391 |
PROCESSUS ÉNANTIOSÉLÉCTIFS DANS DES COMPLEXES À LIAISONS HYDROGÈNEMahjoub, Ahmed 08 October 2009 (has links) (PDF)
La chiralité joue un rôle très important dans la chimie du vivant. En effet, la plupart des molécules biologiques sont chirales. La discrimination chirale met en jeu des interactions spécifiques à travers la formation de paires de contact diastéréoisomères en phase condensée. Le sujet de ce travail de thèse est d'étudier ces interactions énantiosélectives à l'échelle moléculaire, en étudiant en phase gazeuse des complexes chiraux formés en jet supersonique. Le principe de l'expérience repose sur la complexation d'une forme énantiomère pure d'un chromophore avec les deux énantiomères d'un solvant chiral. Les diastéréoisomères ainsi formés possèdent deux structures différentes. Cette différence de structure se manifeste par deux signatures spectroscopiques différentes. La combinaison de la spectroscopie laser (électronique et vibrationnelle) et des calculs théoriques permet d'étudier les interactions responsables de la discrimination chirale. Ce travail de thèse consiste en l'étude de la discrimination chirale de deux énantiomères du Méthyl-lactate, en utilisant trois chromophores chiraux différents : le (±)-cis-1-amino-indan-2-ol ; le Méthyl-mandélate et le S(-) 1,2,3,4-tetrahydro-3-isoquinoléine méthanol. Ces trois systèmes nous ont permis d'étudier le rôle dans la discrimination chirale de trois facteurs importants qui sont : la formation des multiples liaisons hydrogène, les forces dispersives et l'isomérie conformationnelle.
|
392 |
Évolution morphologique par diffusion de surface et application à l'étude du démouillage de films minces solides.Dornel, Erwan 09 November 2007 (has links) (PDF)
Le présent travail porte sur l'évolution morphologique d'un matériau en phase solide lorsqu'une diffusion des atomes en surface est considérée. Cette problématique, s'axant principalement sur le démouillage et l'agglomération de films minces, est rencontrée en microélectronique mais reste générique en métallurgie et en microtechnologie.<br /><br />La première partie présente, par l'expérience et la simulation, l'agglomération de films minces non contraints de silicium sur dioxyde de silicium. La ligne triple d'équilibre entre le film, le substrat et le gaz environnant, ainsi que les effets d'anisotropie apparaissent comme des paramètres prépondérants de l'évolution morphologique.<br /><br />Dans la seconde partie, portant sur les films minces contraints de silicium, l'agglomération suivant les directions des dislocations a été expérimentalement observée et la dynamique de telles surfaces à été étudiée numériquement pour mettre en évidence la non-linéarité des instabilités liées à la contrainte élastique. Une forme d'équilibre nouvelle, où le film contraint n'est ni plan ni aggloméré, est mise en évidence.<br /><br />La troisième partie ouvre la problématique de la diffusion de surface à des systèmes autres que des films minces notamment aux nanofils et aux microcavités où des géométries particulières peuvent être obtenues, conduisant à des procédés de fabrication et à des dispositifs innovants.
|
393 |
Étude de l’association supramoléculaire bi- et tridimensionnelle d’oximes et d’hydrazones trigonalesArseneault, Pierre-Marc 11 1900 (has links)
Les concepts de la chimie supramoléculaire peuvent être exploités avantageusement pour contrôler la structure et les propriétés des matériaux moléculaires. Dans une approche productive, les composantes moléculaires du matériau peuvent être choisies pour pouvoir s'engager dans des interactions fortes et prévisibles avec leurs voisins. Cette stratégie, appelée la tectonique moléculaire, est caractérisée par la préparation de molécules particulières appelées tectons (du grec tectos, qui signifie constructeur) qui, par design rationnel, s’associent de manière prévisible via de multiples interactions non-covalentes afin de générer l’architecture désirée. Ce processus est réversible et guidé par la présence de fonctions chimiques complémentaires, appelées groupements de reconnaissance, qui sont orientées de manière à conférer un aspect directionnel aux interactions intermoléculaires. Ceci permet de positionner les molécules voisines de façon prédéterminée. Les contraintes imposées par les interactions s’opposent souvent à la tendance naturelle des molécules à former une structure compacte et permettent donc à d'autres molécules invitées d’occuper un volume appréciable dans le matériau, sans toutefois contribuer directement à l'architecture principale. Appliquée à la cristallisation, cette approche peut générer des cristaux poreux, analogues aux zéolites.
Les ponts hydrogène offrent une interaction non-covalente de choix dans cette stratégie car ils sont forts et directionnels. L’exploration d’une multitude de fonctions chimiques connues pour pouvoir participer à la formation de ponts hydrogène a permis de créer une grande diversité de nouveaux matériaux lors de l’évolution du domaine du génie cristallin. Une molécule classique, qui illustre bien la stratégie tectonique et qui a eu un fort impact dans le domaine de la chimie supramoléculaire, est l’acide 1,3,5-benzènetricarboxylique, communément appelé acide trimésique. L’acide trimésique donne une orientation trigonale à trois groupements carboxyles, favorisant ainsi la formation d'un réseau hexagonal retenu par ponts hydrogène.
Nous avons visé une modification dans laquelle les groupements -COOH de l'acide trimésique sont remplacés par deux autres groupements de reconnaissance, jusqu’ici peu exploités en chimie supramoléculaire, l’oxime et l’hydrazone. Nous rapportons la synthèse et la cristallisation de différentes trioximes et trihydrazones analogues à l'acide trimésique. Les cristaux obtenus ont été analysés par diffraction des rayons-X et leurs structures ont été déterminées. L’auto-assemblage de différentes trioximes et trihydrazones en 2D par adsorption sur graphite a également été étudié en utilisant la microscopie à balayage à effet tunnel. Nos résultats nous permettent de comparer l'organisation en 2D et en 3D de différents analogues de l'acide trimésique. / The concepts of supramolecular chemistry can be exploited advantageously to control the structure and properties of molecular materials. In a productive approach, the molecular components of a material can be specifically selected to engage in strong and predictable interactions with their neighbours. This strategy, called molecular tectonics, is based on designing particular molecules called tectons (from the Greek word tectos, meaning builder) that self-associate in predictable ways via multiple non-covalent interactions, thereby generating a desired architecture. This process is reversible and guided by the presence of complementary chemical functions, named supramolecular synthons, specifically oriented to direct intermolecular interactions. This predisposes neighbouring molecules to be positioned in a predetermined fashion. The constraints arising from these interactions often tend to counter the natural tendency of molecules to form compact structures, thereby leaving significant volume within the material for guest molecules that do not directly contribute to the main architecture. When applied to crystallisation, this approach can generate potentially porous crystals similar to zeolites.
Hydrogen bonds are an ideal non-covalent interaction for the strategy of molecular tectonics because of their strength and directionality. The field of crystal engineering has evolved greatly through exploration of various chemical functions known to assemble through hydrogen bonds. Such exploration has revealed a variety of new materials. A classic molecule that well represents the tectonic strategy and has had a larger impact in the field of supramolecular chemistry is benzene-1,3,5-tricarboxylic acid, commonly referred to as trimesic acid. Trimesic acid imparts a trigonal orientation to three carboxyl groups (COOH), favouring the formation of a hexagonal network supported by hydrogen bonds characteristic of these groups.
We aimed to replace the COOH groups of trimesic acid by less-commonly used synthons in supramolecular chemistry derived from oximes and hydrazones. Herein, we report the synthesis and crystallisation of a series of trigonal trioximes and trihydrazones analogous to trimesic acid. Crystals were analysed by X-ray diffraction and their structures were determined. Self-assembly of the trioximes and trihydrazones in 2D by adsorption on graphite was also studied by scanning tunnelling microscopy. Together, our results enabled us to compare the 2D and 3D organisation of different analogues of trimesic acid.
|
394 |
Étude de procédés de conversion de biomasse en eau supercritique pour l'obtention d'hydrogène. Application au glucose, glycérol et bio-glycérolYu-Wu, Qian Michelle 31 January 2012 (has links) (PDF)
Des nouveaux procédés éco-efficients basés sur une meilleure utilisation des ressources renouvelables sont nécessaires pour assurer la continuité du développement énergétique. La thèse étudie le procédé de gazéification en eau supercritique (T>374°C et P>22,1 MPa) de la biomasse très humide pour l'obtention de l'hydrogène, molécule ayant un potentiel énergétique très intéressant à valoriser avec un impact environnemental très favorable. L'étude porte sur l'application du procédé à la biomasse modèle (solutions de glucose, glycérol et leur mélange) ainsi qu'au bioglycérol, résidu de la fabrication du biodiesel. Les propriétés du solvant et les mécanismes prépondérants développés par l'eau en phase sous- et supercritique peuvent être contrôlés par les paramètres opératoires imposés au processus : température, pression, concentration en molécules organiques et catalyseur alcalin, temps de réaction... Les études paramétriques des systèmes réactionnels ont été menées dans des réacteurs batch à deux échelles différentes, les phases résultantes étant caractérisées par des protocoles analytiques élaborés et validés dans le cadre de l'étude. Le suivi du milieu réactionnel en batch lors de son déplacement vers l'état supercritique a mis en évidence une conversion avancée des molécules organiques et une identification de certains intermédiaires générés. Parmi les paramètres étudiés, la température et le temps de réaction influent le plus le rendement à l'obtention d'hydrogène en présence de catalyseur (K2CO3) dans les réacteurs batch, rendements de 1,5 et 2 mol d'H2 respectivement par mol de glycérol et de glucose introduites. Les gaz obtenus contiennent des proportions variables d'hydrocarbures légers et du CO2. Environ 75% du carbone est converti en phase gaz et liquide (sous forme de carbone organique et inorganique), le restant étant déposé sous forme solide ou huileuse. L'analyse du solide généré (plus de 90% de C) laisse apparaître différentes phases, y compris la formation de nanoparticules sphériques. Enfin, la gazéification en réacteur continu du glycérol préchauffé a montré de meilleurs rendements en hydrogène que le procédé batch, pendant que celle du bioglycérol demande une évolution du procédé à cause de la précipitation en phase supercritique des sels contenus dans le réactant. En conclusion, la gazéification en eau supercritique de la biomasse peut être considérée comme une alternative intéressante à d'autres procédés physico-chimiques de production de l'hydrogène. L'amélioration du procédé sera possible par son intensification menée en parallèle avec l'utilisation de matériaux plus performants et le contrôle de la salinité de la phase réactante.
|
395 |
Etude expérimentale de la formation de l'ion d'hydrogène négatif lors de collisions entre un ion positif et une cible atomique ou moléculaireLattouf, Elie 25 October 2013 (has links) (PDF)
La formation de l'ion négatif d'hydrogène (H-) lors de collisions entre un ion positif et une cible atomique ou moléculaire neutre est étudiée expérimentalement à des énergies d'impact de l'ordre du keV. Les sections efficaces doublement différentielles de formation des ions H- sont mesurées en fonction de leur énergie cinétique et de leur angle d'émission lors des collisions OH+ + Ar et O+ + H2O à 412 eV/u.m.a. Ces ions peuvent être émis à haute énergie (keV) lors de collisions violentes quasi-élastiques à 2 corps impliquant un fort transfert d'impulsion au centre H. Cependant, les anions H- sont préférentiellement émis à faible énergie (eV) lors de collisions douces à plusieurs corps (>2) qui résultent en un faible transfert d'impulsion. La formation des ions H- par capture électronique fait suite à l'excitation ou l'ionisation de la molécule. La dynamique de la fragmentation moléculaire est modélisée afin de simuler l'émission des ions H-. L'accord globalement satisfaisant entre la simulation et l'expérience facilite l'interprétation des observations expérimentales.
|
396 |
Etude quantique des liaisons fortes et faibles : développement de fonctionnelles "doubles-hybrides" et de surfaces de potentiel analytiquesCornaton, Yann 03 September 2013 (has links) (PDF)
Les travaux réalisés au cours de cette thèse se décomposent en deux thèmes principaux, eux-même subdivisés enplusieurs projets. D'une part, des travaux ont été menés concernant l'analyse et le développement de fonctionnelles " doubles hybrides ". Une analyse des fonctionnelles " doubles hybrides " à séparation linéaire le long de la connexionadiabatique a été proposée. Une nouvelle fonctionnelle " double hybride " à séparation de portée basée sur uneséparation alternative de l'énergie d'échange et de corrélation, RSDHf, a été développée. D'autre part, des travaux quant au développement de surfaces d'énergie potentielle (SEP) analytiques ont été menés. Un nouveau potentiel analytique a été proposé pour la description de la SEP des systèmes triatomiques. La combinaison de ce potentiel avec un potentiel électrostatique a été utilisé pour le développement de SEP analytiques pour de petits systèmes en interaction faible : H2O***HF, HF2-, Ne***ClF.
|
397 |
Polymères sous rayonnements ionisants : étude des transferts d'énergie vers les défauts d'irradiationVentura, Aude 13 December 2013 (has links) (PDF)
Les défauts créés dans les polymères soumis aux rayonnements ionisants, en atmosphère inerte, suivent pratiquement tous la même évolution en fonction de la dose. Lorsque la dose augmente, leur concentration augmente puis se stabilise. L'hypothèse retenue pour expliquer ce comportement est la mise en place de transferts d'énergie vers les défauts macromoléculaires créés aux faibles doses. Ceux-ci agissent comme des pièges à énergie et conduisent donc à la radio-stabilisation du polymère. Au cours de cette thèse, nous nous sommes attachés à la quantification de l'apport de l'insaturation trans-vinylène dans le comportement sous rayonnements ionisants du polyéthylène. Avec le dihydrogène, ce groupement compte parmi les défauts majoritaires créés dans ce polymère. Du fait de la variété des défauts et de la simultanéité de leur création, nous avons choisi une méthodologie nouvelle consistant à insérer par voie de synthèse, de manière spécifique et à différentes concentrations, des insaturations de type trans-vinylène, dans les chaînes de polyéthylène. Les polymères résultants ont été irradiés, en atmosphère inerte, avec des rayonnements de faibles TEL (gamma, bêta) et de forts TEL (ions lourds). Tant les défauts macromoléculaires que l'émission de dihydrogène ont été quantifiés. Il apparaît, sur la base des résultats expérimentaux, que l'apport des groupements trans-vinylènes est prédominant dans la radio-stabilisation du polyéthylène en atmosphère inerte.
|
398 |
Tectonique moléculaire : réseaux moléculaires à propriétés optiques assemblées par des liaisons hydrogène chargéesDelcey, Nicolas 24 September 2012 (has links) (PDF)
La conception et la préparation de réseaux moléculaires organiques et hybrides à l'état cristallin ont été envisagées par un processus itératif d'auto-assemblage entre des briques de construction moléculaires préprogrammées et complémentaires appelées tectons. Cette approche est basée sur la reconnaissance moléculaire de modules dicationiques, donneurs de liaisons hydrogène, et d'unités anioniques, accepteurs de liaisons hydrogène. Ainsi, la combinaison des tectons moléculaires de la famille des bis-benzimidazoliums, intrinsèquement luminescents, avec des anions polycyanométallates conduit à la formation de réseaux moléculaires hybrides luminescents à l'état cristallin. Il a été procédé à l'étude des propriétés photophysiques de ces réseaux à l'état solide. De même, l'association de bis-amidiniums,briques dicationiques, à des anions de type azodibenzoates mène à des assemblages cristallins possédant la propriété de photo-commutation, c'est-à-dire conduisant à une isomérisation sous stimulus lumineux.
|
399 |
Carboxydothermus hydrogenoformans comme catalyseur biologique pour la conversion du monoxyde de carbone en hydrogène simultanément a la minéralisation de calcium et phosphateHaddad, Mathieu 02 1900 (has links)
La gazéification est aujourd'hui l'une des stratégies les plus prometteuses pour valoriser les déchets en énergie. Cette technologie thermo-chimique permet une réduction de 95 % de la masse des intrants et génère des cendres inertes ainsi que du gaz de synthèse (syngaz). Le syngaz est un combustible gazeux composé principalement de monoxyde de carbone (CO), d'hydrogène (H2) et de dioxyde de carbone (CO2). Le syngaz peut être utilisé pour produire de la chaleur et de l'électricité. Il est également la pierre angulaire d'un grand nombre de produits à haute valeur ajoutée, allant de l'éthanol à l'ammoniac et l'hydrogène pur. Les applications en aval de la production de syngaz sont dictées par son pouvoir calorifique, lui-même dépendant de la teneur du gaz en H2. L’augmentation du contenu du syngaz en H2 est rendu possible par la conversion catalytique à la vapeur d’eau, largement répandu dans le cadre du reformage du méthane pour la production d'hydrogène. Au cours de cette réaction, le CO est converti en H2 et CO2 selon : CO + H2O → CO2 + H2. Ce processus est possible grâce à des catalyseurs métalliques mis en contact avec le CO et de la vapeur.
La conversion catalytique à la vapeur d’eau a jusqu'ici été réservé pour de grandes installations industrielles car elle nécessite un capital et des charges d’exploitations très importantes. Par conséquent, les installations de plus petite échelle et traitant des intrants de faible qualité (biomasse, déchets, boues ...), n'ont pas accès à cette technologie. Ainsi, la seule utilisation de leur syngaz à faible pouvoir calorifique, est limitée à la génération de chaleur ou, tout au plus, d'électricité. Afin de permettre à ces installations une gamme d’application plus vaste de leurs syngaz, une alternative économique à base de catalyseur biologique est proposée par l’utilisation de bactéries hyperthermophiles hydrogénogènes.
L'objectif de cette thèse est d'utiliser Carboxydothermus hydrogenoformans, une bactérie thermophile carboxydotrophe hydrogénogène comme catalyseur biologique pour la conversion du monoxyde de carbone en hydrogène. Pour cela, l’impact d'un phénomène de biominéralisation sur la production d’H2 a été étudié. Ensuite, la faisabilité et les limites de l’utilisation de la souche dans un bioréacteur ont été évaluées. Tout d'abord, la caractérisation de la phase inorganique prédominante lorsque C. hydrogenoformans est inoculé dans le milieu DSMZ, a révélé une biominéralisation de phosphate de calcium (CaP) cristallin en deux phases. L’analyse par diffraction des rayons X et spectrométrie infrarouge à transformée de Fourier de ce matériau biphasique indique une signature caractéristique de la Mg-whitlockite, alors que les images obtenues par microscopie électronique à transmission ont montré l'existence de nanotiges cristallines s’apparentant à de l’hydroxyapatite. Dans les deux cas, le mode de biominéralisation semble être biologiquement induit plutôt que contrôlé. L'impact du précipité de CaP endogène sur le transfert de masse du CO et la production d’H2 a ensuite été étudié. Les résultats ont été comparés aux valeurs obtenues dans un milieu où aucune précipitation n'est observée. Dans le milieu DSMZ, le KLa apparent (0.22 ± 0.005 min-1) et le rendement de production d’H2 (89.11 ± 6.69 %) étaient plus élevés que ceux obtenus avec le milieu modifié (0.19 ± 0.015 min-1 et 82.60 ± 3.62% respectivement). La présence du précipité n'a eu aucune incidence sur l'activité microbienne. En somme, le précipité de CaP offre une nouvelle stratégie pour améliorer les performances de transfert de masse du CO en utilisant les propriétés hydrophobes de gaz.
En second lieu, la conversion du CO en H2 par la souche Carboxydothermus hydrogenoformans fut étudiée et optimisée dans un réacteur gazosiphon de 35 L. Parmi toutes les conditions opérationnelles, le paramètre majeur fut le ratio du débit de recirculation du gaz sur le débit d'alimentation en CO (QR:Qin). Ce ratio impacte à la fois l'activité biologique et le taux de transfert de masse gaz-liquide. En effet, au dessus d’un ratio de 40, les performances de conversion du CO en H2 sont limitées par l’activité biologique alors qu’en dessous, elles sont limitées par le transfert de masse. Cela se concrétise par une efficacité de conversion maximale de 90.4 ± 0.3 % et une activité spécifique de 2.7 ± 0.4 molCO·g–1VSS·d–1. Malgré des résultats prometteurs, les performances du bioréacteur ont été limitées par une faible densité cellulaire, typique de la croissance planctonique de C. hydrogenoformans. Cette limite est le facteur le plus contraignant pour des taux de charge de CO plus élevés. Ces performances ont été comparées à celles obtenues dans un réacteur à fibres creuses (BRFC) inoculé par la souche. En dépit d’une densité cellulaire et d’une activité volumétrique plus élevées, les performances du BRFC à tout le moins cinétiquement limitées quand elles n’étaient pas impactées par le transfert de masse, l'encrassement et le vieillissement de la membrane. Afin de parer à la dégénérescence de C. hydrogenoformans en cas de pénurie de CO, la croissance de la bactérie sur pyruvate en tant que seule source de carbone a été également caractérisée. Fait intéressant, en présence simultanée de pyruvate et de CO, C. hydrogenoformans n’a amorcé la consommation de pyruvate qu’une fois le CO épuisé. Cela a été attribué à un mécanisme d'inhibition du métabolisme du pyruvate par le CO, faisant ainsi du pyruvate le candidat idéal pour un système in situ de secours. / Gasification is today one of the most promising strategies to recover energy from waste. This thermo-chemical technology allows a 95% weight reduction of the input and generates inorganic inert ashes as well as a synthesis gas (syngas). Syngas is a gaseous fuel mainly composed of carbon monoxide (CO), hydrogen (H2) and carbon dioxide (CO2). Syngas can be burned to produce heat and electricity. It is also the building block of many high added- value products ranging from ethanol to ammonia and pure hydrogen. Downstream applications of syngas production will depend on its heating value, which is determined by its content in H2. Upgrading the H2 content in syngas is performed by the water-gas shift (WGS) reaction, widely utilized during methane reforming for hydrogen production. During the WGS reaction CO is converted to H2 and CO2 according to: CO + H2O → CO2 + H2. This process is achieved using a metallic catalyst in a heterogeneous gas-phase reaction with CO and steam. The WGS reaction has so far been reserved for large-scale gasification plants and requires high capital and operational expenditures. Hence, smaller scale plants that process low-grade materials (biomass, waste, sludge...), would not have access to such technology. The only possible outcome with the synthesis gas (syngas) produced and which generally has a poor heating value, is to generate heat or at best, electricity. In order to offer small plants access to the WGS reaction and to a higher range of products from their syngas, an alternative to the expensive and energy-intensive established catalyst-based WGS is here considered, such as extreme-thermophilic microbial processes carried out by hydrogenogens.
The goal of this thesis was to use Carboxydothermus hydrogenoformans, a thermophilic carboxydotrophic hydrogenogenic bacterium as a biological catalyst for the WGS reaction. This was done by characterizing the impact of a growth-associated biomineralization phenomenon on H2 production and assessing the feasibility and limitations of using the strain in a bioreactor. First, characterization of the predominant inorganic phase when Carboxydothermus hydrogenoformans was inoculated in the DSMZ medium revealed the biomineralization of two crystalline CaP phases. The X-ray diffractometry peaks and Fourier transform infrared spectroscopy spectrum of this biphasic material consistently showed features characteristic of Mg-whitlockite, whereas transmission electron microscopy analysis showed the existence of hydroxyapatite-like nanorods crystals. In both cases, the mode of biomineralization appears to be biologically induced rather than biologically controlled. The impact of the endogenous CaP precipitate on CO mass transfer and H2 production was thus assessed and compared to a medium where no precipitation was observed. In the DSMZ medium, the apparent KLa (0.22 ±0.005 min-1) and H2 production yield (89.11 ±6.69%) were higher than the ones obtained in the modified medium (0.19 ±0.015 min-1 and 82.60 ±3.62% respectively). The presence of the precipitate had no impact on C. hydrogenoformans CO uptake. Overall, the CaP precipitate offers a novel strategy for gas-liquid mass transfer enhancement using CO hydrophobic properties.
Second, the conversion of CO into H2 by C. hydrogenoformans was investigated and optimized in a 35 L gas-lift reactor. Upon all operational conditions, the ratio of gas recirculation over CO feed flow rates (QR:Qin) was the major parameter that impacted both biological activity and volumetric gas-liquid mass transfer. The CO conversion performance of the gas lift reactor was kinetically limited over a QR:Qin ratio of 40, and mass transfer limited below that ratio, resulting in a maximum conversion efficiency of 90.4±0.3% and a biological activity of 2.7±0.4 molCO· g–1VSS· day–1. Despite very promising results, CO conversion performance was limited by a low cell density, typical of C. hydrogenoformans planktonic growth. This limitation was found to be the most restrictive factor for higher CO loading rates. Results were compared to the performance of the strain inoculated in a hollow fiber membrane bioreactor where performance, despite the higher cell density and volumetric activity, was biokinetically limited, when not limited by gas–liquid mass transfer, membrane fouling and aging.
To avoid any C. hydrogenoformans decay during potential CO shortages, growth of the bacterium on pyruvate as a sole carbon source was characterized. Interestingly, when grown simultaneously on pyruvate and CO, pyruvate consumption was initiated upon CO depletion. This was attributed to the inhibition of pyruvate oxidation by CO, making pyruvate the ideal candidate for an in-situ back-up system.
|
400 |
Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3DLacatus, Monica Elena 10 1900 (has links)
Notre étude a pour objet la conception, la synthèse ainsi que l’étude structurale
d’architectures supramoléculaires obtenues par auto-assemblage, en se basant sur les
concepts de la tectonique moléculaire. Cette branche de la chimie supramoléculaire
s’occupe de la conception et la synthèse de molécules organiques appelées tectons, du grec tectos qui signifie constructeur. Le tecton est souvent constitué de sites de reconnaissance
branchés sur un squelette bien choisi. Les sites de reconnaissance orientés par la géométrie du squelette peuvent participer dans des interactions intermoléculaires qui sont suffisamment fortes et directionnelles pour guider la topologie du cristal résultant. La stratégie envisagée utilise des processus d'auto-assemblage engageant des interactions réversibles entre les tectons. L’auto-assemblage dirigé par de fortes interactions intermoléculaires directionnelles est largement utilisé pour fabriquer des matériaux dont les composants doivent être positionnés en trois dimensions (3D) d'une manière prévisible.
Cette stratégie peut également être utilisée pour contrôler l’association moléculaire en deux dimensions (2D), ce qui permet la construction de monocouches organisées et
prédéterminées sur différents types des surfaces, tels que le graphite.Notre travail a mis l’accent sur le comportement de la fonction amide comme fonction de reconnaissance qui est un analogue du groupement carboxyle déjà utilisé dans
plusieurs études précédentes. Nous avons étudié le comportement d’une série de composés contenant un noyau plat conçu pour faciliter l'adsorption sur le graphite et modifiés par l'ajout de groupes amide pour favoriser la formation de liaisons hydrogène entre les molécules ainsi adsorbées. La capacité de ces composés à former de monocouches organisées à l’échelle moléculaire en 2D a été examinée par microscopie à effet tunnel, etleur organisation en 3D a également été étudiée par cristallographie aux rayons X. Dans notre étude, nous avons systématiquement modifié la géométrie moléculaire et d'autres paramètres afin d'examiner leurs effets sur l'organisation moléculaire. Nos résultats
suggèrent que les analyses structurales combinées en 2D et 3D constituent un important atout dans l'effort pour comprendre les interactions entre les molécules adsorbées et l’effet de l’interaction avec la surface du substrat. / Our study involves the design, synthesis and structural analysis of supramolecular
architectures obtained by self-assembly, based on the concepts of molecular tectonics. This branch of supramolecular chemistry explores the properties of molecules called tectons,from the Greek word tectos, meaning builder. Tectons typically incorporate sites of recognition connected to well-chosen skeletons with defined geometries. The sites of recognition, oriented by the geometry of the skeleton, can participate in intermolecular
interactions that are sufficiently strong and directional to control the topology of the resulting assembly. This strategy is thereby based on self-assembly processes involving reversible interactions between tectons. Self-assembly directed by strong directional intermolecular interactions is widely used to produce materials whose components must be positioned in three dimensions (3D) in a predictable way. This strategy can also be used to
control molecular association in two dimensions (2D), thereby allowing the construction of predictably organized and predetermined nanopatterns on various surfaces, such as
graphite.Our work has focused on the behavior of the amide groups as primary sites of intermolecular interaction. These groups are analogues of carboxyl groups, which have been widely used in previous studies of directed molecular assembly. We have studied the 3D and 2D association of compounds with flat cores designed to favor the formation of sheets and to facilitate adsorption on graphite, modified by the addition of amide groups to promote the formation of intermolecular hydrogen bonds. The ability of these compounds to form predictably ordered 2D nanopatterns has been examined by scanning tunneling
microscopy, and their organization in 3D has also been investigated by X-ray
crystallography. In our study, we have systematically altered molecular geometry and other parameters to examine their effect on molecular organization. Our results suggest that combined structural analyses in 2D and 3D are an important asset in the effort to understand why molecules aggregate in particular ways and how these preferences can be altered by underlying surfaces.
|
Page generated in 0.0669 seconds