41 |
Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies ThermodynamicsPopovic, Marko 01 June 2018 (has links)
Entropy, first introduced in thermodynamics, is used in a wide range of fields. Chapter 1 discusses some important theoretical and practical aspects of entropy: what is entropy, is it subjective or objective, and how to properly apply it to living organisms. Chapter 2 presents applications of entropy to evolution. Chapter 3 shows how cellulosic biofuel production can be improved. Chapter 4 shows how lattice vacancies influence the thermodynamic properties of materials. To determine the nature of thermodynamic entropy, Chapters 1 and 2 describe the roots, the conceptual history of entropy, as well as its path of development and application. From the viewpoint of physics, thermal entropy is a measure of useless energy stored in a system resulting from thermal motion of particles. Thermal entropy is a non-negative objective property. The negentropy concept, while mathematically correct, is physically misleading. This dissertation hypothesizes that concepts from thermodynamics and statistical mechanics can be used to define statistical measurements, similar to thermodynamic entropy, to summarize the convergence of processes driven by random inputs subject to deterministic constraints. A primary example discussed here is evolution in biological systems. As discussed in this dissertation, the first and second laws of thermodynamics do not translate directly into parallel laws for the biome. But, the fundamental principles on which thermodynamic entropy is based are also true for information. Based on these principles, it is shown that adaptation and evolution are stochastically deterministic. Chapter 3 discusses the hydrolysis of cellulose to glucose, which is a key reaction in renewable energy from biomass and in mineralization of soil organic matter to CO2. Conditional thermodynamic parameters, ΔhydG', ΔhydH', and ΔhydS', and equilibrium glucose concentrations are reported for the reaction C6H10O5(cellulose) + H2O(l) ⇄ C6H12O6(aq) as functions of temperature from 0 to 100°C. Activity coefficients of aqueous glucose solution were determined as a function of temperature. The results suggest that producing cellulosic biofuels at higher temperatures will result in higher conversion. Chapter 4 presents the data and a theory relating the linear term in the low temperature heat capacity to lattice vacancy concentration. The theory gives a quantitative result for disordered vacancies, but overestimates the contribution from ordered vacancies because ordering leads to a decreased influence of vacancies on heat capacity.
|
42 |
Properties Model for Aqueous Sodium Chloride Solutions near the Critical Point of WaterLiu, Bing 14 October 2005 (has links)
Traditional excess Gibbs energy models in terms of temperature, pressure, and concentration become progressively less effective in describing the thermodynamics of aqueous solutions at temperatures above 300 ¢ªC, and are totally inadequate in the critical region of water. This deficiency is due to the strong ion association and the large property fluctuations (such as density) with small variations in pressure, temperature, and solute concentration around the critical point of water. In this work, a speciation-based model has been developed to describe the thermodynamic properties of aqueous sodium chloride solutions in the critical region of water. The anomalous fluctuation problem is avoided by adopting a residual Helmholtz energy approach in terms of temperature, density, and solute concentration. Partial ion dissociation is accounted for by including an isochoric equilibrium constant equation and a mean spherical approximation in the present model. The present model includes such classical interactions or effects as hard-sphere interactions, dipole-dipole interactions, ion dissociation effects, long-range ion-ion interactions, and a non-classical perturbation term. The related parameters that account for these effects were regressed to fit the measured values in the critical region of water. Densities, compressibility factors, apparent molar volumes, heats of dilution, and apparent isobaric molar heat capacities were used to test the validity of the model. The predicted values in this work agree well with the literature data over a wide range of temperatures (350 to 400 ¢ªC), pressures (17.5 to 40 MPa), and sodium chloride concentrations (0 to 5 mol/kg). Comparisons with other models are also included in this work. This model can be used to predict speciation, solute dissociation reaction, and many other comprehensive properties in aqueous sodium chloride solutions at near-critical conditions.
|
43 |
Testing large samples of PCM in water calorimeter and PCM used in room applications by night-air coolingBellander, Rickard January 2005 (has links)
<p>The latent-heat-storage capacity in Phase-Change Materials can be used for storing or releasing energy within a small temperature interval. Upon the phase transition taking place in a narrow temperature span, the material takes up or releases more energy compared to sensible heat storage. For an ideal phase-change material, the transition temperature is a single value, but for the most common phase-change materials on the market, used in building applications, the transition temperature is distributed within a temperature range of several degrees.</p><p>Integration of phase-change materials in building applications can be effected in several ways, for example by impregnating phase-change materials into porous building materials like concrete, wallboards, bricks or complements of the building structure. Integrating storages filled with phase-change materials makes other implementations, for instance accumulating tanks or envelopes as presented in this thesis, in an air heat exchanger. An appropriate phasetransition temperature of the supposed application is critical to the functionality of the material. For example, in cooling applications, the transition temperature of the material should be a few degrees lower than the requested comfort temperature in the building, and the opposite for heating applications.</p><p>In order to assess the thermal properties and the durability of the material, a watercalorimetric equipment was developed and employed in an accelerated testing programme. The heat capacity of the material and in particular possible change in the heat capacity over time, after thermal cycling of the material, were measured. In the thermal cycling of the material from solid to liquid phase, the temperature rise and required energy supply were recorded. The testing programme was undertaken according to control procedures and documents. In order to be able to utilize the heat-storage capacity in the best way, it is necessary to gain knowledge about thermal properties of the material, especially the long-term behaviour of the material and the deterioration rates of the thermal properties.</p><p>A semi-full-scale air heat exchanger based on phase-change material was developed and tested under real temperature conditions during the summer of 2004. The test results were used to compare and verify computer simulations made on a similar plant. The air heat exchanger utilises the ambient diurnal temperature swing to charge and discharge the phasechange material. The material tested in the calorimeter and in the air heat exchanger has an estimated phase-change temperature of about 24 °C.</p>
|
44 |
Pastato aktyviosios šiluminės talpos įtaka patalpų mikroklimatui bei energijos poreikiams / Influence of active heat capacity on microclimate and energy demand of a buildingValančius, Kęstutis 22 March 2007 (has links)
The main aim of the work is to investigate unsteady indoor thermal factors’ influence on premises microclimate, energy demand and installed heat power. Tasks of the work: 1. To investigate evaluation methods of thermal characteristics of a building which have influence on unsteady heat transfer, and to point out the main and determining factors. 2. To investigate dynamic thermal characteristics of a building in an experimental way. 3. To describe unsteady heat transfer processes in buildings on the basis of energy conservation law for a control volume with the help of active heat capacity conception and to adapt calculation methods for practical use. 4. To estimate the influence of active heat capacity on premises microclimate, design heat power and energy use.
|
45 |
Thermodynamische und kinetische Untersuchungen im System Lithium-SiliciumThomas, Daniel 10 February 2015 (has links) (PDF)
Die vorliegende Dissertation stellt die experimentelle Bestimmung von grundlegenden thermodynamischen und kinetischen Stoffdaten im System Lithium-Silicium vor. Ausgehend von der Synthese qualitativ hochwertiger Lithiumsilicide wurden Wärmekapazitäten über einen großen Temperaturbereich (2-873 K) bestimmt, die aufgrund der Ergebnisse bei tiefen Temperaturen die Ermittlung weiterer Parameter wie beispielsweise der Standardentropien bzw. der Bildungsentropien der Lithiumsilicide ermöglichte. Die Eigenschaft der Silicide, mit Wasserstoff Verbindungen einzugehen, führte zudem zur Ausdehnung der Untersuchungen auf das System Li-Si-H. Aus der Erweiterung resultierte neben der formalkinetischen Beschreibung ablaufender Gleichgewichtsreaktionen die Bestimmung von Bildungsenthalpien der Silicide. Auf Grundlage der experimentell bestimmten Stoffgrößen (Cp, S°, ∆BH°), die für theoretische und praxisrelevante Berechnungen sehr verlässliche Stoffdaten darstellen, wurden thermodynamische Modellierungen im stofflichen System durchgeführt.
|
46 |
Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power ApplicationsShin, Donghyun 2011 August 1900 (has links)
The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid, or paraffin wax) are typically used for TES. This limits the operating temperature of CSP units to below 400 degrees C. Increasing the operating temperature to 560 degrees C (i.e., the creeping temperature of stainless steel), can enhance the theoretical thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures.
Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials confers several benefits, which include: (1) Higher operating temperature can significantly increase the overall cycle efficiency and resulting costs of power production. (2) Low cost of the molten salt materials can drastically reduce the cost. (3) The molten salts, which are environmentally safe, can also reduce the potential environmental impact. However, these materials suffer from poor thermo-physical properties. Impregnating these materials with nanoparticles can enhance these properties. Solvents doped with nanoparticles are termed as nanofluids. Nanofluids have been reported in the literature for the anomalous enhancement of their thermo-physical properties. In this study, the poor thermal properties of the molten salts were enhanced dramatically on mixing with nanoparticles. For example the specific heat capacity of these molten salt eutectics was found to be enhanced by as much as ~ 26 percent on mixing with nanoparticles at a mass fraction of ~ 1 percent. The resultant properties of these nanomaterials were found to be highly sensitive to small variations in the synthesis protocols.
Computational models were also developed in this study to explore the fundamental transport mechanisms on the molecular scale for elucidating the anomalous enhancements in the thermo-physical properties that were measured in these experiments.
This study is applicable for thermal energy storage systems utilized for other energy conversion technologies – such as geothermal energy, nuclear energy and a combination of energy generation technologies.
|
47 |
Testing large samples of PCM in water calorimeter and PCM used in room applications by night-air coolingBellander, Rickard January 2005 (has links)
The latent-heat-storage capacity in Phase-Change Materials can be used for storing or releasing energy within a small temperature interval. Upon the phase transition taking place in a narrow temperature span, the material takes up or releases more energy compared to sensible heat storage. For an ideal phase-change material, the transition temperature is a single value, but for the most common phase-change materials on the market, used in building applications, the transition temperature is distributed within a temperature range of several degrees. Integration of phase-change materials in building applications can be effected in several ways, for example by impregnating phase-change materials into porous building materials like concrete, wallboards, bricks or complements of the building structure. Integrating storages filled with phase-change materials makes other implementations, for instance accumulating tanks or envelopes as presented in this thesis, in an air heat exchanger. An appropriate phasetransition temperature of the supposed application is critical to the functionality of the material. For example, in cooling applications, the transition temperature of the material should be a few degrees lower than the requested comfort temperature in the building, and the opposite for heating applications. In order to assess the thermal properties and the durability of the material, a watercalorimetric equipment was developed and employed in an accelerated testing programme. The heat capacity of the material and in particular possible change in the heat capacity over time, after thermal cycling of the material, were measured. In the thermal cycling of the material from solid to liquid phase, the temperature rise and required energy supply were recorded. The testing programme was undertaken according to control procedures and documents. In order to be able to utilize the heat-storage capacity in the best way, it is necessary to gain knowledge about thermal properties of the material, especially the long-term behaviour of the material and the deterioration rates of the thermal properties. A semi-full-scale air heat exchanger based on phase-change material was developed and tested under real temperature conditions during the summer of 2004. The test results were used to compare and verify computer simulations made on a similar plant. The air heat exchanger utilises the ambient diurnal temperature swing to charge and discharge the phasechange material. The material tested in the calorimeter and in the air heat exchanger has an estimated phase-change temperature of about 24 °C. / QC 20101123
|
48 |
Selection of Prediction Methods for Thermophysical Properties for Process Modeling and Product Design of Biodiesel ManufacturingSu, Yung-Chieh 14 July 2011 (has links)
To optimize biodiesel manufacturing, many reported studies have built simulation models to quantify the relationship between operating conditions and process performance. For mass and energy balance simulations, it is essential to know the four fundamental thermophysical properties of the feed oil: liquid density (Ï L), vapor pressure (Pvap), liquid heat capacity (CpL), and heat of vaporization (Î Hvap). Additionally, to characterize the fuel qualities, it is critical to develop quantitative correlations to predict three biodiesel properties, namely, viscosity, cetane number, and flash point. Also, to ensure the operability of biodiesel in cold weather, one needs to quantitatively predict three low-temperature flow properties: cloud point (CP), pour point (PP), and cold filter plugging point (CFPP). This article presents the results from a comprehensive evaluation of the methods for predicting these four essential feed oil properties and six key biodiesel fuel properties. We compare the predictions to reported experimental data and recommend the appropriate prediction methods for each property based on accuracy, consistency, and generality. Of particular significance are (1) our presentation of simple and accurate methods for predicting the six key fuel properties based on the number of carbon atoms and the number of double bonds or the composition of total unsaturated fatty acid methyl esters (FAMEs) and (2) our posting of the Excel spreadsheets for implementing all of the evaluated accurate prediction methods on our group website (www.design.che.vt.edu) for the reader to download without charge. / Master of Science
|
49 |
Nuclear magnetic resonance and specific heat studies of half-metallic ferromagnetic Heusler compoundsRodan, Steven 01 March 2016 (has links) (PDF)
Half-metallic ferromagnets (HMFs), with fully spin-polarized conduction electrons, are prime candidates for optimizing spintronic devices. Many Heusler compounds (a class of ternary and quaternary intermetallics) are predicted to be HMFs, in particular Co$_{2}YZ$ (where $Y$ is usually another transition metal, and $Z$ is an s-p element). Crystal structure is controlled by thermodynamics to a large extent. Ideally, one should be able to control and optimize properties which are of interest by appropriately "tuning" the structure (e.g. annealing), but first one must understand the structure and its relation to observed physical properties. A local structural probe technique such as nuclear magnetic resonance (NMR) is an essential tool for identifying and quantifying the various atomic-scale orderings. Different Heusler structure types and antisite disorders affect the material's physical properties.
In this thesis, order-disorder phenomena in both bulk and thin film samples of Co$_2$Mn$_{1-x}$Si$_x$ and Co$_2$Mn$_{1-x}$Fe$_x$Si have been systematically studied using NMR. Though it is the films which are directly implemented in actual devices, studying bulk samples as model systems provides invaluable information regarding the material properties.
The evolution of local atomic structure in numerous thin films has been shown to depend greatly on preparation parameters, including post-deposition annealing temperature, and specific stoichiometry. For Co$_2$MnSi films, the ideal post-annealing temperature for promoting the $L2_1$ atomic structure was found; the threshold temperature above which structure continues to become higher-ordered in the bulk, but where too much interdiffusion at the buffer interface occurs, degrading the smooth interfaces necessary for high magnetoresistance ratios. NMR also adds evidence that Co$_2$Mn$_x$Si$_{0.88}$ ($x>$1) electrodes in magnetic tunnel junctions have highest tunneling magneto-resistance because the excess Mn suppresses the formation of detrimental Co$_{Mn}$ antisites.
A systematic investigation of several thermal and magnetic properties, including Sommerfeld coefficients, Debye temperatures, saturation magnetic moments, spin-wave stiffness, and magnon specific heat coefficient, were measured for selected Co$_2$-based ternary and quaternary Heusler compounds. Obtained values were compared with theoretical ones calculated using electronic band structure methods. It has been systematically shown that adding a magnon term to the specific heat has a negligible effect on the electronic contribution in all cases.
|
50 |
Determinação da entalpia e da entropia de solvatação da superfície protéica a partir da energética de oxigenação de hemoglobinasCapitão, Rosa Cristina [UNESP] 01 June 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:54Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-06-01Bitstream added on 2014-06-13T20:01:03Z : No. of bitstreams: 1
capitao_rc_dr_sjrp.pdf: 1458333 bytes, checksum: fd4e34f8fc16fc7f141646298640bdcc (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A hemoglobina (Hb) e uma proteina tetramerica cuja principal funcao e o transporte de oxigenio. As moleculas de O2 se ligam cooperativamente a proteina, com afinidade crescente com a saturacao. O favorecimento a energia de ligacao se deve a mudanca da estrutura quaternaria da proteina, ou seja, da conformacao T de baixa afinidade para a conformacao R de alta afinidade, induzida pela ligacao do ligante. Decorrente desta mudanca conformacional ha um aumento da area de superficie proteica acessivel ao solvente (ASA), na transicao do estado totalmente desoxigenado (T) para o estado totalmente oxigenado (R). Esta variacao de ASA pode ser medida, em solucao, utilizando-se o metodo de estresse osmotico (COLOMBO et al., 1992). Neste trabalho, determinamos o numero de moleculas de agua ( nw) que se liga a diferentes especies de Hb na transicao desoxiHb oxiHb. Este valor varia de especie para especie, e dentro de cada especie e maior na presenca de NaCl do que na ausencia deste sal. A ligacao preferencial do anion cloreto a conformacao T da Hb altera sua estrutura terciaria, o que reflete em mudancas no valor de nw de oxigenacao medidos na ausencia e na presenca deste anion. Como referenciado, os valores de nw de oxigenacao foram determinados em solucao pelo metodo de estresse osmotico, isto e, a partir da determinacao da dependencia de P50 com a atividade de agua (aw). Mostramos que diferentes especies de Hb, em diferentes condicoes de solucao, alem de terem valores de nw de oxigenacao distintos, apresentam valores diferentes de H de oxigenacao ( Hobservado). Os valores de nw e de Hobservado, determinados para as especies de Hb Equina adulta (HbEq), Bovina adulta (HbBovad) e fetal (HbBovfet) em diferentes condicoes experimentais, em conjunto com valores de nw e Hobservado para as hemoglobinas das especies Humana (HbA0) e do molusco Scapharca inaequivalvis (HbI)... / Hemoglobin (Hb) is a tetrameric protein whose main function is oxygen transport. Four O2 molecules bind cooperatively to the protein. The cooperative stepwise increasing in O2-affinity with protein saturation is bound to the change in the protein's quaternary structure from the low O2- affinity conformation (T-state) to the high O2-affinity conformation (R-state) induced by ligand binding. Upon the T'R transition, the water accessible surface area (ASA) of the protein increase, with a consequent binding of extra water molecules to the protein. The change in hydration associated with the ASA can be determined in solution using the osmotic stress method (COLOMBO et al., 1992). In this work, we determined the number of water molecules ( nw) that bind to different Hb specie in the T'R transition. This value changes from specie to specie, and is larger in presence of NaCl than in absence for all specie. In this work we had also determined the enthalpy change of Hb oxygenation ( Hobs) for the different specie and at varied conditions where the value of nw of oxygenation were observed to vary. nw and Hobs values determined for the Equine adult (HbEq), Bovine adult (HbBovad) and fetal (HbBovfet) Hb in different experimental conditions, and nw and Hobs values previously determined for Human (HbA0) and for the mollusk Scapharca inaequivalvis (HbI) hemoglobins, we correlated and analyzed in order to determine the enthalpy and entropy changes associated with the binding of extra water molecules to the newly exposed protein surface upon oxygenation. We have found that 'ÂHsol, the heat change of protein hydration, is approximately -0,57Kcal/mol.H2O. This parameter represents the enthalpic cost of protein hydration in aqueous solution. The entropic cost, ÂSsol, was estimated as approximately -2,89cal/mol.K.H2O. At 298K, the free energy...(Complete abstract click electronic access below)
|
Page generated in 0.0652 seconds