• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 34
  • 13
  • Tagged with
  • 105
  • 45
  • 45
  • 21
  • 19
  • 18
  • 18
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Tessellations à base de champs aléatoires gaussiens. Application à la modélisation spatiale et temporelle de l'endothélium cornéen humain. / Tessellations based on Gaussian random fields. Application to the spatial and temporal modelling of the human corneal endothelium.

Rannou, Klervi 12 December 2016 (has links)
Les tessellations, aussi appelées mosaïques, permettent de modéliser de nombreuses structures, comme des assemblages de cellules en biologie ou de grains en science des matériaux. La tessellation aléatoire la plus connue est le diagramme de Voronoï qui à partir d'un ensemble de points, appelés germes, partitionne le plan. L'approche innovante de cette thèse est d'utiliser des champs aléatoires gaussiens pour générer des germes et des distances aléatoires, qui vont permettre de simuler une grande variété de tessellations en termes de formes et de tailles des cellules.Pour connaître les propriétés des tessellations simulées à partir de champs aléatoires gaussiens, celles-ci vont être caractérisées et comparées à d'autres tessellations. Tout d'abord par une approche ponctuelle en étudiant les germes, dont leur distribution spatiale. Puis par une approche par région, en étudiant la géométrie et la morphométrie des cellules.L'endothélium cornéen humain est une monocouche de cellules formant un pavage hexagonal régulier à la naissance, et perdant de sa régularité ensuite. La qualité du greffon cornéen est donnée par certaines observations, comme la densité, l'homogénéité de la forme et des tailles des cellules endothéliales.L'évolution avec l'âge de cette mosaïque cornéenne va être caractérisée à partir d’une base d’images de l’endothélium. L'originalité est ensuite d'effectuer une estimation de l'âge d’un endothélium à partir des différentes mesures permettant de caractériser les tessellations, et enfin de mettre en place une méthode prometteuse afin de savoir si une cornée a une évolution normale. / Tessellations, also called mosaics, are used to model many structures, for example cellular arrangements in biology or grains in material science. The most known tessellation is the Voronoï diagram which partitions the space from a set of points, called germs. The innovative approach of this thesis is to use Gaussian random fields to generate germs and random distances. The use of random fields allows to simulate a great variety of tessellations in terms of cells forms and sizes.To study the properties of each type of tessellation, they are characterized: first, by studying the germs, including their spatial distribution, and then by analyzing the cells geometry and morphometry. These tessellations are also compared to other known tessellations.The human corneal endothelium is a mono-layer of cells forming a regular hexagonal mosaic at birth, and losing his regularity later. The corneal graft quality is given by some observations made on the endothelial mosaic (cells density, the homogeneity of cells sizes and shapes).A database of endothelium images allows to characterize the evolution with age of the corneal mosaic. The originality is to estimate the age of an endothelium based on the measures computed to characterize the tessellations, and finally to set up a promising method to evaluate if a corneal evolution is normal.
102

Méta-modèles adaptatifs pour l'analyse de fiabilité et l'optimisation sous contrainte fiabiliste / Adaptive surrogate models for reliability analysis and reliability-based design optimization

Dubourg, Vincent 05 December 2011 (has links)
Cette thèse est une contribution à la résolution du problème d’optimisation sous contrainte de fiabilité. Cette méthode de dimensionnement probabiliste vise à prendre en compte les incertitudes inhérentes au système à concevoir, en vue de proposer des solutions optimales et sûres. Le niveau de sûreté est quantifié par une probabilité de défaillance. Le problème d’optimisation consiste alors à s’assurer que cette probabilité reste inférieure à un seuil fixé par les donneurs d’ordres. La résolution de ce problème nécessite un grand nombre d’appels à la fonction d’état-limite caractérisant le problème de fiabilité sous-jacent. Ainsi,cette méthodologie devient complexe à appliquer dès lors que le dimensionnement s’appuie sur un modèle numérique coûteux à évaluer (e.g. un modèle aux éléments finis). Dans ce contexte, ce manuscrit propose une stratégie basée sur la substitution adaptative de la fonction d’état-limite par un méta-modèle par Krigeage. On s’est particulièrement employé à quantifier, réduire et finalement éliminer l’erreur commise par l’utilisation de ce méta-modèle en lieu et place du modèle original. La méthodologie proposée est appliquée au dimensionnement des coques géométriquement imparfaites soumises au flambement. / This thesis is a contribution to the resolution of the reliability-based design optimization problem. This probabilistic design approach is aimed at considering the uncertainty attached to the system of interest in order to provide optimal and safe solutions. The safety level is quantified in the form of a probability of failure. Then, the optimization problem consists in ensuring that this failure probability remains less than a threshold specified by the stakeholders. The resolution of this problem requires a high number of calls to the limit-state design function underlying the reliability analysis. Hence it becomes cumbersome when the limit-state function involves an expensive-to-evaluate numerical model (e.g. a finite element model). In this context, this manuscript proposes a surrogate-based strategy where the limit-state function is progressively replaced by a Kriging meta-model. A special interest has been given to quantifying, reducing and eventually eliminating the error introduced by the use of this meta-model instead of the original model. The proposed methodology is applied to the design of geometrically imperfect shells prone to buckling.
103

Approche spectrale pour l’interpolation à noyaux et positivité conditionnelle / Spectral approach for kernel-based interpolation and conditional positivity

Gauthier, Bertrand 12 July 2011 (has links)
Nous proposons une approche spectrale permettant d'aborder des problèmes d'interpolation à noyaux dont la résolution numérique n'est pas directement envisageable. Un tel cas de figure se produit en particulier lorsque le nombre de données est infini. Nous considérons dans un premier temps le cadre de l'interpolation optimale dans les sous-espaces hilbertiens. Pour un problème donné, un opérateur intégral est défini à partir du noyau sous-jacent et d'une paramétrisation de l'ensemble des données basée sur un espace mesuré. La décomposition spectrale de l'opérateur est utilisée afin d'obtenir une formule de représentation pour l'interpolateur optimal et son approximation est alors rendu possible par troncature du spectre. Le choix de la mesure induit une fonction d'importance sur l'ensemble des données qui se traduit, en cas d'approximation, par une plus ou moins grande précision dans le rendu des données. Nous montrons à titre d'exemple comment cette approche peut être utilisée afin de rendre compte de contraintes de type "conditions aux limites" dans les modèles d'interpolation à noyaux. Le problème du conditionnement des processus gaussiens est également étudié dans ce contexte. Nous abordons enfin dans la dernière partie de notre manuscrit la notion de noyaux conditionnellement positifs. Nous proposons la définition générale de noyaux symétriques conditionnellement positifs relatifs à une espace de référence donné et développons la théorie des sous-espaces semi-hilbertiens leur étant associés. Nous étudions finalement la théorie de l'interpolation optimale dans cette classe d'espaces. / We propose a spectral approach for the resolution of kernel-based interpolation problems of which numerical solution can not be directly computed. Such a situation occurs in particular when the number of data is infinite. We first consider optimal interpolation in Hilbert subspaces. For a given problem, an integral operator is defined from the underlying kernel and a parameterization of the data set based on a measurable space. The spectral decomposition of the operator is used in order to obtain a representation formula for the optimal interpolator and spectral truncation allows its approximation. The choice of the measure on the parameters space introduces a hierarchy onto the data set which allows a tunable precision of the approximation. As an example, we show how this methodology can be used in order to enforce boundary conditions in kernel-based interpolation models. The Gaussian processes conditioning problem is also studied in this context. The last part of this thesis is devoted to the notion of conditionally positive kernels. We propose a general definition of symmetric conditionally positive kernels relative to a given space and exposed the associated theory of semi-Hilbert subspaces. We finally study the optimal interpolation problem in such spaces.
104

Sequential Machine learning Approaches for Portfolio Management

Chapados, Nicolas 11 1900 (has links)
No description available.
105

Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statistics

Ouimet, Frédéric 05 1900 (has links)
No description available.

Page generated in 0.0405 seconds