Spelling suggestions: "subject:"inomhusklimatet"" "subject:"inomhusklimat""
1 |
Energianalys och åtgärdsförslag av en befintlig byggnad : Doktor Fries Torg 6,7 och 10 / Energy analysis and action proposal of an existing building : Doktor Fries Torg 6,7 and 10Gibanica, Lejla, Handanagic, Lejla January 2018 (has links)
Urbaniseringen i Sverige under 1960–1970-talet medförde en kraftig ökning av byggandet och efterfrågan på bostäder och lokaler var stor. Idag utgör bostad- och service sektorn 40 % av den totala energianvändningen i Sverige. För att åstadkomma ett hållbart samhälle måste energieffektivisering av befintliga byggnader ske samt måste nybyggnationer utförs energieffektivt och sträva efter nära noll energibyggnader (NNE). Detta är viktigt för att energianvändningen skall minska samtidigt som miljöpåverkan blir låg. Viktigt är också att invånarna upplever ett bra inomhusklimat och en bra stadsmiljö att leva i. Examensarbetet omfattar en befintlig byggnad i Göteborg på Doktor Fries Torg 6,7 och 10, där flera verksamheter bedrivs. Projektet har utförts på teknikkonsultföretaget Energi Triangeln AB i samarbete med Förvaltnings AB GöteborgsLokaler. Huvudmålet med projektet är att utföra en energianalys som talar om hur energianvändningen ser ut för hela byggnaden. Genom att undersöka energianvändningen möjliggörs framtagande av åtgärdsförslag för att åstadkomma optimala energiförhållanden, minska energianvändningen och driftkostnaderna för kunden samt att främja hållbar utveckling i samhället. Resultatet för projektet presenteras med hjälp av data från fastighetsägaren, beräkningsfiler och formler inom ämnet Energiteknik i byggnader. Den avgörande fasen under arbetsgången har varit platsbesöken som utförts ett flertal gånger. Platsbesöken har innefattat besiktning av ventilationssystemen, värmesystemet, klimatskalet, verksamhetselen, fastighetselen och interna värmelaster för respektive verksamhet samt på vilket sätt verksamheterna bedrivs. Besöken underlättade arbetsgången då analyser av byggnaden möjliggjordes samtidigt som antagande och slutsatser om byggnaden kunde konstateras utefter branschstandard. Resultatet från projektet visar att byggnaden i nuläget har en energianvändning på cirka 133 kWh/m2, år och cirka 154 kWh/LOA, år. Med framtagna åtgärdsförslag har byggnaden en besparingspotential på cirka 54 % som motsvarar en energianvändning på 71 kWh/m2, år och 83 kWh/LOA, år. / The desire to buy housing and facilities in Sweden was high during the urbanization, which led to a large amount of buildings were built during the time. Today, the housing and the service sector accounts for 40 % of the total energy use in Sweden. To achieve a sustainable society and a sustainable building, energy efficiency of existing buildings needs to be done as well as new constructions needs to be performed energy efficiently and aim for near zero energy buildings (NNEs). This is important for reducing the energy use, and at the same time low the impact on the environment, while people feel a satisfactory environment. The project comprises an existing building in Gothenburg, where several activities are conducted at Doctor Fries Torg 6, 7 and 10. The project will be performed at the technology consulting company Energi Triangeln AB and the client of the project is Förvaltnings AB GöteborgsLokaler. The main purpose of the project is to implement an energy analysis that shows how the energy use in the building is distributed. By examining the energy use, it is possible to develop action proposals to achieve optimum energy conditions, reduce the energy use and the operating costs for the customer by promoting sustainable development. The result of the project is presented using data from the property owner, calculation files and formulas. The decisive phase of the work has been the visits of the building, which were made a couple of times. The visits have included inspection of the ventilation systems, heating system, climate scale, business area, property area, the internal heating keys for the respective activity and the way in which the activities are conducted. The visits facilitated the workflow when analyzes of the building were made, as well as the assumptions and conclusions about the building could be identified according to the industry standards. The results from the project show that the building has an energy use of 133 kWh/m2 and approximately 154 kWh/LOA today. With action proposals, the building has a saving potential of approximately 54 % which corresponds to an energy use of 71 kWh/m2, year and 83 kWh/LOA, year.
|
2 |
Termisk stigning i höga byggnader : Vindens påverkan / Thermal flow in high-rise buildings : The influence of the windWalldén, Jimmy January 2019 (has links)
Att tillhandahålla termisk komfort är ett av de främsta kraven som ställs på byggnader i dagens samhälle. Stora delar av energianvändningen går därför åt till att styra inomhusklimatet för att upprätthålla en behaglig nivå. Det påstås att omkring 40 % av denna energi tillkommer på grund av energiförluster via öppningar och läckage genom byggnaders klimatskal. Med tanke på världens och Sveriges alltmer striktare energikrav där man bland annat vill bygga nära-nollenergibyggnader är detta någonting som bör förbättras. Det är därför viktigt att förstå hur men även varför denna luftinfiltration uppstår och vilka faktorer som har en påverkande effekt. Detta arbete innefattas av tre olika simuleringsstudier av en hög byggnad där inomhusluftens rörelsemönster samt yttre vindförhållanden har legat i fokus. En studie utfördes med hjälp av simuleringsverktyget IDA ICE där luftens infiltration undersöktes. De andra två utfördes med hjälp av CFD-programmet COMSOL Multiphysics v5.4. Den ena CFD-studien studerade termiska stigkrafter inuti byggnaden och den andra studerade vindens flödesmönster utanför byggnaden och varför infiltrationen beter sig som den gör. Resultatet av simuleringarna i IDA ICE visar att det är möjligt att minska infiltrationsmängden luft in i byggnaden från 1384 l/s till 804 l/s genom att ta hänsyn till ytterdörrens placering relativt den inkommande vinden riktning. De visar även att infiltrationens inflöde är som högst på bottenvåningen för att sedan minska och därefter övergå till ett utflöde på de högre våningsplanen.Resultatet från den första CFD-studien beskriver hur den varmare inomhusluftens rörelsemönster förändras då kallare luft tar sig in på byggnadens bottenvåning. Detta förändrade rörelsemönster resulterar i att den varmare luften stiger och därmed letar sig ut genom byggnadens högre våningsplan. Den andra CFD-studiens resultat beskriver hur den yttre vindens flödesmönster förändras då dess infallsvinkel mot byggnaden varierar. Flödesmönstrets förändring ger i sin tur upphov till en varierande tryckskillnader på utsidan samt inuti byggnaden. Detta är därför en av förklaringarna till varför infiltrationen är som högst då vinden blåser rakt mot byggnadens öppna dörr jämfört med när den kommer med en annan infallsvinkel. Slutsatsen är att ytterdörrens placering relativt den yttre vinden rörelsemönster bör tas i beaktning vid nybyggnation av höga byggnader eller renovering av redan befintliga byggnader. Detta för att minimera infiltrationen och därmed reducera den problematik som infiltrationen kan medföra. / One of the main requirements a building have is to provide thermal comfort inside it. Therefore, large parts of the energy consumptions is used to control the indoor climate in order to maintain a comfortable level in the building. It’s alleged that around 40 % of this energy is added due to energy losses through opening and leakages in the buildings enclosure. Considering the world’s increasing energy requirements, where among other things one future requirement is to build nearly-zero energy buildings, is this something that needs to be improved. It’s therefore important to understand how, and also why this air infiltration occurs and what’s affecting it. This master thesis contains of three different types of simulation studies where the air inside a high-rise building, and also the wind flow around it was analyzed. One of these three studies was performed with the simulation program IDA ICE, where the air infiltration was examined. The other two studies were performed with the CFD-software, COMSOL Multiphysics v5.4. One of these CFD-studies examined the thermal flow that occurs inside the building. The other one examined the wind’s flow pattern outside the building and why the air infiltration behavior is like it is. The results from the IDA ICE simulations shows that it’s possible to decrease the infiltration rate of air into the building from 1384 l/s to 804 l/s by taking the exterior door’s position relative the incoming wind’s direction into account. They also show that the infiltration inflow is highest on the ground floor before it starts to decrease and then change and becomes an outflow on the the higher floors. The results from the first CFD-study describes how the movements of the warmer air inside the building changes when colder air flows in on the ground floor. This changed air movement pattern makes the warmer air rise, and thus flow out through the enclosure on the higher parts of the building. The other CFD-study describes how the flow pattern of the outside wind changes around the building when the winds angle of incidence varies. The changed flow pattern causes varying pressure differences, both on the outside and the inside of the building. This is therefore the explanation to why the infiltration rate is greatest when the wind blows straight towards the opened door on the building instead of with other angles of incidence. The conclusion is that the placement of exterior doors on high-rise buildings relative to the outside wind should be taken into account when new buildings are built or when a renovation of an existing building should be made. This to minimize air infiltration through buildings and thereby reduce problems infiltration can cause.
|
3 |
The environmental and social impact from digitization in buildings : A case study of the transformation and current conditions on the University hospital of Northern SwedenMelén, Matilda, Wenhov, Alma January 2022 (has links)
To improve sustainability, social, environmental and economic aspects needs to be considered. The most optimal result appears when all three aspects are balanced equally, this is however often overseen by private investors, who focuses only on reaching economic sustainability at the expense of social and environmental sustainability. Building digitization is one way to potentially improve the sustainability of a building socially, environmentally and economically. Focusing on the aspects that often are neglected, this thesis aims to investigate if digitizing a building improves social and environmental sustainability. The investigation is made by evaluating the implementation of a digital building automation tool from selected social and environmental sustainability criteria at the University hospital of Northern Sweden. This by performing an interview survey with the maintenance organisation and the tenants in the building, as well as performing CO2-e calculations on emissions connected to energy usage, transportation and production of HVAC-products. The evaluation indicated that the implementation had resulted in improved sustainability in the studied building, both socially and environmentally. Showing that digitizing a building improves social and environmental sustainability. The social sustainability had been positively affected from increased efficiency and effectiveness of the maintenance work in the building and improved well-being of the maintenance staff. However, the tenants were not completely satisfied when asked if reported errors were being solved, but on the other hand had the maintenance organisation experienced an improvement in satisfaction among the tenants since the implementation of the digital building automation tool. Furthermore, the tenants were generally more satisfied than dissatisfied with the indoor climate, except for experienced low temperatures in the winter and dry air. The environmental sustainability had been improved from a reduction in emitted CO2-e, generated from less energy usage and minimized transportation connected to maintenance operations. Furthermore, an estimation on increased technical lifetime of HVAC-products demonstrated on a potential further reduction in emitted CO2-e during the building's whole life span. Finally, the evaluation identified two combined effects between social and environmental sustainability. First, the increased efficiency and effectiveness of the maintenance work was one direct factor for the decrease in CO2-e emissions connected to transportation. Second, the tenants in the building expressed that they would feel prouder of their choice of employer if their employer focused more on reducing their climate impact, which motivates to work with environmental sustainability to achieve satisfaction and moreover an improved social sustainability. The results of this case study indicate that digital building automation improves the social and environmental sustainability of a building, strengthening the statement on potential sustainability improvements from building digitization. For property owners wanting to increase their building's sustainability, digital building automation is therefore a proposed course of action. However, the performance on sustainability and the balance between the different aspects should continuously be evaluated, as the study showed that further improvements on the social and environmental sustainability still could be made. Property owners working towards an improved sustainability through digitization will both see long term positive effects on people's health, as well as help fulfilling the climate goals in the Paris agreement, resulting in a more sustainable world for present and future generations. / För att skapa en bättre hållbarhet måste hänsyn tas till både den sociala, miljömässiga samt den ekonomiska aspekten. Fokuset på dessa tre aspekter bör balanseras lika för att uppnå optimal hållbarhet, dock efterföljs detta inte vanligtvis av privata investerare som ofta endast fokuserar på att uppnå ekonomisk hållbarhet på bekostnad av den sociala- och miljömässiga hållbarheten. En byggnads hållbarhet kan potentiellt förbättras genom digitalisering av byggnaden, vilket kan förbättra den sociala, miljömässiga och ekonomiska hållbarheten. Genom att fokusera på de aspekter som ofta blir nedprioriterade undersöker denna studie om den sociala och miljömässiga hållbarheten i en byggnad ökar vid digitalisering. Detta genom att utvärdera implementeringen av ett digitalt verktyg på Norrlands Universitetssjukhus från några utvalda kriterier för social och miljömässig hållbarhet. Den sociala hållbarheten utvärderas med hjälp av en intervjustudie med underhållspersonalen och hyresgästerna i byggnaden, medan den miljömässiga hållbarheten utvärderades genom att beräkna CO2-e utsläpp kopplade till energianvändning, transporter samt produktionen av HVAC-produkter. Utvärderingen indikerade att implementeringen hade resulterat i en ökad social och miljömässig hållbarhet i byggnaden, vilket visar att en byggnads sociala och miljömässiga hållbarhet kan förbättras genom digitalisering. Den sociala hållbarheten hade ökat på grund av en ökad effektivitet i underhållsarbetet samt ett förbättrat välmående hos underhållspersonalen. Dock visade undersökningen att hyresgästerna i byggnaden inte var helt nöjda med arbetet kring felanmälningar, underhållsorganisationen hade dock upplevt att hyresgästerna var nöjdare efter implementeringen av det digitala verktyget än de var innan. Hyresgästerna var också mer nöjda än missnöjda med inomhusklimatet, förutom att de upplevde låg inomhustemperatur på vintern och att luften var torr. Den miljömässiga hållbarheten hade förbättrats genom en minskning av CO2-e utsläpp från minskad energianvändning och minskade transporter kopplade till underhållsarbetet. Den estimerade ökningen av den tekniska livslängden på HVAC-produkter visade också på potentiella minskningar av CO2-utsläpp under byggnadens hela livslängd. Denna studie identifierade också två kombinerade effekter mellan social- och miljömässig hållbarhet. Den första var att genom ökad effektivitet i arbetet för underhållspersonalen så minskade även CO2-e utsläppen från transporterna. Den andra var att hyresgästerna i byggnaden uttryckte att de skulle känna sig stoltare över sitt val av arbetsgivare om deras arbetsgivare fokuserade mer på att minska sin klimatpåverkan, vilket motiverar att arbeta med miljömässighållbarhet för att uppnå ökad tillfredsställelse hos hyresgästerna och därav ökad social hållbarhet. Resultaten från denna fallstudie indikerar att digital fastighetsautomation förbättrar den sociala och miljömässiga hållbarheten av en byggnad, vilket styrker argumentet att en byggnads hållbarhet potentiellt kan förbättras genom digitalisering. För fastighetsägare som vill öka en byggnads hållbarhet är digital fastighetsautomation därför rekommenderat. Hållbarheten samt balansen mellan de olika hållbarhetsaspekterna behöver däremot kontinuerligt utvärderas, eftersom denna studie har visat att den sociala- och miljömässigahållbarheten fortfarande kan förbättras. Fastighetsägare som arbetar med att öka hållbarheten i byggnader genom digitalisering kommer uppleva långvariga positiva effekter för människors hälsa samt så kommer de bidra till att uppnå klimatmålen i Parisavtalet. Detta resulterar i en mer hållbar värld för nutida och framtida generationer.
|
Page generated in 0.0581 seconds