• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 9
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 31
  • 27
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

台灣期貨市場價量之因果關係 / Causality between returns and traded volumes in Taiwan futures market

官欣, Kuan, Hsin Unknown Date (has links)
This paper follows Ghysels, Gourieroux, and Jasiak (1998), examines the causal relation between price and volume in Taiwan Futures Market. I use high frequency intraday data of Taiwan Stock Exchange Capitalization Weighted Stock Index in Taiwan Futures Exchange; and analyze the causality between returns and volume series, which are transformed into Markov chain, with Granger’s causal tests. I analyze the data with two different time category, trading time and calendar time. In our research we find out that Taiwan futures market has a bi-directional causality between price and volume in trading time analysis, as to the calendar time analysis, only price to volume unidirectional causality exists. Unlike the unidirectional causal relation that Ghysels, Gourieroux, and Jasiak (1998) observed in French security market.
52

New dynamics in the electricity sector : consumption-growth nexus, market structure and renewable power / Nouvelle dynamiques dans le secteur de l'électricité : lien entre la consommation et la croissance, structure de marché et énergies renouvelables

Li, Yuanjing 10 November 2015 (has links)
L’objectif de cette thèse est d’étudier les nouvelles dynamiques et leurs impacts dans le secteur de l'électricité. Elle discute des sujets critiques d’après les perspectives de la macroéconomie, de la configuration structurelle, et de la transition vers des sources d'énergie renouvelables. Plus précisément, trois sujets se dégagent: le lien entre la consommation d'électricité et la croissance économique, les impacts de l'intégration verticale entre les producteurs et les détaillants, et les impacts d'intégration de production d'énergie renouvelable intermittente. En mettant en jeu ces trois sujets, elle tente d’apporter des réponses aux défis principaux de la sécurité d'approvisionnement, de la compétitivité, et de la durabilité du développement énergétique. En donnant de nouvelles orientations dans la recherche sur l’économie de l’énergie, elle servira à éclairer des débats politiques. / The objective of this thesis is to study the new dynamics and their impacts in the electricity sector. It discusses the critical issues from the perspectives of macroeconomics, structural configuration, and a transition to renewable energy sources. More precisely, three topics emerge: the nexus between electricity consumption and economic growth, the impacts of vertical integration between power generators and retailers, and the market impacts and integration issues of intermittent renewable generation. By studying these three topics, it provides answers to the key challenges of supply security, competitiveness and sustainable development in the energy sector. By giving new research directions of energy economics, it serves to inspire related policy debates.
53

How useful are intraday data in Risk Management? : An application of high frequency stock returns of three Nordic Banks to the VaR and ES calculation

Somnicki, Emil, Ostrowski, Krzysztof January 2010 (has links)
<p>The work is focused on the Value at Risk and the Expected Shortfallcalculation. We assume the returns to be based on two pillars - the white noise and the stochastic volatility. We assume that the white noise follows the NIG distribution and the volatility is modeled using the nGARCH, NIG-GARCH, tGARCH and the non-parametric method. We apply the models into the stocks of three Banks of the Nordic market. We consider the daily and the intraday returns with the frequencies 5, 10, 20 and 30 minutes. We calculate the one step ahead VaR and ES for the daily and the intraday data. We use the Kupiec test and the Markov test to assess the correctness of the models. We also provide a new concept of improving the daily VaR calculation by using the high frequency returns. The results show that the intraday data can be used to the one step ahead VaR and the ES calculation. The comparison of the VaR for the end of the following trading day calculated on the basis of the daily returns and the one computed using the high frequency returns shows that using the intraday data can improve the VaR outcomes.</p>
54

How useful are intraday data in Risk Management? : An application of high frequency stock returns of three Nordic Banks to the VaR and ES calculation

Somnicki, Emil, Ostrowski, Krzysztof January 2010 (has links)
The work is focused on the Value at Risk and the Expected Shortfallcalculation. We assume the returns to be based on two pillars - the white noise and the stochastic volatility. We assume that the white noise follows the NIG distribution and the volatility is modeled using the nGARCH, NIG-GARCH, tGARCH and the non-parametric method. We apply the models into the stocks of three Banks of the Nordic market. We consider the daily and the intraday returns with the frequencies 5, 10, 20 and 30 minutes. We calculate the one step ahead VaR and ES for the daily and the intraday data. We use the Kupiec test and the Markov test to assess the correctness of the models. We also provide a new concept of improving the daily VaR calculation by using the high frequency returns. The results show that the intraday data can be used to the one step ahead VaR and the ES calculation. The comparison of the VaR for the end of the following trading day calculated on the basis of the daily returns and the one computed using the high frequency returns shows that using the intraday data can improve the VaR outcomes.
55

O uso da volatilidade realizada na simulação histórica ajustada para cálculo do VaR

Costa, Fabiola Medina 26 May 2010 (has links)
Submitted by Fabiola Costa (famedina06@hotmail.com) on 2010-08-24T14:18:56Z No. of bitstreams: 1 Dissertacao_Fabiola_Medina_Costa.pdf: 981365 bytes, checksum: 368c8b3a6a54c3a8e7c0f62130bcf2a3 (MD5) / Approved for entry into archive by Vitor Souza(vitor.souza@fgv.br) on 2010-08-24T14:39:21Z (GMT) No. of bitstreams: 1 Dissertacao_Fabiola_Medina_Costa.pdf: 981365 bytes, checksum: 368c8b3a6a54c3a8e7c0f62130bcf2a3 (MD5) / Made available in DSpace on 2010-08-24T17:42:48Z (GMT). No. of bitstreams: 1 Dissertacao_Fabiola_Medina_Costa.pdf: 981365 bytes, checksum: 368c8b3a6a54c3a8e7c0f62130bcf2a3 (MD5) Previous issue date: 2010-05-28 / This paper proposes the historical simulation model to calculate the VaR, considering return ajusted by the realized volatility measured from intraday returns. The database consists of five most liquid share among the different segments of Bovespa Index. For the proposed methodology we used two of the empirical theories of the empirical literature - adjusted historical simulation and realized volatility. The Kupiec tes and Christoffersen test are used to analized and veryfy the proposed methodology performance. / O presente trabalho propõe para o cálculo VaR o modelo de simulação histórica, com os retornos atualizados pela volatilidade realizada calculada a partir de dados intradiários. A base de dados consiste de cinco ações entre as mais líquidas do Ibovespa de distintos segmentos. Para a metodologia proposta utilizamos duas teorias da literatura empírica – simulação histórica ajustada e volatilidade realizada. Para análise e verificação do desempenho da metodologia proposta utilizamos o Teste de Kupiec e o Teste de Christoffersen.
56

Key Factors for a Successful Utility-scale Virtual Power Plant Implementation

Recasens Bosch, Joan January 2020 (has links)
The high penetration of renewable energies (RE) in power systems is increasing the volatile production on the generation side and the presence of distributed energy resources (DER) over the territory. On the other hand, Virtual Power Plants (VPPs) are an aggregation of DER managed as a single entity to promote flexibility services to power systems. Therefore, VPPs are a valid approach to cope with the arising challenges in the power system related to RE penetration. This report defines the concept of a utility-scale VPP, as a tool to stabilize the grid and increase the flexibility capacity in power systems. For this purpose, the report places special emphasis in the use cases that can be developed with a utility-scale VPP. Nevertheless, implementing a utility-scale VPP is a complex procedure, as VPP solutions are highly customizable depending on the scope and the conditions of each project. For this reason, this report analyses the main factors that must be taken into account when implementing a VPP solution. The report concludes that the two most critical factors that define the viability of a VPP project are, first, the energy market design and regulatory framework and second, the technical requirements. These two must always align with the scope of the project and the use cases intended to be developed. Further, other minor factors, including a cost estimate for a VPP solution, are also considered in the report. / Den höga penetrationen av förnybara energier i kraftsystem ökar den flyktiga produktionen på produktionssidan och närvaron av distribuerade energiresurser över territoriet. Å andra sidan är virtuella kraftverk en sammanställning av distribuerade energiresurser som hanteras som en enda enhet för att främja flexibilitetstjänster till kraftsystem. Därför är virtuella kraftverk: er en giltig strategi för att hantera de uppkomna utmaningarna i kraftsystemet relaterat till förnybara energier genomslag. I denna rapport definieras konceptet med en virtuella kraftverk verktygsskala som ett verktyg för att stabilisera nätet och öka flexibilitetskapaciteten i kraftsystem. För detta ändamål lägger rapporten särskild tonvikt på användningsfall som kan utvecklas med en virtuella kraftverk-nytta. Trots det är implementering av en virtuella kraftverknyckelskala en komplex procedur, eftersom virtuella kraftverk-lösningar är mycket anpassningsbara beroende på omfattning och villkor för varje projekt. Av denna anledning analyserar denna rapport de viktigaste faktorerna som måste beaktas vid implementering av en VPP-lösning. Rapporten drar slutsatsen att de två mest kritiska faktorerna som definierar ett virtuella kraftverk projekts livskraft är, dels energimarknadens utformning och regelverk och för det andra de tekniska kraven. Dessa två måste alltid anpassa sig till projektets omfattning och användningsfall som är avsedda att utvecklas. Vidare beaktas även andra mindre faktorer, inklusive en kostnadsuppskattning för en virtuella kraftverk lösning, i rapporten.
57

Management of thermal power plants through use values / Drift av termiska kraftverk med hjälp av användningsvärden

Assémat, Céline January 2015 (has links)
Electricity is an essential good, which can hardly be replaced. It can be produced thanks to a wide rangeof sources, from coal to nuclear, not to mention renewables such as wind and solar. In order to meetdemand at the lowest cost, an optimisation is made on electricity markets between the differentproduction plants. This optimisation mainly relies on the electricity production cost of each technology.In order to include long-term constraints in the short-term optimisation, a so-called use value (oropportunity cost) can be computed and added to the production cost. One long-term constraint thatEDF, the main French electricity producer, is facing is that its gas plants cannot exceed a given numberof operation hours and starts between two maintenances. A specific software, DiMOI, computes usevalues for this double constraint but its parameters needs to be tested in order to improve thecomputation, as it is not thought to work properly.DiMOI relies on dynamic programming and more particularly on an algorithm called Bellman algorithm.The software has been tested with EDF R&amp;D department in order to propose some modellingimprovements. Electricity and gas market prices, together with real plant parameters such as startingcosts, operating costs and yields, were used as inputs for this work, and the results were checkedagainst reality.This study gave some results but they appeared to be invalid. Indeed, an optimisation problem wasdiscovered in DiMOI computing core: on a deterministic context, a study with little degrees of freedomwas giving better profits than a study with more degrees of freedom. This problem origin was notfound precisely with a first investigation, and the R&amp;D team expected the fixing time to be very long.The adaptation of a simpler tool (MaStock) was proposed and made in order to replace DiMOI. Thisproject has thus led to DiMOI giving up and its replacement by MaStock. Time was missing to testcorrectly this tool, and the first study which was made was not completely positive. Further studiesshould be carried out, for instance deterministic ones (using real past data) whose results could becompared to reality.Some complementary studies were made from a fictitious system, in order to study the impact of someparameters when computing use values and operations schedules. The conclusions of these studiesare the little impacts that changes in gas prices and start-up costs parameters have on the global resultsand the importance of an accurate choice in the time periods durations used for the computations.Unfortunately these conclusions might be too specific as they were made on short study periods.Further case studies should be done in order to reach more general conclusions.
58

Optimering av algoritmisk elhandelsstrategi genom prediktiv analys : Datavisualisering, regression, maskin- och djupinlärning / Optimization of algorithmic power trading strategy using predictive analysis : Data visualization, regression, machine learning and deep learning

Forssell, Jacob, Staffansdotter, Erika January 2022 (has links)
The world is right now in a global transition from a fossil fuel dependency towards an electrified society based on green and renewable energy. Investments in power grid capacity are therefore needed to meet the increased future demand which this transition implicates. One part of this is the expansion of intermittent energy sources, such as wind and solar power. Even though these sources have benefits in form of cheap and green energy, they have other characteristics that need to be addressed. Per definition, intermittent power sources cannot produce energy on demand since they are dependent on weather conditions such as wind and sun. This induces a second problem which is that it can be hard to predict the production from intermittent power sources, especially wind, which increases the volatility in the power market. Because of these characteristics, the expansion of wind power has increased the volume traded on the intraday power market. The intermittent energy surge, emphasizes the need of a good trading strategy for balance responsible parties to handle the increased trading volume and volatility. The prupose of this report is to introduce the elements which affect intraday power trading, formulate the fundamentals of a power trading strategy and thereafter explore how predictive models can be used in such a strategy. This includes predicting regulating and intraday market prices using linear regression models, neural networks and LSTM-models. Furthermore, the report highlights underlying properties which affects the predictive power of a prediction model used to forecast wind power production. Regulating prices can be predicted well using both linear regression models and more complex deep learning models based on weather and market data. Both approaches are better than using a simple model based on the latest regulating and market price, since the simple model tends to fall short in a volatile market. Overall, the deep learning models performs the best.  The difference in result when predicting the volume weighted average price on the intraday market, using linear regression and machine learning, are not as substantial. In fact, the linear models tends to outperform the machine learning models in some instaces. The conclusion when analyzing how underlying properties affect wind power prediction models is that how far ahead the model predicts is not the key factor affecting predictive power. Instead, the production volume predicted has a larger effect.
59

LSTM-based Directional Stock Price Forecasting for Intraday Quantitative Trading / LSTM-baserad aktieprisprediktion för intradagshandel

Mustén Ross, Isabella January 2023 (has links)
Deep learning techniques have exhibited remarkable capabilities in capturing nonlinear patterns and dependencies in time series data. Therefore, this study investigates the application of the Long-Short-Term-Memory (LSTM) algorithm for stock price prediction in intraday quantitative trading using Swedish stocks in the OMXS30 index from February 28, 2013, to March 1, 2023. Contrary to previous research [12, 32] suggesting that past movements or trends in stock prices cannot predict future movements, our analysis finds limited evidence supporting this claim during periods of high volatility. We discover that incorporating stock-specific technical indicators does not significantly enhance the predictive capacity of the model. Instead, we observe a trade-off: by removing the seasonal component and leveraging feature engineering and hyperparameter tuning, the LSTM model becomes proficient at predicting stock price movements. Consequently, the model consistently demonstrates high accuracy in determining price direction due to consistent seasonality. Additionally, training the model on predicted return differences, rather than the magnitude of prices, further improves accuracy. By incorporating a novel long-only and long-short trading strategy using the one-day-ahead predictive price, our model effectively captures stock price movements and exploits market inefficiencies, ultimately maximizing portfolio returns. Consistent with prior research [14, 15, 31, 32], our LSTM model outperforms the ARIMA model in accurately predicting one-day-ahead stock prices. Portfolio returns consistently outperforms the stock market index, generating profits over the entire time period. The optimal portfolio achieves an average daily return of 1.2%, surpassing the 0.1% average daily return of the OMXS30 Index. The algorithmic trading model demonstrates exceptional precision with a 0.996 accuracy rate in executing trades, leveraging predicted directional stock movements. The algorithmic trading model demonstrates an impressive 0.996 accuracy when executing trades based on predicted directional stock movements. This remarkable performance leads to cumulative and annualized excessive returns that surpass the index return for the same period by a staggering factor of 800. / Djupinlärningstekniker har visat en enastående förmåga att fånga icke-linjära mönster och samband i tidsseriedata. Med detta som utgångspunkt undersöker denna studie användningen av Long-Short-Term-Memory (LSTM)-algoritmen för att förutsäga aktiepriser med svenska aktier i OMXS30-indexet från den 28 februari 2013 till den 1 mars 2023. Vår analys finner begränsat stöd till tidigare forskning [12, 32] som hävdar att historisk aktierörelse eller trend inte kan användas för att prognostisera framtida mönster. Genom att inkludera aktiespecifika tekniska indikatorer observerar vi ingen betydande förbättring i modellens prognosförmåga. genom att extrahera den periodiska komponenten och tillämpa metoder för egenskapskonstruktion och optimering av hyperparametrar, lär sig LSTM-modellen användbara egenskaper och blir därmed skicklig på att förutsäga akrieprisrörelser. Modellen visar konsekvent högre noggrannhet när det gäller att bestämma prisriktning på grund av den regelbundna säsongsvariationen. Genom att träna modellen att förutse avkastningsskillnader istället för absoluta prisvärden, förbättras noggrannheten avsevärt. Resultat tillämpas sedan på intradagshandel, där förutsagda stängningspriser för nästkommande dag integreras med både en lång och en lång-kort strategi. Vår modell lyckas effektivt fånga aktieprisrörelser och dra nytta av ineffektiviteter på marknaden, vilket resulterar i maximal portföljavkastning. LSTM-modellen är överlägset bättre än ARIMA-modellen när det gäller att korrekt förutsäga aktiepriser för nästkommande dag, i linje med tidigare forskning [14, 15, 31, 32], är . Resultat från intradagshandeln visar att LSTM-modellen konsekvent genererar en bättre portföljavkastning jämfört med både ARIMA-modellen och dess jämförelseindex. Dessutom uppnår strategin positiv avkastning under hela den analyserade tidsperioden. Den optimala portföljen uppnår en genomsnittlig daglig avkastning på 1.2%, vilket överstiger OMXS30-indexets genomsnittliga dagliga avkastning på 0.1%. Handelsalgoritmen är oerhört exakt med en korrekthetsnivå på 0.996 när den genomför affärer baserat på förutsagda rörelser i aktiepriset. Detta resulterar i en imponerande avkastning som växer exponentiellt och överträffar jämförelseindex med en faktor på 800 under samma period.
60

Dynamic modelling of electricity arbitrage for single-family homes : Assessing the cost-effectiveness of implementing Energy Storage and Demand-Side Load Management.

Ali, Ahmed January 2023 (has links)
In the context of electricity, arbitrage trading involves taking advantage of existing price variations within electricity markets. The report conducted financial modelling for energy storage systems and demand-side load management for electricity arbitrage trading in single-family homes. The analysis included two different energy storage systems: a thermal energy storage system and a battery energy storage system. Additionally, electricity spot cost reduction was compared between electricity arbitrage trading and traditional energy efficiency measures such as air-to-water and ground-source heat pumps. The report's findings indicated that air-to-water and ground-source heat pumps emerged as the most economically viable choices for reducing electricity spot costs, irrespective of the studied electricity price area. The thermal energy storage system, employing an insulated hot water storage tank, ranked the third most efficient in achieving cost savings. The battery energy storage system, represented by a lithium home battery system, demonstrated the lowest rate of cost saving among the analyzed energy efficiency measures.  The financial modelling highlighted the economic potential for thermal energy storage systems, particularly in southern Sweden's electricity price areas SE3 and SE4. On the other hand, no economically viable options for battery energy storage systems were identified, regardless of the studied electricity price area. As a results, the report recommends utilizing thermal energy storage systems and implementing demand-side load management as strategies to hedge against future electricity price volatility.

Page generated in 0.0689 seconds