61 |
Návrh a výroba břitu stabilizátoru pro formuli student / Design and Manufacturing of a Blade Stabilizer for Formula StudentMarko, Tibor January 2016 (has links)
The master´s thesis discuss about design and manufacture of blade stabilizer. It will be sets limit conditions for design blade and subsequent analysis of effects of stress and strain on the rod of blade and assembly of the stabilizer in various settings. For manufacturing of blade it will design materiál of the blank, manufacturing proces and machining conditions with the choice of cutting tools nad cutting machine. In conclusion will be comparison blades from formulas of last years from monopost Dragon 2 to Dragon 6.
|
62 |
Les superpolynômes de Jack et leurs formules de PieriBrière, Jean-François 13 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2008-2009 / Les polynômes de Jack sont des polynômes symétriques qui constituent les fonctions propres de l'hamiltonien du problème à N corps complètement intégrable de Calogero- Moser-Sutherland (CMS). Ces polynômes sont bien connus en physique et en mathématiques et plusieurs de leurs propriétés ont été obtenues. Entre autres, il existe des règles, nommées formules de Pieri, qui permettent de développer un produit de deux polynômes de Jack dans une combinaison linéaire de polynômes de Jack. Ces formules ont mené à l'obtention d'opérateurs différentiels analogues à des opérateurs de création qui permettent de générer ces polynômes sans avoir à diagonaliser explicitement l'hamiltonien. Dans le cadre de ce mémoire, on s'intéresse au modèle CMS supersymétrique et plus particulièrement aux généralisations des formules de Pieri. On introduit aussi quelques propriétés des superpolynômes de Jack qui seront utiles pour prouver les formules de Pieri obtenues dans le cas supersymétrique.
|
63 |
Sur l'aire et le volume en géométrie sphérique et hyperbolique / On area and volume in spherical and hyperbolic geometryFrenkel, Elena 21 September 2018 (has links)
L'objet de ce travail est de prouver des théorèmes de géométrie hyperbolique en utilisant des méthodes développées par Euler, Schubert et Steiner en géométrie sphérique. On donne des analogues hyperboliques de certaines formules trigonométriques en utilisant la méthode des variations et une formule pour l'aire d'un triangle. Euler utilisa cette idée en géométrie sphérique.On résout ensuite le problème de Lexell en géométrie hyperbolique. Cette partie est basée sur un travail en collaboration avec Weixu Su. En utilisant l'analogue hyperbolique des identités de Cagnoli, on prouve deux résultats classiques en géométrie hyperbolique. Ensuite, on donne les solutions aux problèmes de Schubert (en collaboration avec Vincent Alberge) et de Steiner. En suivant les idées de Norbert A'Campo, on donne l'ébauche de la preuve de la formule de Schlafli en utilisant la géométrie intégrale. Cette recherche peut être généralisée partiellement au cas de la dimension 3. / Our aim is to prove sorne theorems in hyperbolic geometry based on the methods of Euler, Schubert and Steiner in spherical geometry. We give the hyperbolic analogues of sorne trigonometrie formulae by method of variations and an a rea formula in terms of sides of triangles, both due to Euler in spherical case. We solve Lexell's problem. This is a joint work with Weixu Su. We give a shorter formula than Euler's a rea formula. Using hyperbolic analogues of Cagnoli's identities, we prove two classical results in hyperbolic geometry. Further, we give solutions of Schubert's and Steiner's problems. The study of Schubert's problem is a joint work with Vincent Alberge. Finally, following ideas of Norbert A' Campo, we give the sketch of the proof of Schlafli formula using integral geometry. The mentioned theorems can be generalized to the case of dimension 3 partially by means of the techniques used developed in this the sis.
|
64 |
Invariants algébriques et topologiques des courbes et surfaces à singularités quotient / Algebraic and Topological Invariants of Curves and Surfaces with Quotient SingularitiesOrtigas Galindo, Jorge 03 July 2013 (has links)
Le but principal de cette thèse de doctorat est l'étude de l'anneau de cohomologie du complément d'une courbe algébrique réduite dans le plan projectif pondéré complexe dont les composantes irréductibles sont des courbes rationnelles (avec ou sans points singuliers). En particulier, des représentants holomorphes (rationnels) sont obtenus pour les classes de cohomologie. Pour atteindre notre objectif, il est nécessaire de développer une théorie algébrique des courbes sur des surfaces avec des singularités quotient et d'étudier des techniques pour calculer certains invariants particulièrement utiles à travers des Q-résolutions plongées. / The main goal of this PhD thesis is the study of the cohomology ring of the complement of a reduced algebraic curve in the complex weighted projective plane whose irreducible components are all rational (possibly singular) curves. In particular, holomorphic (rational) representatives are found for the cohomology classes. In order to achieve our purpose one needs to develop an algebraic theory of curves on surfaces with quotient singularities and study techniques to compute some particularly useful invariants by means of embedded Q-resolutions.
|
65 |
Deux applications arithmétiques des travaux d'ArthurTaïbi, Olivier 19 September 2014 (has links) (PDF)
Nous proposons deux applications à l'arithmétique des travaux récents de James Arthur sur la classification endoscopique du spectre discret des groupes symplectiques et orthogonaux. La première consiste à ôter une hypothèse d'irréductibilité dans un résultat de Richard Taylor décrivant l'image des conjugaisons complexes par les représentations galoisiennes p-adiques associées aux représentations automorphes cuspidales algébriques régulières essentiellement autoduales pour le groupe GL_{2n+1} sur un corps totalement réel. Nous l'étendons également au cas de GL_{2n}, sous une hypothèse de parité du caractère multiplicatif. Nous utilisons un résultat de déformation p-adique. Plus précisément, nous montrons l'abondance de points correspondant à des représentations galoisiennes (quasi-)irréductibles sur les variétés de Hecke pour les groupes symplectiques et orthogonaux pairs. La classification d'Arthur est utilisée à la fois pour définir les représentations galoisiennes et pour transférer des représentations automorphes autoduales (pas nécessairement cuspidales) de groupes linéaires aux groupes symplectiques et orthogonaux. La deuxième application concerne le calcul explicite de dimensions d'espaces de formes automorphes ou modulaires. Notre contribution principale est un algorithme calculant les intégrales orbitales aux éléments de torsion des groupes classiques p-adiques non ramifiés, pour l'unité de l'algèbre de Hecke non ramifiée. Cela permet le calcul du côté géométrique de la formule des traces d'Arthur, et donc celui de la caractéristique d'Euler du spectre discret en niveau un. La classification d'Arthur permet l'analyse fine de cette caractéristique d'Euler, jusqu'à en déduire les dimensions des espaces de formes automorphes. De là il n'est pas difficile d'apporter une réponse à un problème plus classique: déterminer les dimensions des espaces de formes modulaires de Siegel à valeurs vectorielles.
|
66 |
Calcul de Malliavin, processus de Lévy et applications en finance : quelques contributionsRenaud, Jean-François January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
67 |
Combinatoire algébrique et géométrique des nombres de Hurwitz / Algebraic and geometric combinatorics of Hurwitz numbersSage, Marc 22 June 2012 (has links)
Ce mémoire se veut une synthèse, destinée à la communauté combinatoricienne, de quelques outils développés pour aborder le problème d'Hurwitz ainsi qu'une présentation des résultats récoltés. Le problème d'Hurwitz consiste à évaluer, dans un groupe symétrique, le nombre (dit d'Hurwitz) de factorisations transitives de la permutation identité dont on a imposé le type cyclique des facteurs. Nous décrivons tout d'abord les origines topologiques de ce problème à travers le dénombrement des revêtements ramifiés de la sphère. Nous présentons également un cadre algébrique naturel, le monoïde des permutations scindées, qui permet d'exprimer les nombres d'Hurwitz comme coefficients de structure de l'algèbre de ce monoïde, plus précisément de la sous-algèbre engendrée par les classes de conjugaison, dont une base naturelle est indexée par les multipartitions (ou partitions scindées). La théorie des représentations de cette algèbre fournit un algorithme pour calculer les nombres d'Hurwitz à une partition dont la complexité (minimale, uniforme et exponentielle) est bien meilleure que celle d'une approche naïve. Ce cadre algébrique donne par ailleurs une formule décrivant les séries d'Hurwitz à plusieurs partitions comme polynômes en les séries d'Hurwitz à une seule partition. Nous présentons secondement le cadre géométrique dans lequel s'expriment d'une part la formule ELSV, laquelle décrit les nombres d'Hurwitz à une partition comme fonctions de certaines intégrales, d'autre part un théorème de M. Kazarian exprimant les séries de Hurwitz à une partition comme polynômes en certaines séries formelles dont l'étude asymptotique est achevée. Une fois décrit le fonctionnement de ce cadre intégral, nous récoltons l'asymptotique de tous les nombres d'Hurwitz / This thesis is meant to be a digest, adressed to the combinatorician community, of some tools developped to tackle the problem of Hurwitz, as well as an exhibition of the thus-harvested results. The problem of Hurwitz consists of computing, in a symmetric group, the (so-called Hurwitz) number of transitive factorisations of the identity permutation whose factors have prescribed cyclic types. We first describe the topological layout of this problem through the enumeration of the ramified coverings of the sphere. We also present a natural algebraic frame, the monoid of split permutations, which allows to describe Hurwitz numbers as structure coeffcients of the algebra of this monoid, more precisely of the subalgebra spanned by the conjugacy classes, whose natural basis is indexed by multipartitions (or split partitions). The representation theory of this algebra yields an algoithm to compute one-partition Hurwitz numbers whose complexity (minimal, uniform and exponential) is far better than that of a naive edging about. This algebraic frame yields a formula describing several-partition Hurwitz series as polynomials in one-partition Hurwitz series. We secondly present the geometric frame in which are been expressed on the one hand the ELSV formula, which describes one-partition Hurwitz numbers as functions of some integrals, one the other hand a theorem of M. Kazarian expressing one-partition Hurwitz series as polynomials in some formal power series whose asymptotics is completly understood. Once the using of this integration frame has been described, we derive the asymptotics of all Hurwitz numbers
|
68 |
SÉMANTIQUES ET SYNTAXES VECTORIELLES DE LA LOGIQUE LINÉAIRETasson, Christine 04 December 2009 (has links) (PDF)
Avec les espaces de finitude, Ehrhard a exhibé une sémantique de la logique linéaire contenant une opération de différentiation. Dans ce cadre, l'interprétation des formules est décomposable en séries de Taylor. Cette étude a engendré des syntaxes différentielles. Cette thèse de sémantique dénotationnelle prolonge ce travail par une exploration de sémantiques vectorielles de la logique linéaire, et contribue à l'étude sémantique et syntaxique de la formule de Taylor. La première partie aborde la sémantique. Nous présentons l'interprétation des constructions de la logique linéaire dans les espaces vectoriels munis d'une topologie linéarisée, les espaces de Lefschetz. Nous définissons une notion intrinsèque d'espaces de finitude, les espaces de Lefschetz finitaires. Nous caractérisons les espaces de Lefschetz réflexifs complets à l'aide de bornologies linéaires. Enfin, nous montrons que la décomposition de Taylor reste valide dans ces espaces. La seconde partie porte sur les syntaxes différentielles. La formule de Taylor syntaxique traduit un terme en une superposition de termes différentiels qui sont autant de possibilités d'exécutions. Comme l'ont montré Ehrhard et Regnier, les termes issus de cette traduction vérifient une relation de cohérence. Nous introduisons une sémantique totale qui capture cette relation. Puis, nous construisons une extension vectorielle du lambda-calcul, le calcul barycentrique, interprété par cette sémantique totale. Enfin, dans le cadre des réseaux différentiels, nous présentons un algorithme non déterministe qui permet de décider si un ensemble fini de réseaux différentiels provient de la traduction d'un réseau de la logique linéaire par la formule de Taylor syntaxique.
|
69 |
Sur la factorisation des fonctions zêta des hypersurfaces de DworkGoutet, Philippe 03 December 2009 (has links) (PDF)
Cette thèse s'intéresse à la factorisation des fonctions zêta des hypersurfaces de Dwork. Candelas, de la Ossa et Rodriguez-Villegas ont mis en évidence, dans le cas de la quintique, un facteur provenant de la symétrie miroir et deux facteurs provenant de courbes de type hypergéométrique. Wan a établit le lien avec la symétrie miroir dans le cas général, mais les facteurs complémentaires n'ont pas été étudiés avec le même niveau de détail que dans le cas de la quintique, et c'est sur eux que se concentre cette thèse. Après un premier chapitre de rappels sur les hypersurfaces de Dwork, on détermine, dans le chapitre 2, une factorisation explicite des fonctions zêta en terme de facteurs provenant d'hypersurfaces de type hypergéométrique. Dans le chapitre 3, on déduit une factorisation à partir d'une décomposition isotypique de la cohomologie des hypersurfaces de Dwork. Finalement, dans le chapitre 4, on relie les deux factorisations précédentes.
|
70 |
Transport électronique multi-terminal dans des nanotubes de carbone mono-paroisGao, Bo 13 July 2006 (has links) (PDF)
Cette thèse est consacrée à l'étude expérimentale du transport électronique multi-terminal dans des nanotubes monoparois. Nous avons développé de nouvelles méthodes utilisant des nanotubes multiparois comme sonde de tension non-invasive pour mesurer de manière fiable la résistance intrinsèque des nanotubes monoparois. Dans le régime linéaire à température ambiante, des mesures à 4 terminaux montrent que les nanotubes monoparois sont des conducteurs classiques régis par la loi d'Ohm. A très basse température, des résistances négatives sont mesurées qui résultent d'effets d'interférences quantiques comme prévu par la formule de Landauer-Buttiker. A température intermédiaire, le transport électronique dans les nanotubes monoparois est décrit par la théorie du liquide de Luttinger. Pour tester cette théorie, nous avons réalisé des structures avec 2 nanotubes métalliques en croix. Nous observons une anomalie à tension nulle dans l'un des tubes qui est supprimée lorsque du courant circule dans le deuxième. Ces résultats sont en très bon accord avec un modèle théorique basé sur la théorie du liquide de Luttinger.
|
Page generated in 0.0587 seconds