorine and precipitation and sedimentation with subsequent filtering. Elimination of the precipitating step results in the greatest risk of infection. In all the scenarios simulated the likelihood of infections caused by bacteria is still acceptable.  The worst-case scenario would be a sewage water leak during heavy raining. The rain would cause excrement from cattle to be washed into and contaminate the raw water in addition to the sewage contamination. This provides the highest concentration of pathogens in the raw water and therefore also the greatest risk of infection.
3

Biologisk reducering av nitrat och nitrit i vatten / Biologic reduce of nitrate and nitrite in water

Sohlberg, Thomas January 2007 (has links)
<p>During the summer 2007 was a scrubber tested at Gruvön papper mill in Grums. The scrubber reduced NO<sub>x</sub> with 90 % in flue gas. NO<sub>x</sub> was transferred from the flue gas to a scrubber liquid as nitrate and nitrite. The scrubber liquid needs to be purified from nitrate and nitrite.</p><p> </p><p>One possible solution is to clean the scrubber liquid in Gruvön biologic cleaning construction.</p><p>Microorganisms in the biologic cleaning construction need to assimilate nitrogen. There are environments free from oxygen in the cleaning construction. Microorganisms can reduce nitrate in environments free from oxygen.   </p><p> </p><p>At the implementation was a labmodel built of the two first steps from Gruvön papper mill. Wastewater was collected from Gruvön papper mill. The wastewater was dosed with salts of nitrate and nitrite and pumped into the labmodel.</p><p>The results showed that nitrate and nitrite can be reduced in content with help of the biological cleaning construction.</p>
4

Biologisk reducering av nitrat och nitrit i vatten / Biologic reduce of nitrate and nitrite in water

Sohlberg, Thomas January 2007 (has links)
During the summer 2007 was a scrubber tested at Gruvön papper mill in Grums. The scrubber reduced NOx with 90 % in flue gas. NOx was transferred from the flue gas to a scrubber liquid as nitrate and nitrite. The scrubber liquid needs to be purified from nitrate and nitrite.   One possible solution is to clean the scrubber liquid in Gruvön biologic cleaning construction. Microorganisms in the biologic cleaning construction need to assimilate nitrogen. There are environments free from oxygen in the cleaning construction. Microorganisms can reduce nitrate in environments free from oxygen.      At the implementation was a labmodel built of the two first steps from Gruvön papper mill. Wastewater was collected from Gruvön papper mill. The wastewater was dosed with salts of nitrate and nitrite and pumped into the labmodel. The results showed that nitrate and nitrite can be reduced in content with help of the biological cleaning construction.

Page generated in 0.0447 seconds