• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 49
  • 47
  • 42
  • 38
  • 27
  • 21
  • 17
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle

Singh, Rohit Rajendraprasad 12 1900 (has links)
Myosin subfragment-2 (S2) is a coiled coil linker between myosin subfragment-1 and light meromyosin (LMM). This dissertation examines whether the myosin S2 coiled coil could regulate the amount of myosin S1 heads available to bind actin thin filaments by modulating the stability of its coiled coil. A stable myosin S2 coiled coil would have less active myosin S1 heads compared to a more flexible myosin S2 coiled coil, thus causing increased force production through acto-myosin interaction. The stability of the myosin S2 coiled coil was modulated by the binding of a natural myosin S2 binding protein, myosin binding protein C (MyBPC), and synthetic myosin S2 binding proteins, stabilizer and destabilizer peptide, to myosin S2. Competitive enzyme linked immunosorbent assay (cELISA) experiments revealed the cross specificity and high binding affinity of the synthetic peptides to the myosin S2 of human cardiac and rabbit skeletal origins. Gravitational force spectroscopy (GFS) was performed to test the stability of myosin S2 coiled coil in the presence of these myosin S2 binding proteins. GFS experiments demonstrated the stabilization of the myosin S2 coiled coil by the binding of MyBPC and stabilizer peptide to myosin S2, while the binding of destabilizer peptide to the same resulted in a flexible myosin S2 coiled coil. The binding of MyBPC and stabilizer peptide respectively, resulted in 3.35 and 1.5 times increase in force required to uncoil the myosin S2, while the binding of destabilizer peptide resulted in 1.6 times decrease in force required to uncoil the myosin S2. The myofibrillar contractility assay was performed to test the effect of synthetic myosin S2 binding proteins on the sarcomere shortening in myofibrils. The stabilizer peptide resulted in decreased sarcomere shortening of myofibrils as a result of decreased acto-myosin interaction, on the other hand, the binding of destabilizer peptide caused an increase in sarcomere shortening. The in vitro motility assay was performed to test the effect of altered stability of myosin S2 by binding of these myosin S2 binding proteins on the motility of actin filaments sliding over myosin. The motility of actin filaments was hindered by treating myosin thick filaments with whole length skeletal MyBPC or by treating heavy meromyosin with stabilizer peptide, while the motility of actin filaments was enhanced when heavy meromyosin was treated with destabilizer peptide. This study demonstrates that the myosin S2 coiled coil stability influences the force produced by acto-myosin interaction in striated skeletal muscle. The myosin S2 coiled coil when stabilized by MyBPC and stabilizer peptide resulted in decreased force production by reduced acto-myosin interaction. While the binding of destabilizer resulted in a flexible myosin S2 coiled coil and increased force production by enhanced acto-myosin interaction. The potentially cooperative response of contractility to the instability of the S2 coiled coil promises that this biological mechanism may be the target of drugs to modulate muscle performance.
52

Molecular assemblies observed by atomic force microscopy

Cisneros Armas, David Alejandro 25 June 2007 (has links)
We use time-lapse AFM to visualize collagen fibrils self-assembly. A solution of acid-solubilized collagen was injected into the AFM fluid cell and fibril formation was observed in vitro. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Laterally, the fibrils grew in steps of ~4 nm suggesting a two-step mechanism. In a first step, collagen molecules associated together. In the second step, these molecules rearranged into a structure called a microfibril. High-resolution AFM topographs revealed substructural details of the D-band architecture. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy. Secondly, a covalent assembly approach to prepare membrane protein for AFM imaging that avoids crystallization was proposed. High-resolution AFM topographs can reveal structural details of single membrane proteins but, as a prerequisite, the proteins must be adsorbed to atomically flat mica and densely packed in a membrane to restrict their lateral mobility. Atomically flat gold, engineered proteins, and chemically modified lipids were combined to rapidly assemble immobile and fully oriented samples. The resulting AFM topographs of single membrane proteins were used to create averaged structures with a resolution approaching that of 2D crystals. Finally, the contribution of specific amino acid residues to the stability of membrane proteins was studied. Two structurally similar proteins sharing only 30% sequence identity were compared. Single-molecule atomic force microscopy and spectroscopy was used to detect molecular interactions stabilizing halorhodopsin (HR) and bacteriorhodopsin (BR). Their unfolding pathways and polypeptide regions that established stable segments were compared. Both proteins unfolded exactly via the same intermediates. This 3 Molecular Assemblies observed by AFM observation implies that these stabilizing regions result from comprehensive contacts of all amino acids within them and that different amino acid compositions can establish structurally indistinguishable energetic barriers. However, one additional unfolding barrier located in a short segment of helix E was detected for HR. This barrier correlated with a Pi-bulk interaction, which locally disrupts helix E and divides into two stable segments.
53

Kraftspektroskopie mittels optischer Pinzetten zur Untersuchung einzelner Rezeptor/Ligand-Komplexe

Wagner, Carolin 21 March 2013 (has links)
Optische Pinzetten stellen neuartige Werkzeuge in der Biophysik dar, die sich durch eine außerordentliche Präzision auszeichnen. Im Rahmen der vorliegenden Arbeit werden verfeinerte Bildanalysetechniken vorgestellt und neu entwickelt, die es erlauben, die Position eines Mikropartikels mit einer zeitlichen Auflösung von 0,017 s und einer Genauigkeit von ±2nm in lateraler und in axialer Richtung zu bestimmen. Dies ermöglicht eine Kraftauflösung von bis zu ±50 fN. Damit sind die Voraussetzungen für die Untersuchung von Rezeptor/Ligand-Wechselwirkungen auf der Ebene einzelner Bindungsereignisse gegeben. In der vorliegenden Arbeit werden die Wechselwirkungen zwischen den phosphorylierungsspezifischen Antikörpern HPT-101, HPT-104 und HPT-110 und Tau-Peptiden mit verschiedenen Phosphorylierungsmustern sowie zwischen DNA und den Proteinen TmHU und oPrPC untersucht. Die Wechselwirkungen zwischen Tau-Peptiden und Antikörpern werden jeweils anhand ihrer Bindungshäufigkeit sowie der Verteilung der Abrisskräfte charakterisiert. Mit einem aus der Literatur bekannten, theoretischen Modell werden folgende Bindungsparameter bestimmt: Lebenszeit der unbelasteten Bindung, charakteristische Länge und freie Aktivierungsenergie der Dissoziation. Im Einklang mit Ergebnissen einer immunochemischen Messung werden spezifische Wechselwirkungen zwischen HPT-101 und dem biphosphorylierten Tau-Peptid sowie zwischen HPT-104 bzw. HPT-110 und den Peptiden, die eine Phosphorylierung an Thr231 bzw. Ser235 enthalten, beobachtet. Zusätzlich ermöglicht die Einzelmolekülmethode auch eine detaillierte Charakterisierung der unspezifischen Wechselwirkungen mit den Tau-Peptiden, welche das jeweilige spezifisch erkannte Phosphorylierungsmuster nicht beinhalten. Der zweite Teil der Arbeit befasst sich mit dem Einfluss der Proteine TmHU und oPrPC auf einen einzelnen, mit konstanter Kraft gehaltenen DNA-Strang. Der zeitliche Verlauf der TmHU-induzierten Kondensationsreaktion wird bei Kräften zwischen 2 pN und 40 pN sowie in Abhängigkeit von der Proteinkonzentration untersucht. Bei kleinen Kräften ist eine Verkürzung in zwei Phasen auf bis zu 30% der Konturlänge zu beobachten. Unter zusätzlicher Einbeziehung der Ergebnisse einer SMD-Simulation sowie einer rasterkraftmikroskopischen Untersuchung kann die erste Phase der Verkürzung einer primären Anbindung von TmHU zugeordnet werden. Die zweite Reaktionsphase entspricht hingegen vermutlich der Ausbildung einer Überstruktur. Die Wechselwirkung von oPrPC mit DNA wird zusätzlich mit einer kombinierten Anordnung aus Nanokapillare und optischer Pinzette untersucht. Dabei zeigt sich, dass ein Protein/DNA-Komplex ausgebildet wird, der eine negative Oberflächenladung aufweist und sich in seinem Volumen und seiner Ladung von reiner DNA unterscheidet. Allerdings hat oPrPC keinen Einfluss auf den Ende-zu-Ende-Abstand bzw. die Elastizität der DNA.
54

Polyelectrolyte Building Blocks for Nanotechnology: Atomic Force Microscopy Investigations of Polyelectrolyte-Lipid Interactions, Polyelectrolyte Brushes and Viral Cages

Cuéllar Camacho, José Luis 30 January 2013 (has links)
The work presented here has a multidisciplinary character, having as a common factor the characterization of self-assembled nanostructures through force spectroscopy. Exploring AFM as a tool for characterizing self-assembly and interaction forces in soft matter nanostructures, three different Bio and nonbiological systems where investigated, all of them share the common characteristic of being soft matter molecular structures at the nanoscale. The studied systems in question are: a) Polyelectrolyte – lipid nanocomposites. Single polyelectrolyte adsorption-desorption from supported lipid bilayers, b) Polyelectrolyte brushes and c) Virus-Like particles (VLPs). The scientific interest and industrial applications for each of these different nanostructures is broad, and their potential uses in the near future ranges from smart nanocontainers for drug and gene delivery, surface platforms for molecular recognition to the development of new nanodevices with ultrasensitive external stimuli responsiveness. These nano-structures are constructed following assembly of smaller subunits and belong to representative examples of soft matter in modern nanotechnology. The stability, behavior, properties and long term durability of these self-organized structures depends strongly on the environmental conditions to which they are exposed since their building mechanism is a balance between attractive noncovalent interactions and momentum transmitted collisions due Brownian motion of the solvent molecules. For example a set of long chain molecules firmly attached to one end to a surface will alter their conformation as the space between them is reduced or the environmental conditions are modified (i.e. ionic strength, pH or temperature). For a highly packed condition, this fuzzy surface known as a polyelectrolyte brush will then behave as a responsive material with tunable responsiveness. Thus the objective in the present case was to investigate the change in morphology and the mechanical response of a polyelectrolyte brush to external forces by application of AFM nanoindentations under different ionic strength conditions. The degree of penetration of the AFM tip through the brush will provide insights into the forces exerted by the brush against the tip. Compressions on the brush should aid to characterize its changes in compressibility for different salt concentrations. For the second chosen system, the interaction between two assembled interfaces was investigated at the single molecular level. A multilayered film formed by the consecutive assembly of oppositely charged polyelectrolytes and subsequently coated with a lipid membrane represents a fascinating soft composite material resembling more than a few structural components emerging in living organisms. The fluid bilayer, thus provide a biocompatible interface where additional functionalities can further be integrated (fusion peptides for instance). The smooth polymer cushion confers not only structural flexibility but also adaptability of the chosen substrate properties to be coated. This type of interface could be useful in the development of novel molecular biosensors with single molecule recognition capacities or in the fabrication of assays against pathogenic agents. The aim of this project was to study the molecular binding mechanism between the last polyelectrolyte layer and the lipid head group of the lower lipid leaflet. Understanding this adsorption mechanism between both interfaces, should likewise contribute to improve the fabrication of lipid coated polymeric nano/micro capsules with targeting properties. For example this could be critical in the field of nonviral gene therapy, where the improvement in the design of condensates of nucleic acids and other polymers with lipids (lipoplexes) are of main interest for its posterior use as delivery vectors. Finally, viral capsids were investigated. These naturally occurring assembled nanocontainers within living organisms stand for a remarkable example of nature’s morphological designs. These structures self-assemble from a small number of different proteins occurring in identical copies. The capsid as a self-assembled structure carries multiple functions: compaction of the genome, protection against external chemical threats, target recognition, structural support and finally facilitating the release of the genome into the host cell. It is highly interesting how these different functions are organized within the capsid which consists, for example, in the case of the norovirus of 180 identical copies of one single protein. Therefore, the mechanical stability and elastic properties of virus-like particles of Rubella and Norovirus were investigated by external application of loading forces with an AFM tip. The measurements were performed under conditions relevant for the virus infection mechanism. The applied compressions on these protein shells at pH values mimicking the virus life cycle will aid to learn about possible internal transitions among proteins which may be important for switching between the various functions of the capsid. The choice of two unrelated viral systems with different entry pathways into the cell and with different morphological architectures is expected to reveal crucial information about the stability and mechanical resistance to deformation of these empty membrane-coated and bare viral capsids. This last might provide clues on the stage of particle disassembly and cargo release during the final step of the infection process.
55

Optical trapping : optical interferometric metrology and nanophotonics

Lee, Woei Ming January 2010 (has links)
The two main themes in this thesis are the implementation of interference methods with optically trapped particles for measurements of position and optical phase (optical interferometric metrology) and the optical manipulation of nanoparticles for studies in the assembly of nanostructures, nanoscale heating and nonlinear optics (nanophotonics). The first part of the thesis (chapter 1, 2) provides an introductory overview to optical trapping and describes the basic experimental instrument used in the thesis respectively. The second part of the thesis (chapters 3 to 5) investigates the use of optical interferometric patterns of the diffracting light fields from optically trapped microparticles for three types of measurements: calibrating particle positions in an optical trap, determining the stiffness of an optical trap and measuring the change in phase or coherence of a given light field. The third part of the thesis (chapters 6 to 8) studies the interactions between optical traps and nanoparticles in three separate experiments: the optical manipulation of dielectric enhanced semiconductor nanoparticles, heating of optically trapped gold nanoparticles and collective optical response from an ensemble of optically trapped dielectric nanoparticles.
56

Host cell invasion by influenza A virus

Sieben, Christian 30 May 2013 (has links)
Influenzaviren müssen in die Wirtszelle aufgenommen werden, um dort ihr Genom freizusetzen und ihre Replikation mit Hilfe des Reproduktionsapparats der Zelle einzuleiten. Der komplexe Replikationszyklus der Influenza A Viren ist noch nicht vollständig verstanden. Er beginnt mit der Bindung des viralen Hämagglutinins (HA) an Sialinsäure (SA) auf der Zelloberfläche der Wirtszelle. In dieser Arbeit wurde die Virusbindung an Zellen mit unterschiedlicher Rezeptorkomposition verglichen. Dabei konnte gezeigt werden, dass für die zelluläre Spezifität die Präsentation des Rezeptors innerhalb der Plasmamembran der Zelle eine größere Rolle spielt als die Struktur des Rezeptorglykans selbst. Des Weiteren deuten die Beobachtung sehr kleiner Kräfte und ein stufenweises Öffnen von Bindungen auf eine multivalente Interaktion hin. Multivalenz wird oft in biologischen Bindungsprozessen beobachtet und kann Bindungskräfte enorm verstärken. Basierend auf diesen Ergebnissen wurden inhibitorische Nanopartikel entwickelt, die die natürliche Zelloberfläche als hochaffine Bindungsalternative imitieren. Verschiedenartige Nanopartikel wurden evaluiert und konnten die Virusaktivität um mehr als 80 % hemmen. Nach der Bindung wird das Virus durch Endozytose in die Zelle aufgenommen. Durch spezifische Virusmarkierung und gleichzeitiger Expression von zellulären Markerproteinen wurde der Transport einzelner Viren in lebenden Zellen verfolgt. Dabei konnte gezeigt werden, dass das Virus sowohl durch frühe, als auch durch späte Endosomen wandern muss, um sein Genom erfolgreich in das Zytoplasma zu entlassen. Außerdem verzögert das Virus die endosomale Ansäuerung um eine optimale Aufenthaltsdauer im Endosom und die lokalisierte Fusion in der Nähe des Zellkerns zu gewährleisten. Pharmakologisches Eingreifen in diese Prozesse konnte zudem weitere kritische Faktoren identifizieren, die die Effizienz der Virusinfektion stark beeinflussen. / Influenza virus must enter a host cell to deliver its genome, use the cells reproductive machinery and eventually initiate its replication. The replication cycle of influenza A virus is very complex and still not fully understood. It generally starts with binding of the viral protein hemagglutinin (HA) to its cellular receptor sialic acid (SA). In this work, virus-cell attachment forces were investigated at the single molecule level using intact virus binding to living cells, a set-up that closely mimics the in vivo situation. Cells of different surface SA composition were compared. It could be shown that the unique presentation of the ligand within the cells plasma membrane, rather than the structure of the receptor-glycan itself, strongly affects cellular specificity. The low binding forces as well as the observation of stepwise unbinding events suggest a multivalent interaction type. Based on this finding, inhibitory nanoparticles mimicking the cell surface were constructed. Different particles were evaluated and shown to efficiently inhibit virus infection by ≥ 80 %. Since many molecular details of multivalent interactions remain poorly understood parameters such as ligand spacing and presentation were varied and revealed that the density of ligands as well as the interacting surface plays critical roles for virus inhibition. Upon attachment, the virus enters the cell by endocytosis. Virus trafficking was followed at the single-virus level in living cells. The kinetics of virus transport were visualized using fluorescent marker proteins in combination with specific virus labeling. It was found that the virus needs to progress through early and late endosomal compartments in order to efficiently uncoat and release its genome. Further, the virus delays the endosomal acidification to ensure optimal residence time and fusion in the region close to the host cell nucleus. Drug treatment furthermore unraveled critical factors influencing viral infection efficiency.
57

Desenvolvimento de nanoimunossensores de microscopia de força atômica para estudo da esclerose múltipla / Development of atomic force microscopy nanoimmunosensor applied to the survey of multiple sclerosis

Garcia, Pâmela Soto 13 December 2018 (has links)
A glicoproteína oligodendrocítica da mielina (MOG) e proteína básica da mielina (MBP) têm sido implicadas como os antígenos-alvo mais importantes nos processos desmielinizantes do sistema nervoso central (SNC), e mais importantes autoantígenos que surgiram dos estudos com o modelo animal para a esclerose múltipla (EM), a encefalomielite autoimune experimental (EAE). Os primeiros autoanticorpos detectados no soro e liquido cefalorraquidiano (LCR) de pacientes com EM foram anticorpos contra antígenos da mielina. O diagnóstico diferencial da EM inclui a presença de bandas oligoclonais (BOCs) no LCR e ausência no soro, demonstrando dessa forma síntese intratecal de imunoclobulinas G (IgG). As técnicas de detecção de anticorpos mais utilizadas atualmente são ELISA, ensaio baseado em células e western blot (WB). Neste contexto, o estudo da anti-MOG e anti-MBP e seu papel na EM podem ser estudados através da técnica de espectroscopia de força atômica (AFS). Esta é uma técnica altamente sensível que permite a detecção molecular, com a interação de uma ponta funcionalizada de microscópio de força atômica (AFM) com uma amostra, a qual fornece desta forma a força de adesão (Fad) específica para o sistema. Nesta pesquisa, foi inserido na ponta de AFM funcionalizada os peptídeos encefalitogênicos MOG92-106 e MBP85-99, para detectar e estudar os anticorpos específicos IgG anti- MOG92-106 e MBP85-99, no soro e LCR de pacientes na amostra, utilizando a técnica AFS. Sendo assim, este estudo foi realizado de forma inédita utilizando a AFS, auxiliando diretamente na investigação da EM e doenças desmielinizantes relacionadas. / Myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP) have been implied as the most important target antigens in demyelinating processes of central nervous system (CNS) and the most important antigens candidates whom arised from the animal model for multiple sclerosis (MS), the experimental autoimmune encephalomyelitis (EAE). The first autoantibodies detected in serum and cerebrospinal fluid (CSF) of MS patients were antibodies against myelin antigens. Differential diagnostic to MS includes the presence of oligoclonal bands (OCBs) in CSF and absence in serum, which demonstrate intrathecal IgG synthesis. Most applied techniques to detection of antibodies nowadays are ELISA, cell-based assay and western blot (WB). In this context, the study of anti-MOG role in e disease may be supported through its detection by atomic force spectroscopy (AFS) technique. AFS is a highly sensitive technique that allows molecular detection as a functionalized atomic force microscope (AFM) tip interacts with the sample, providing the system specific adhesion force (Fad). In this research, it was attached in the functionalized AFM tip the notable encephalitogenic peptides MOG92-106 and MBP85-99 to detect and study the specific antibodies anti-MOG92-106 and anti-MBP85-99 on the sample with AFS technique. Thus, this study was applied for the first time in research with AFS, assisting directly to MS and other demyelinating diseases investigation.
58

Synthesis and AFM-based single-molecule force spectroscopy of helical aromatic oligoamide foldamers / Synthèse et spectroscopie de force sur molécule unique par AFM de foldamères hélicoïdaux d'oligoamides aromatiques

Devaux, Floriane 14 December 2018 (has links)
Les foldamères sont des architectures moléculaires synthétiques repliées, inspirées par les structures et les fonctions des biopolymères naturels. Le repliement est un processus sélectionné par la nature pour contrôler la conformation de sa machinerie moléculaire afin de réaliser des tâches chimiques ou mécaniques. Durant les dix dernières années de recherche sur les foldamères, des oligomères synthétiques, capables d'adopter des conformations repliées bien définies et prévisibles, comme des hélices, ont été proposés. Les progrès récents ont montré que la synthèse chimique par étapes et le design moléculaire basé sur un squelette oligoamide aromatique permettaient de produire des architectures moléculaires repliées de manière hélicoïdale. La forme du squelette et sa rigidité, des préférences conformationnelles locales, des interactions spécifiques entre monomères éloignés dans une séquence, ainsi que l'action de paramètres externes comme le solvant, ou la présence d'ions peuvent être combinés pour induire une tendance au repliement. Ces architectures sont remarquables car elles peuvent donner lieu à des motifs de repliement qui n'ont pas d'équivalent dans les structures des biopolymères naturels. Par exemple, des hélices dont le diamètre varie le long de la séquence, ou des hélices possédant un centre d'inversion du pas, des hélices en chevrons,... ont été rapportées. Alors que les structures de ces molécules hélicoïdales ont été abondamment caractérisées à l'état solide par cristallographie des rayons X, leur comportement en solution, et surtout le comportement dynamique, est très peu connu. Leurs propriétés mécano-chimiques sont quant à elles inconnues à ce jour. L'objectif du projet est de synthétiser différentes molécules synthétiques hélicoïdales de type oligoamide aromatique et d'obtenir une description détaillée de leur conformation dynamique en solution, ainsi que de leurs propriétés mécano-chimiques, par spectroscopie de force sur molécule unique basée sur l'AFM. / Foldamers are artificial folded molecular architectures inspired by the structures and functions of natural biopolymers. Folding is the process selected by nature to control the conformation of its molecular machinery to carry out chemical functions and mechanical tasks, such as en-zyme catalysis, duplication in nucleic acids, force generation,... During the last decade of research on foldamers, synthetic oligomers able to adopt well- defined and predictable folded conformations, such as helices, have been proposed. Recent progress has shown that stepwise chemical synthesis and molecular design based on aromatic oligoamide backbones enable to produce large helically folded molecular architectures. The shape and stiffness of the backbone, local conformational preferences, specific interactions between distant monomers in sequences, as well as the action of external parameters such as the solvent or the presence of ions, can be combine to induce folding tendency. A remarkable aspect of these architectures is that they can give rise to folded patterns that have no in natural counterparts biopolymer structures. For instance, helices whose diameter varies along the se-quence, helices possessing a handedness inversion centre, herringbone helices have been reported. While the structures of these helical molecules have been well characterized in the solid state by X-ray crystallography, much less is known about their dynamic behavior in solution. Their mechanochemical properties are unknown. The objective of the project is to synthesize various helical nanorchitectures based on an oli-goamide aromatic backbone and to obtain a detailed picture of their dynamical conformation in solution, as well as, their mechanochemical properties, by AFM-based single molecule force spectroscopy.
59

Stochastic dynamics of adhesion clusters under force

Erdmann, Thorsten January 2005 (has links)
Adhesion of biological cells to their environment is mediated by two-dimensional clusters of specific adhesion molecules which are assembled in the plasma membrane of the cells. Due to the activity of the cells or external influences, these adhesion sites are usually subject to physical forces. In recent years, the influence of such forces on the stability of cellular adhesion clusters was increasingly investigated. In particular, experimental methods that were originally designed for the investigation of single bond rupture under force have been applied to investigate the rupture of adhesion clusters. The transition from single to multiple bonds, however, is not trivial and requires theoretical modelling. <br><br> Rupture of biological adhesion molecules is a thermally activated, stochastic process. In this work, a stochastic model for the rupture and rebinding dynamics of clusters of parallel adhesion molecules under force is presented. In particular, the influence of (i) a constant force as it may be assumed for cellular adhesion clusters is investigated and (ii) the influence of a linearly increasing force as commonly used in experiments is considered. Special attention is paid to the force-mediated cooperativity of parallel adhesion bonds. Finally, the influence of a finite distance between receptors and ligands on the binding dynamics is investigated. Thereby, the distance can be bridged by polymeric linker molecules which tether the ligands to a substrate. / Adhäsionskontakte biologischer Zellen zu ihrer Umgebung werden durch zweidimensionale Cluster von spezifischen Adhäsionsmolekülen in der Plasmamembran der Zellen vermittelt. Aufgrund der Zellaktivität oder äußerer Einflüsse sind diese Kontakte normalerweise Kräften ausgesetzt. Der Einfluss mechanischer Kräfte auf die Stabilität zellulärer Adhäsionscluster wurde in den vergangenen Jahren verstärkt experimentell untersucht. Insbesondere wurden experimentelle Methoden, die zunächst vor allem zur Untersuchung des Reißssverhaltens einzelner Moleküle unter Kraft entwickelt wurden, zur Untersuchung von Adhäsionsclustern verwendet. Die Erweiterung von einzelnen auf viele Moleküle ist jedoch keineswegs trivial und erfordert theoretische Modellierung. <br><br> Das Reißen biologischer Adhäsionsmoleküle ist ein thermisch aktivierter, stochastischer Prozess. In der vorliegenden Arbeit wird ein stochastisches Modell zur Beschreibung der Reiß- und Rückbindedynamik von Clustern paralleler Adhäsionsmoleküle unter dem Einfluss einer mechanischen Kraft vorgestellt mit dem die Stabilität der Cluster untersucht wird. Im besonderen wird (i) der Einfluss einer konstante Kraft untersucht wie sie in zellulären Adhäsionsclustern angenommen werden kann und (ii) der Einfluss einer linear ansteigenden Kraft betrachtet wie sie gemeinhin in Experimenten angewendet wird. Besonderes Augenmerk liegt hier auf der durch die Kraft vermittelte Kooperativität paralleler Bindungen. Zuletzt wird der Einfluss eines endlichen Abstandes zwischen Rezeptoren und Liganden auf die Dynamik untersucht. Der Abstand kann hierbei durch Polymere, durch die die Liganden an das Substrat gebunden sind, überbrückt werden.
60

Nanomechanics of Ankyrin Repeat Proteins

Lee, Whasil January 2011 (has links)
<p>Ankyrin repeats (ARs) are polypeptide motifs identified in thousands of proteins. Many AR proteins play a function as scaffolds in protein-protein interactions which may require specific mechanical properties. Also, a number of AR proteins have been proposed to mediate mechanotransduction in a variety of different functional settings. The folding and stability of a number of AR proteins have been studied in detail by chemical and temperature denaturation experiments, yet the mechanic of AR proteins remain largely unknown. In this dissertation, we have researched the mechanical properties of AR proteins by using protein engineering and a combination of atomic force microscopy (AFM)-based single-molecule force spectroscopy and steered molecular dynamics (SMD) simulations. Three kinds of AR proteins were investigated: NI6C (synthetic AR protein), D34 (of ankyrin-R) and gankyrin (oncoprotein). While the main focus of this research was to characterize the response of AR proteins to mechanical forces, our results extended beyond the protein nanomechanics to the understanding of protein folding mechanisms.</p> / Dissertation

Page generated in 0.0888 seconds