1 |
D-optimal designs for combined polynomial and trigonometric regression on a partial circleLi, Chin-Han 30 June 2005 (has links)
Consider the D-optimal designs for a combined polynomial of degree d and trigonometric of order m regression on a partial circle [see Graybill (1976), p. 324]. It is shown that the structure of the optimal design depends only on
the length of the design interval and that the support points are analytic functions of this parameter. Moreover, the Taylor expansion of the optimal support points can be determined efficiently by a recursive procedure.
|
2 |
D-optimal designs for weighted polynomial regression - a functional-algebraic approachChang, Sen-Fang 20 June 2004 (has links)
This paper is concerned with the problem of computing theapproximate D-optimal design for polynomial regression with weight function w(x)>0 on the design interval I=[m_0-a,m_0+a]. It is shown that if w'(x)/w(x) is a rational function on I and a is close to zero, then the problem of constructing D-optimal designs can be transformed into a differential equation problem leading us to a certain matrix including a finite number of auxiliary unknown constants, which can be approximated by a Taylor expansion. We provide a recursive algorithm to compute Taylor expansion of these constants. Moreover, the D-optimal
interior support points are the zeros of a polynomial which has coefficients that can be computed from a linear system.
|
3 |
A-optimal designs for weighted polynomial regressionSu, Yang-Chan 05 July 2005 (has links)
This paper is concerned with the problem of constructing
A-optimal design for polynomial regression with analytic weight
function on the interval [m-a,m+a]. It is
shown that the structure of the optimal design depends on a and
weight function only, as a close to 0. Moreover, if the weight
function is an analytic function a, then a scaled version of
optimal support points and weights is analytic functions of a at
$a=0$. We make use of a Taylor expansion which coefficients can be
determined recursively, for calculating the A-optimal designs.
|
4 |
Ds-optimal designs for weighted polynomial regressionMao, Chiang-Yuan 21 June 2007 (has links)
This paper is devoted to studying the problem of constructing Ds-optimal design for d-th degree polynomial regression with analytic weight function
on the interval [m-a,m+a],m,a in R. It is demonstrated that the structure of the optimal design depends on d, a and weight function only, as a close to 0. Moreover, the Taylor polynomials of the scaled versions of the optimal support points and weights can be computed via a recursive formula.
|
5 |
O teorema da função implicita em um contexto aplicado e algumas conexões no calculo de areas de regiões planas / The implicit function thorem in an applied context and some connections in the calculus of the area of plane regionsSilva Júnior, Epitácio Pedro da 16 April 2008 (has links)
Orientador: Sandra Augusta Santos / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T21:01:17Z (GMT). No. of bitstreams: 1
SilvaJunior_EpitacioPedroda_M.pdf: 1234663 bytes, checksum: 67cac0299f5435bbce39b930a12c49c4 (MD5)
Previous issue date: 2008 / Resumo: Este trabalho tem dois objetivos principais. O primeiro é apresentar um contexto aplicado para o uso do Teorema da Função Implícita. Este resultado permite analisar a influência da precisão dos relógios envolvidos no funcionamento do GPS (Global Positioning System), cujo receptor é usado para determinar as coordenadas de um ponto da Terra, O segundo objetivo é estabelecer algumas conexões entre conceitos da Geometria Analítica do Ensino Médio com a,do Ensino Superior, bem como com o Cálculo de Várias Variáveis, aparentemente desconectados para o aluno do Ensino Superior. Para tanto, a idéia foi partir do cálculo da área de regiões simples, como triângulos e polígonos, e chegar à computação de áreas de regiões mais sofisticadas, por meio do Teorema de 'Green. Este resultado permite justificar o funcionamento do aparelho mecânico denominado planímetro / Abstract: The objective of this work is twofold. First, it presents an applied context for using the Implicit Function Theorem. This result allows to analyze the influence of the accuracy of the clocks involved in the working of the GPS (Global Positioning System), the receiver of which is a device used to locate the position of a point on the surface of the earth. Second, it points some connections among concepts of Analytic Geometry, together with Calculus of Several Variables, apparently not linked for the university student. To achieve such goal, the idea was to start with the calculus of the area of simple regions, like triangles and polygons, and reach the computation of more sophisticated areas by using Green's theorem. This result allows to justify the working of the mechanical device called planimeter / Mestrado / Matematica / Mestre em Matemática
|
6 |
Infinitesimální kalkulus funkcí více proměnných / Differential Calculus of Functions of Several VariablesRáž, Adam January 2016 (has links)
The thesis follows on Petr Vopìnka's alternative theory of sets and semisets by extending notions of in nite closeness and monad for real spaces of several variables. It speci es and explains on examples the basic terminology of this theory, namely notions of sets, semisets and domains. It brings up two worlds | an ancient and a classical one | by which it shows a dual way of looking at real functions of several variables. That is used for examining local properties like continuity, limit or derivative of a function at a point. The peak of the thesis is an alternative formulation of the implicit function theorem and the inverse function theorem. The thesis also contains translation rules, which allow us to reformulate all these results from an alternative into a traditional formulation used in mathematical analysis.
|
7 |
Two Problems in non-linear PDE’s with Phase TransitionsJonsson, Karl January 2018 (has links)
This thesis is in the field of non-linear partial differential equations (PDE), focusing on problems which show some type of phase-transition. A single phase Hele-Shaw flow models a Newtoninan fluid which is being injected in the space between two narrowly separated parallel planes. The time evolution of the space that the fluid occupies can be modelled by a semi-linear PDE. This is a problem within the field of free boundary problems. In the multi-phase problem we consider the time-evolution of a system of phases which interact according to the principle that the joint boundary which emerges when two phases meet is fixed for all future times. The problem is handled by introducing a parameterized equation which is regularized and penalized. The penalization is non-local in time and tracks the history of the system, penalizing the joint support of two different phases in space-time. The main result in the first paper is the existence theory of a weak solution to the parameterized equations in a Bochner space using the implicit function theorem. The family of solutions to the parameterized problem is uniformly bounded allowing us to extract a weakly convergent subsequence for the case when the penalization tends to infinity. The second problem deals with a parameterized highly oscillatory quasi-linear elliptic equation in divergence form. As the regularization parameter tends to zero the equation gets a jump in the conductivity which occur at the level set of a locally periodic function, the obstacle. As the oscillations in the problem data increases the solution to the equation experiences high frequency jumps in the conductivity, resulting in the corresponding solutions showing an effective global behaviour. The global behavior is related to the so called homogenized solution. We show that the parameterized equation has a weak solution in a Sobolev space and derive bounds on the solutions used in the analysis for the case when the regularization is lost. Surprisingly, the limiting problem in this case includes an extra term describing the interaction between the solution and the obstacle, not appearing in the case when obstacle is the zero level-set. The oscillatory nature of the problem makes standard numerical algorithms computationally expensive, since the global domain needs to be resolved on the micro scale. We develop a multi scale method for this problem based on the heterogeneous multiscale method (HMM) framework and using a finite element (FE) approach to capture the macroscopic variations of the solutions at a significantly lower cost. We numerically investigate the effect of the obstacle on the homogenized solution, finding empirical proof that certain choices of obstacles make the limiting problem have a form structurally different from that of the parameterized problem. / <p>QC 20180222</p>
|
8 |
Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot / Metric properties of level sets of differentiable maps on Carnot groupsKozhevnikov, Artem 29 May 2015 (has links)
Nous étudions les propriétés métriques locales des ensembles de niveau des applicationshorizontalement différentiables entre des groupes de Carnot, c'est-à-dire différentiable par rapport à la structure sous-riemannienne intrinsèque.Nous considérons des applications dont la différentielle horizontale est surjective,et notre étude peut être vue comme une généralisation du théorème des fonctions implicites pour les groupes de Carnot.Tout d'abord, nous présentons deux notions de tangence dans les groupes de Carnot:la première basée sur la condition de platitude au sens de Reifenberg et la deuxième issue de l'analyse convexe classique.Nous montrons que dans les deux cas, l'espace tangent à un ensemble de niveau coïncide avec le noyau de la différentielle horizontale.Nous montrons que cette condition de tangence caractérise en fait les ensembles de niveaudits ‘co-abéliens', c'est-à-dire ceux pour lesquels l'espace d'arrivée est abélien, et qu'une telle caractérisation n'est pas vraie en général.Ce résultat sur les espaces tangents a plusieurs conséquences remarquables.La plus importante est que la dimension de Hausdorff des ensembles de niveau est celle à laquelle l'on s'attend.Nous montrons également la connectivité locale des ensembles de niveau, et le fait que les ensembles de niveau de dimension 1 sont topologiquement des arcs simples.Pour les ensembles de niveau de dimension 1 nous trouvons une formule de l'aire qui permet d'exprimer la mesure de Hausdorff en termes d'intégrales de Stieltjes généralisées.Ensuite, nous menons une étude approfondie du cas particulier des ensembles de niveau dans les groupes d'Heisenberg.Nous montrons que les ensembles de niveau sont topologiquement équivalents à leurs espaces tangents.Il s'avère que la mesure de Hausdorff des ensembles de niveau de codimension élevée est souvent irrégulière, étant, par exemple, localement nulle ou infinie.Nous présentons une condition simple de régularité supplémentaire pour une application pour assurer la régularité au sens d'Ahlfors des ses ensembles de niveau.Parmi d'autres résultats, nous obtenons une nouvelle caractérisation généraledes graphes Lipschitziens associés à une décomposition en produit semi-direct d'un groupe de Carnot.Nous traitons, en particulier, le cas des groupes de Carnot dont le nombre de stratesest plus grand que $2$.Cette caractérisation nous permet de déduire une nouvelle caractérisation des ensemblesde niveau co-abéliens qui admettent une représentation en tant que graphe. / Metric properties of level sets of differentiable maps on Carnot groupsAbstract.We investigate the local metric properties of level sets of mappings defined between Carnot groups that are horizontally differentiable, i.e.with respect to the intrinsic sub-Riemannian structure. We focus on level sets of mapping having a surjective differential,thus, our study can be seen as an extension of implicit function theorem for Carnot groups.First, we present two notions of tangency in Carnot groups: one based on Reifenberg's flatness condition and another coming from classical convex analysis.We show that for both notions, the tangents to level sets coincide with the kernels of horizontal differentials.Furthermore, we show that this kind of tangency characterizes the level sets called ``co-abelian'', i.e.for which the target space is abelian andthat such a characterization may fail in general.This tangency result has several remarkable consequences.The most important one is that the Hausdorff dimension of the level sets is the expected one. We also show the local connectivity of level sets and, the fact that level sets of dimension one are topologically simple arcs.Again for dimension one level set, we find an area formula that enables us to compute the Hausdorff measurein terms of generalized Stieltjes integrals.Next, we study deeply a particular case of level sets in Heisenberg groups. We show that the level sets in this case are topologically equivalent to their tangents.It turns out that the Hausdorff measure of high-codimensional level sets behaves wildly, for instance, it may be zero or infinite.We provide a simple sufficient extra regularity condition on mappings that insures Ahlfors regularity of level sets.Among other results, we obtain a new general characterization of Lipschitz graphs associated witha semi-direct splitting of a Carnot group of arbitrary step.We use this characterization to derive a new characterization of co-ablian level sets that can be represented as graphs.
|
9 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problemEstecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.
|
10 |
Contrôle optimal des équations d'évolution et ses applications / Optimal control of evolution equations and its applicationsNabolsi, Hawraa 17 July 2018 (has links)
Dans cette thèse, tout d’abord, nous faisons l’Analyse Mathématique du modèle exact du chauffage radiatif d’un corps semi-transparent $\Omega$ par une source radiative noire qui l’entoure. Il s’agit donc d’étudier le couplage d’un système d’Equations de Transfert Radiatif avec condition au bord de réflectivité indépendantes avec une équation de conduction de la chaleur non linéaire avec condition limite non linéaire de type Robin. Nous prouvons l’existence et l’unicité de la solution et nous démontrons des bornes uniformes sur la solution et les intensités radiatives dans chaque bande de longueurs d’ondes pour laquelle le corps est semi-transparent, en fonction de bornes sur les données, Deuxièmement, nous considérons le problème du contrôle optimal de la température absolue à l’intérieur du corps semi-transparent $\Omega$ en agissant sur la température absolue de la source radiative noire qui l’entoure. À cet égard, nous introduisons la fonctionnelle coût appropriée et l’ensemble des contrôles admissibles $T_{S}$, pour lesquels nous prouvons l’existence de contrôles optimaux. En introduisant l’espace des états et l’équation d’état, une condition nécessaire de premier ordre pour qu’un contrôle $T_{S}$ : t ! $T_{S}$ (t) soit optimal, est alors dérivée sous la forme d’une inéquation variationnelle en utilisant le théorème des fonctions implicites et le problème adjoint. Ensuite, nous considérons le problème de l’existence et de l’unicité d’une solution faible des équations de la thermoviscoélasticité dans une formulation mixte de type Hellinger- Reissner, la nouveauté par rapport au travail de M.E. Rognes et R. Winther (M3AS, 2010) étant ici l’apparition de la viscosité dans certains coefficients de l’équation constitutive, viscosité qui dépend dans ce contexte de la température absolue T(x, t) et donc en particulier du temps t. Enfin, nous considérons dans ce cadre le problème du contrôle optimal de la déformation du corps semi-transparent $\Omega$, en agissant sur la température absolue de la source radiative noire qui l’entoure. Nous prouvons l’existence d’un contrôle optimal et nous calculons la dérivée Fréchet de la fonctionnelle coût réduite. / This thesis begins with a rigorous mathematical analysis of the radiative heating of a semi-transparent body made of glass, by a black radiative source surrounding it. This requires the study of the coupling between quasi-steady radiative transfer boundary value problems with nonhomogeneous reflectivity boundary conditions (one for each wavelength band in the semi-transparent electromagnetic spectrum of the glass) and a nonlinear heat conduction evolution equation with a nonlinear Robin boundary condition which takes into account those wavelengths for which the glass behaves like an opaque body. We prove existence and uniqueness of the solution, and give also uniform bounds on the solution i.e. on the absolute temperature distribution inside the body and on the radiative intensities. Now, we consider the temperature $T_{S}$ of the black radiative source S surrounding the semi-transparent body $\Omega$ as the control variable. We adjust the absolute temperature distribution (x, t) 7! T(x, t) inside the semi-transparent body near a desired temperature distribution Td(·, ·) during the time interval of radiative heating ]0, tf [ by acting on $T_{S}$. In this respect, we introduce the appropriate cost functional and the set of admissible controls $T_{S}$, for which we prove the existence of optimal controls. Introducing the State Space and the State Equation, a first order necessary condition for a control $T_{S}$ : t 7! $T_{S}$ (t) to be optimal is then derived in the form of a Variational Inequality by using the Implicit Function Theorem and the adjoint problem. We come now to the goal problem which is the deformation of the semi-transparent body $\Omega$ by heating it with a black radiative source surrounding it. We introduce a weak mixed formulation of this thermoviscoelasticity problem and study the existence and uniqueness of its solution, the novelty here with respect to the work of M.E. Rognes et R. Winther (M3AS, 2010) being the apparition of the viscosity in some of the coefficients of the constitutive equation, viscosity which depends on the absolute temperature T(x, t) and thus in particular on the time t. Finally, we state in this setting the related optimal control problem of the deformation of the semi-transparent body $\Omega$, by acting on the absolute temperature of the black radiative source surrounding it. We prove the existence of an optimal control and we compute the Fréchet derivative of the associated reduced cost functional.
|
Page generated in 0.1208 seconds