• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 412
  • 97
  • 69
  • 45
  • 38
  • 33
  • 21
  • 12
  • 12
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 860
  • 166
  • 104
  • 98
  • 89
  • 82
  • 73
  • 70
  • 64
  • 64
  • 59
  • 59
  • 59
  • 59
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Potatisprotein som råvara i proteinnanofibrill-baserade vattenfilter / Protein nanofibril-based water filters using potato protein as a raw material

Weström, vega, Johansson, Ronja, Harrison Lanerfeldt,, Adam, Viklund, Lage January 2024 (has links)
Idag har inte alla människor tillgång till rent vatten trots att det är en mänsklig rättighet. För att lösa detta problem har olika reningsmetoder som destillation och membranfiltrering föreslagits, men på senare tid har också framställning av filter från animaliska proteiner som vassle undersökts som alternativ för vattenrening. I ett försök att öka den ekologiska hållbarheten, ämnar detta projekt att undersöka växtbaserade proteiner som alternativ till vassleproteinisolat (WPI) för produktion av proteinnanofibrill (PNF) - baserade vattenfilter. Potatisproteinisolat (PPI) har valts som växtproteinkälla och löslighet samt bildning av PNF-baserade vattenfilter har undersökts. Slutligen har PPI-filter jämförts med WPI-filter med avseende på adsorption av ibuprofen från vatten. PPI-filter har producerats och jämförts med WPI, men det går inte att dra några tydliga slutsatser om skillnaden i effektivitet av adsorption av ibuprofen.
602

Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges

Shriky, Banah, Babenko, Maksims, Whiteside, Benjamin R. 09 October 2023 (has links)
Yes / Polymeric hydrogels are a complex class of materials with one common feature—the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption—regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
603

A mussel-inspired antibacterial hydrogel with high cell affinity, toughness, self-healing, and recycling properties for wound healing

Deng, X., Huang, B., Wang, Q., Wu, W., Coates, Philip D., Sefat, Farshid, Lu, C., Zhang, W., Zhang, X. 22 February 2021 (has links)
Yes / Antibacterial hydrogels have been intensively studied due to their wide practical potential in wound healing. However, developing an antibacterial hydrogel that is able to integrate with exceptional mechanical properties, cell affinity, and adhesiveness will remain a major challenge. Herein, a novel hydrogel with antibacterial and superior biocompatibility properties was developed using aluminum ions (Al3+) and alginate− dopamine (Alg-DA) chains to cross-link with the copolymer chains of acrylamide and acrylic acid (PAM) via triple dynamic noncovalent interactions, including coordination, electrostatic interaction, and hydrogen bonding. The cationized nanofibrillated cellulose (CATNFC), which was synthesized by the grafting of long-chain quaternary ammonium salts onto nanofibrillated cellulose (NFC), was utilized innovatively in the preparation of antibacterial hydrogels. Meanwhile, alginate-modified dopamine (Alg-DA) was prepared from dopamine (DA) and alginate. Within the hydrogel, the catechol groups of Alg-DA provided a decent fibroblast cell adhesion to the hydrogel. Additionally, the multitype cross-linking structure within the hydrogel rendered the outstanding mechanical properties, self-healing ability, and recycling in pollution-free ways. The antibacterial test in vitro, cell affinity, and wound healing proved that the as-prepared hydrogel was a potential material with all-around performances in both preventing bacterial infection and promoting tissue regeneration during wound healing processes. / This work was supported by the National Natural Science Foundation of China (32070826 and 51861165203), the Chinese Postdoctoral Science Foundation (2019M650239, 2020T130762), the Sichuan Science and Technology Program (2019YJ0125), the State Key Laboratory of Polymer Materials Engineering (sklpme2019-2-19), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0807), Chongqing Medical Joint Research Project of Chongqing Science and Technology Committee & Health Agency (2020GDRC017), and the RCUK China-UK Science Bridges Program through the Medical Research Council, and the Fundamental Research Funds for the Central Universities.
604

Using Lipid Bilayers in an Artificial Axon System

Vanderwerker, Zachary Thomas 08 December 2013 (has links)
Since the rise of multicellular organisms, nature has created a wide range of solutions for life on Earth. This diverse set of solutions presents a broad design space for a number of bio-inspired technologies in many different fields. Of particular interest for this work is the computational and processing power of neurons in the brain. Neuronal networks for transmitting and processing signals have advantages to their electronic counterparts in terms of power efficiency and the ability to handle component failure. In this thesis, an artificial axon system using droplet on hydrogel bilayers (DHBs) in conjunction with alamethicin channels was developed to show properties of action potential signal propagation that occur in myelinated nerve cells. The research demonstrates that the artificial axon system is capable of modifying signals that travel perpendicular to a lipid bilayer interface due to the voltage-gating properties of alamethicin within the connected bilayer. The system was used to show a signal boosting behavior similar to what occurs in the nodes of Ranvier of a myelinated axon. In addition, the artificial axon system was used to show that alamethicin channels within a lipid bilayer behave similarly to slow-acting potassium channels in a real axon in that they follow a sigmoid activation curve in response to a step potential change. / Master of Science
605

Modeling Hypertrophic Cardiomyopathy Using Genome-Edited Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Response to Dynamic Mechanotransduction

Strimaityte, Dovile 05 1900 (has links)
Familial hypertrophic cardiomyopathy (HCM) is a genetic disease largely caused by a mutation in myosin binding protein C (MYBPC3) and it affects about 1:500 population leading to arrhythmic sudden death, heart failure, and atrial fibrillation. MYBPC3 activates calcium-induced actin-myosin filament sliding within the cardiac sarcomere, creating the force necessary for heart contraction. The underlying molecular mechanisms causing HCM phenotype remain elusive, therefore, there is an urgent need for a reliable in vitro human HCM model to investigate the pathogenesis of HCM. This study utilized isogenic human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with MYBPC3 gene mutation (wildtype, heterozygous, homozygous) and further micropatterned them into fiber-like structures on polyacrylamide hydrogels of physiological and fibrotic-like stiffnesses. Cells were cultured for an extended culture time up to 60 days and their morphology/attachment, contractility, and calcium transient were extensively and carefully evaluated. It was found that MYBPC3 knockout cells maintained the highest contraction amplitude, but had increased contraction, and relaxation durations, decreased calcium transient amplitude, as well as time to peak and decay times over the culture period in comparison to the isogenic wildtype. Overall, this study demonstrates that hiPSC-CMs can be successfully patterned and cultured for an extended time on hydrogels forming end-to-end connections, which can be served as a simple yet effective in vitro human model for studying mechanical dysfunction of HCM.
606

Bone Regeneration with Cell-free Injectable Scaffolds

Hulsart Billström, Gry January 2017 (has links)
Bone is a remarkable multifunctional tissue with the ability to regenerate and remodel without generating any scar tissue. However, bone loss due to injury or diseases can be a great challenge and affect the patient significantly. Autologous bone grafting is commonly used throughout the world. Autograft both fills the void and is bone inductive, housing the particular cells that are needed for bone regeneration. However, a regenerative complement to autograft is of great interest as the use of biomaterials loaded with bioactive molecules can avoid donor site morbidity and the problem of a limited volume of material. Two such regenerative products that utilise bone morphogenetic protein (BMP)-7 and -2 have been used for more than a decade clinically. Unfortunately, several side effects have been reported, such as severe swelling due to inflammation and ectopic bone formation. Additionally, the products require open surgery and use of supra physiological doses of the BMPs due to poor localisation and retention of the growth factor. The purpose of this thesis was to harness the strong inductive capacity of the BMP-2 by optimising the carrier of this bioactive protein, thereby minimising the side effects that are associated with the clinical products and facilitating safe and localised bone regeneration. We focused on an injectable hyaluronan-based carrier developed through polymer chemistry at the University of Uppsala. The strategy was to use the body’s own regenerative pathway to stimulate and enhance bone healing in a manner similar to the natural bone-healing process. The hyaluronan-based carrier has a similar composition to the natural extracellular matrix and is degraded by resident enzymes. Earlier studies have shown improved properties when adding hydroxyapatite, a calcium phosphate that constitutes the inorganic part of the bone matrix. In Paper I, the aim was to improve the carrier by adding other forms of calcium phosphate. The results indicated that bone formation was enhanced when using nano-sized hydroxyapatite. In Paper II, we discovered the importance of crushing the material, thus enhancing permeability and enlarging the surface area. We wished to further develop the carrier system, but were lacking an animal model with relatively high throughput, facilitated access, paired data, and we were also committed to the 3Rs of refinement, reduction, and replacement. To meet these challenges, we developed and refined an animal model, and this is described in Paper III. In Paper IV, we sought to further optimise the biomaterial properties of the hydrogel through covalent bonding of bisphosphonates to the hyaluronan hydrogel. This resulted in exceptional retention of the growth factor BMP-2. In Paper V, SPECT/PET/µCT was combined as a tri-modal imaging method to allow visualisation of the biomaterial’s in situ action, in terms of drug retention, osteoblast activity and mineralisation. Finally, in Paper VI the correlation between existing in vitro results with in vivo outcomes was observed for an array of biomaterials. The study identified a surprisingly poor correlation between in vitro and in vivo assessment of biomaterials for osteogenesis.
607

Développement et caractérisation d'un hydrogel thérapeutique pour la régénération du tissu osseux / Development and characterization of a therapeutic hydrogel for bone tissue regeneration

Ziane, Sophia 28 September 2012 (has links)
Le tissu osseux est caractérisé par sa matrice minéralisée qui est soumise à des activités de formation et de résorption assurant son renouvellement et son remaniement tout au long de la vie. En cas de lésions, l’os est capable de se réparer naturellement de façon à rétablir son intégrité et ses propriétés physiques. Cependant, certaines pathologies ou interventions chirurgicales peuvent aboutir à des pertes massives de substance osseuse et le processus naturel d’autoréparation est alors insuffisant. En première intention, la greffe osseuse est envisagée (autogreffe et allogreffe), néanmoins, du fait d’une disponibilité réduite et des risques de rejet et de transmission d’agents infectieux, cette technique n’est pas réalisable dans toutes les situations cliniques. Le chirurgien peut alors avoir recours à des biomatériaux ostéoconducteurs mais ceux-ci ne sont utilisables que dans le cas de comblement de défauts de petite taille car ils sont simplement un support passif à la néoformation osseuse. Ces limites pourraient être dépassées grâce au concept d’ingénierie tissulaire, en concevant des biomatériaux innovants ayant un fort pouvoir ostéogène conféré notamment par des facteurs de croissance ou des cellules ostéoprogénitrices. Dans notre travail, nous avons cherché à mettre au point un nouveau produit d’ingénierie tissulaire permettant la réparation de défauts osseux. La stratégie envisagée repose sur l’association d’un support tridimensionnel et de cellules souches adultes dérivées du tissu adipeux humain (ASC). L’originalité du système provient de la matrice tridimensionnelle, qui est un hydrogel thermosensible composé de monomère synthétique Glycosyl-Nucléoside-Fluoré (GNF) de faible poids moléculaire. Dans le domaine de la régénération osseuse, les hydrogels cellularisés sont généralement utilisés comme matrice associée à des molécules ostéogéniques (BMP2, Béta-Glycérophosphate) ou à des ions (Calcium : Ca2+, Phosphate : PO42-) pour permettre la differenciation ostéoblastique des cellules encapsulées dans le gel. Cependant, dans notre travail, nous n’avons pas fait appel à ces facteurs ostéogéniques. Notre étude a révélé que l’hydrogel de GNF possède les critères essentiels pour être utilisé en clinique : la non-toxicité, la biocompatibilité, la biodégradabilité, l’injectabilité et la biointégration. Des injections de complexe gel/ASC réalisées en site ectopique chez l’animal ont démontré que le gel se forme in situ en moins de 20 minutes et que les cellules encapsulées ont survécu pendant plusieurs mois. In situ, les ASC se sont différerenciées en ostéoblastes matures, exprimant la phosphatase alcaline et l’ostéocalcine et synthétisant une matrice extracellulaire riche en phosphate de calcium. Ces travaux ont donc permis de développer un produit d’ingénierie tissulaire innovant, associant un support tridimensionnel, l’hydrogel de GNF, à une composante cellulaire, les ASC. Cette matrice cellularisée apparaît prometteuse comme système injectable pour des applications cliniques de régénération osseuse. / Bone tissue is characterized by its mineralized matrix which is subject to formation and resorption activities ensuring its renewal and remodeling throughout the life. In case of damage, the bone can repair itself naturally to restore its integrity and its physical properties. Nevertheless, some pathologies or surgical procedures can lead to massive loss of bone and the natural process of self-repair is insufficient. First line, the bone graft is considered (autograft and allograft), however, due to reduced availability and risks of rejection and transmission of infectious agents, this technique is not feasible in all clinical situations. The surgeon can then make use of osteoconductive biomaterials but these are only usable in the case of filling of small defects because they are simply passive scaffold for bone formation. These limits may be exceeded through the concept of tissue enginee- ring, designing innovative biomaterials with high osteogenic power conferred by particular growth factors or osteoprogenitor cells. In our work we seek to develop a new product of tissue engineering to repair bone defects. The proposed strategy is based on the combination of a three-dimensional scaffold and adult stem cells derived from human adipose tissue (ASC). The originality of this system comes from the three-dimensional matrix, which is a thermosensitive hydrogel composed of synthetic monomeric Glycosyl-Nucleoside-Fluorinated (GNF) low molecular weight. In the field of bone regeneration, hydrogels are generally used as cellularized matrix molecules associated with osteogenic (BMP2, Beta-Glycerophosphate) or ions (Calcium : Ca2+, Phosphate : PO42-) to allow osteoblast differentiation of cells encapsulated in the gel. However, in our work, we have not used these osteogenic factors. Our study revealed that the hydrogel of GNF has the essential criteria to be used in clinical practice : non-toxicity, biocompatibility, biodegradability, injectability and biointegration. Injections of gel/ASC complex performed in animal ectopic site have showed that the gel is formed in situ within 20 minutes and encapsulated cells survived and proliferated for several months. In situ, ASC were differentiated into mature osteoblasts expressing alkaline phosphatase and osteocalcin and synthesizing an extracellular matrix rich in calcium phosphate. So, this work has allowed the development of an innovative product for tissue engineering, combining a three-dimensional scaffold, the GNF based hydrogel, a cellular component, the ASC. This cellularized matrix appears promising as injection system for clinical applications of bone regeneration.
608

Structures et propriétés rhéologiques d’hydrogels à dynamique contrôlée obtenus par l’auto-assemblage de copolymères à blocs amphiphiles / Structures and rheological properties of hydrogels presenting a controlled dynamic obtained by the self-assembly of amphiphilic block copolymers

Charbonneau, Céline 19 October 2012 (has links)
Les copolymères à blocs amphiphiles sont des macromolécules composées d’au moins un bloc hydrophile lié chimiquement à un ou plusieurs blocs hydrophobes. En milieu aqueux, ils s’auto-associent pour former des micelles dont les cœurs constitués des blocs hydrophobes sont protégés de l’eau par une couronne constituée des blocs hydrophiles hydratés. La majorité des copolymères à blocs amphiphiles génèrent dans l’eau des micelles « gelées » ne présentant aucun échange de chaînes entre elles. Ceci vient du fait que l’énergie nécessaire pour extraire un bloc hydrophobe du cœur des objets est beaucoup trop importante. Par conséquent, les caractéristiques des micelles sont plus contrôlées cinétiquement que thermodynamiquement. Pour diminuer cette énergie nous avons incorporé des unités hydrophile acide acrylique (AA) dans le bloc hydrophobe de poly(acrylate de n-butyle) (PnBA). L’incorporation de 50% molaire d’unités AA dans le bloc hydrophobe conduit à la formation d’agrégats pH-sensibles dans le cas du dibloc PAA-b-P(AA0.5-stat-nBA0.5) comme montré dans une étude antérieure. Cette thèse a consisté en une analyse quantitative de la dynamique d’auto-association de copolymères dibloc et tribloc amphiphiles à base d’acrylate de n-butyle et d’acide acrylique dont les blocs hydrophobes contiennent 50% d’unités hydrophiles réparties de manière statistique. Les copolymères à blocs ont été synthétisés par polymérisation radicalaire contrôlée par ATRP. L’influence de la concentration, du pH, de la température et de la force ionique sur la structure et les propriétés mécaniques des systèmes auto-assemblés a été systématiquement étudiée. Par diffusion statique de la lumière nous avons montré la présence d’une concentration d’agrégation critique (CAC) au-dessus de laquelle, des micelles de type étoile (dibloc) ou fleur (tribloc) sont formées par auto-association des blocs hydrophobes. A plus fortes concentrations, des interactions répulsives de type volume exclu apparaissent entre les micelles étoiles. Pour les micelles fleurs, à l’inverse des interactions attractives conduisent au pontage des fleurs jusqu’à l’obtention de réseaux tri-dimensionnels au-dessus de la concentration de percolation. Une attraction trop importante entre les fleurs peut même conduire à une séparation de phase à forte force ionique et bas pH. En diffusion dynamique de la lumière, nous avons montré que la formation des réseaux s’accompagnait de l’apparition d’un mode lent dont l’origine a été expliquée par un mouvement balistique d’hétérogénéités relaxées dans les systèmes. La vitesse de relaxation de ces hétérogénéités s’avèrent être dépendantes des propriétés mécaniques des hydrogels. La formation des réseaux et la dynamique d’échange des chaînes ont été étudiées par rhéologie. La viscosité augmente régulièrement avec la concentration jusqu’à la concentration de percolation où une augmentation brusque de la viscosité se produit et un temps de relaxation apparaît. Le temps de vie des ponts a été finement contrôlé et modulé sur plusieurs décades par modification du pH, de la température et de la force ionique. La formation in-situ des hydrogels nous a permis de mettre en évidence un phénomène de vieillissement des réseaux après leur formation avant d’atteindre un état stationnaire. Ce phénomène s’est traduit par une augmentation du temps de relaxation au cours du temps avant d’atteindre une valeur plateau. Ceci nous a également permis de comprendre pourquoi il était possible de générer des réseaux homogènes, par vieillissement, possédant une dynamique extrêmement lente voir nulle. / Amphiphilic block copolymers are macromolecules composed of at least one hydrophilic block chemically linked to one or several hydrophobic blocks. In water, these macromolecules self-assemble to form micelles composed of a hydrophobic core surrounded by a hydrated hydrophilic corona. The majority of amphiphilic block copolymers form “frozen” micelles in aqueous solution. This means that there is no dynamic exchange of chains between micelles because the energy necessary to extract a hydrophobic block from the core of micelles is too high. Consequently, the characteristics of the micelles are controlled kinetically and not thermodynamically. In order to decrease this energy, we have incorporated acrylic acid units (AA) in the hydrophobic block of poly(n-butyl acrylate) (PnBA). It was previously shown that the incorporation of 50% molar of AA units in the hydrophobic block led to generation of pH-sensitive micelles in the case of PAA-b-P(AA0.5-stat-nBA0.5) diblocks. This thesis presents of a quantitative analysis of the dynamics of self-assembled amphiphilic diblock and triblock copolymer based on acrylic acid units and n-butyl acrylate units. The hydrophobic blocks contained 50% of acrylic acids units incorporated randomly. The block copolymers were synthesized by controlled radical polymerization (ATRP). The influence of the concentration, pH, temperature and the ionic strength on the structure and the mechanical properties of the self-assembled systems was systematically studied. At low concentrations, static light scattering measurements showed the formation of star-like micelles (diblock) or flower-like micelles (triblock) above a critical aggregation concentration (CAC). At higher concentrations, purely repulsive excluded volume interactions between micelles appeared in the case of diblock copolymers. In the case of triblock copolymers bridging of flower-like micelles induced in addition attractive interactions leading to network formation above the percolation concentration. At high ionic strength and low pH, we showed that the attraction between flower-like micelles became sufficiently stong to induce phase separation. Dynamic light scattering measurements showed besides a fast mode due to cooperative diffusion, a second slow relaxation mode that appeared at the percolation concentration. The origin of this mode was explained by a balistic motion induced by the relaxation of heterogeneities inside the system. The velocity of heterogeneities was determined by the mechanical relaxation of the hydrogels. The formation of the network and the exchange dynamic of chains were studied by rheology. The viscosity of solutions increased sharply at the percolation concentration. The terminal visco-elastic relaxation time of the network is related to the lifetime of bridges. It could be controlled and tuned over several decades by varing of pH, temperature and the ionic strength. The in-situ formation of networks revealed an aging of networks after their formation before they reached their stationary state. Aging caused a slow increase of the relaxation time before reaching its steady value. This explains why it is possible to generate homogeneous networks even if the network at steady is kinetically frozen.
609

Bioingénierie des cellules souches mésenchymateuses médullaires cultivées en 3D : application au traitement de l’anévrysme de l’aorte abdominale

Mohand Kaci, Faïza 06 April 2012 (has links)
L'anévrisme de l'aorte abdominale (AAA) est une maladie dégénérative de la paroi vasculaire, actuellement traitée par chirurgie ou par endoprothèse. La diminution de la morbimortalité liée aux traitements et la réparation de ces vaisseaux pathologiques constituent un enjeu majeur de santé publique. L'objectif de ce travail de thèse est d'évaluer l'impact de la culture 3D sur les cellules souches mésenchymateuses (CSM), en particulier sur leur phénotype, leur multipotence, leur capacité à réparer les anévrysmes in vivo et à acquérir un phénotype adapté à la contrainte mécanique qu'elles subissent in vitro. Des conditions optimales de culture 3D dans un hydrogel d'acide hyaluronique préservant la multipotence des CSM in vitro ont ainsi été établies. Sous l'effet de contraintes mécaniques reproduisant celles subies par la paroi aortique in vivo, les CSM 2D et CSM 3D semblent garder une multipotence. Toutefois, dans ces conditions dynamiques, la viabilité des CSM 3D augmente contrairement à celle des CSM 2D. Les résultats montrent également que l'injection des CSM 2D ou 3D, en utilisant un modèle de xénogreffe chez le rat, stabilisent les AAA et améliorent la résistance mécanique de la paroi vasculaire anévrismale. L'étude réalisée chez le rat a été complétée par une approche thérapeutique cellulaire à base de CSM 3D dans le cas de faux anévrysmes chroniques de l'isthme chez le porc. Cette étape conduit à la caractérisation des CSM 3D et la mise au point du modèle expérimental chez le porc, ce qui permet d'envisager une thérapie cellulaire dans ce modèle. Plus généralement, ce travail contribue à la compréhension de la biologie des CSM et à l'amélioration des approches utilisées en thérapie cellulaire et en médecine régénérative. / Abdominal aortic aneurysm (AAA) is a degenarative disease of the arterial wall, which is usually treated with a conventional surgery or an andovascular stent. Due to its high morbidity and mortality, the AAA constitutes a major public health concern. The aim of this thesis is to evaluate the imapct of OD culture of mesenchymal stem cells (MSC), in particular on their phenotype, their multipotency, their ability to repair aneurysms in vivo and to acquire a phenotype suitable to the nechanical stress they support in vitro. Optmal culture conditions in a 3D hydrogel of hyaluronic acid preserving the multipotency of MSC in vitro have been established. Under mechanical effects, reproducing those supported by the aortic wall in vivo, 2D and 3D CSM seem to preserve their multipotency. However, under such dynamic conditions, the viability of 3D CSM increases unlike that of 2D CSM. By using a rat xenograft model, the results also show that injection of 2D or 3D CSM, stabilizes the AAA and improves the mechanical strenght of the aneurysmal vessel wall. The study in rat was supplemented by an evaluation of a therapeutic cell-based approach using 3D CSM in the case of chronic false aneurysms of the isthlus in pigs. This step allowed the characterization of 3D CSM and the development of an experimental model in pigs, which allows to consider cell therapy in this model. More genrally, this work contributes to a better understanding of CSM biology and to an improvement of the approaches used in cell therapy and regenerative medicine.
610

Immobilisation de biomolécules pour l’analyse multiparamétrique sur biopuces : application au génotypage érythrocytaire haut-débit / Biomolecule immobilisation for multiparametric analysis on biochips : application to high-throughput blood group genotyping

Le Goff, Gaëlle 14 October 2011 (has links)
Les travaux présentés dans cette thèse s’intéressent à l’immobilisation de biomolécules pour le développement d’outils d’analyse multiparamétrique pour la caractérisation d’échantillons biologiques et le diagnostic, sur un support de type biopuce couplé à une détection colorimétrique.Un premier axe de recherche concerne le développement de tests d’hybridation d’acides nucléiques et d’immunotests à haut-débit automatisés sur plaque de filtration. Cette méthode a permis la mise au point d’un test de génotypage automatisé pour le dépistage transfusionnel haut-débit (génotypage érythrocytaire étendu) en collaboration avec l’Établissement Français du Sang Rhône-Alpes (EFS-RA). Il permet d’analyser 96 échantillons en quatre heures, et de caractériser six génotypes par échantillon. Cet outil a fait l’objet d’une validation sur un panel de 293 donneurs.La seconde partie des travaux présentés s’intéresse au développement d’un procédé d’immobilisation d’oligonucléotides sur un polymère particulier (PolyshrinkTM) pour l’élaboration d’un système d’analyse miniaturisé. Plusieurs stratégies d’activation ont été envisagées et ont abouti à la mise au point d’une technique d’immobilisation d’oligonucleotides in situ dans des plots d’hydrogel. La méthode de fabrication permet d’obtenir une matrice de plots d’hydrogel de 60 µm de diamètre et d’une hauteur de 6 µm en moyenne. En outre, il a été démontré que les oligonucléotides immobilisés dans les plots pouvaient détecter de façon quantitative et sélective les cibles complémentaires présentes dans l’échantillon analysé en utilisant une détection par colorimétrie ou par chimiluminescence. / The work reported in this thesis focuses on biomolecules immobilization for the development of multiparametric analysis tools on a biochip coupled with a colorimetric detection, applied to the characterization of biological samples and to diagnosis.The first concern was the development of high-throughput automated hybridization tests and immunotests on a filtration plate. This method led to the elaboration of an automated platform for extended blood group genotyping in collaboration with the Etablissement Français du Sang Rhône-Alpes (EFS-RA). It enables to analyze 96 samples in four hours and to characterize six genotypes per sample. Its analytical performances were validated on a panel of 293 blood donors.The second part of this work aimed to elaborate a new strategy for oligonucleotide immobilization on an innovative polymer (PolyshrinkTM) for the development of miniaturized analysis systems. Several approaches were evaluated and led to an in-situ immobilization of oligonucleotides in hydrogel dots technique. This method leads to 6 µm hydrogel dots with a diameter of 60 µm. Moreover it was demonstrated that such immobilized oligonucleotides were able to detect targets specifically and quantitatively using either a chemiluminescent or a colorimetric detection.

Page generated in 0.0523 seconds