Spelling suggestions: "subject:"legierungen""
131 |
Al-3.5Cu-1.5Mg-1Si alloy and related materials produced by selective laser meltingWang, Pei 06 October 2018 (has links)
Selective laser melting (SLM) is an additive manufacturing technology. In this thesis, a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy and related materials (composites and hybrid materials) have been successfully fabricated by selective laser melting and characterized in terms of densification, microstructure, heat treatment, mechanical properties as well as tribological and corrosion behavior. Firstly, the fully dense SLM Al-Cu-Mg-Si alloy was fabricated by SLM successfully. The alloy shows a higher yield strength than SLM Al-12Si alloy, and lower wear resistance and corrosion rate than commercial 2024 alloy before and after T6 heat treatment. Secondly, with the aim of designing new alloy compositions and to examine the phases and microstructures of SLM Al-Cu alloys and to correlate their microstructures with the observed mechanical properties, Al-xCu (x = 4.5, 6, 20, 33 and 40 wt. %) alloys have been synthesized in-situ by SLM from mixtures of Al-4.5Cu and Cu powders. The results indicate that the insufficient Cu solute diffusion during the layer-by-layer processing results in an inhomogeneous microstructure around the introduced Cu powders. With increasing Cu content, the Al2Cu phase in the alloys increases improving the strength of the material. These results show that powder mixtures can be used for the synthesis of SLM composites but the reaction between the matrix and the second-phase should be considered carefully. Thirdly, the TiB2/Al-Cu-Mg-Si composite was also designed and fabricated successfully by SLM and it shows a higher strength than the unreinforced SLM alloy before and after T6 heat treatment. Finally, an Al-12Si/Al-3.5Cu-1.5Mg-1Si hybrid with a good interface was fabricated successfully. This hybrid alloy shows a good yield strength and elongation at room temperature, indicating an effective potential of selective laser melting in the field of hybrid manufacturing.
|
132 |
Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic FieldIspas, Adriana 31 August 2007 (has links)
The aim of this work was to investigate the effects that a magnetic field can induce during the electrodeposition of Ni and Ni-Fe alloys. Special regard was given to mass transport controlled effects. Magnetic field effects on the nucleation and growth of ferromagnetic layers and on the properties of electrodeposited layers (like grain size, texture, morphology or roughness) were investigated. The influence of a magnetic field on the magnetic properties of Ni layers and on the composition of Ni-Fe alloys was also studied. Nucleation and growth of thin Ni layers on gold electrodes under a superimposed magnetic field were analysed in-situ with the Electrochemical Quartz Crystal Microbalance technique. Three theoretical models were chosen for characterizing the Ni nucleation: Scharifker-Hills (SH), Scharifker-Mostany (SM) and Heerman-Tarallo (HT). The AFM images proved that more nuclei appear in a magnetic field in the case that the Lorentz force and the natural convection act in the same direction. From all the models, the HT model gave the best agreement with the AFM results. When the Lorentz force and the natural convection act in the same direction, an increase of the Ni partial current with the magnetic field was obtained. When they act in opposite directions, the Ni current was influenced just at the beginning of deposition (first 10 seconds). At longer times, the magnetic field has no effect on the Ni current. However, the total current (jNi+jHER) decreases with the magnetic field. In the absence of a macroscopic MHD convection, the Ni current decreases with the magnetic field the first 10-15 seconds of deposition. On longer time scales no influence of the magnetic field could be noticed for this configuration. When the magnetic field was applied perpendicular to the electric current, an increase of the hydrogen evolution reaction (HER) with the magnetic flux density was noticed. Hydrogen reduction is mass transport controlled. Therefore, the magnetic field will increase the limiting current of the HER. Optical microscopy images showed that the hydrogen bubbles were circular in the absence of the MHD convection and that they presented a tail when a Lorentz force was present. The direction of the tail depends on the net force induced by the natural and MHD convections. The interplay between the natural and MHD convections proved to be important during Ni-Fe alloy deposition, too. When the Lorentz force and the natural convection act in the same direction, an increase of the Fe content of the alloys with the magnetic field was observed. When the Lorentz force was perpendicular to the natural convection, no significant changes were observed in the composition of the layers. The alloy composition did not change with the magnetic field when the electric current was parallel to the magnetic field lines. Two surfactants were used in the case that Ni was electrodeposited from a sulfamate bath: SDS and sulfirol 8. The Ni layers obtained from a sulfamate bath with sulfirol 8 presented larger grains compared to the layers deposited from a bath free of surfactants. This increase of the grain size was attributed to the incorporation of the surfactant in the deposit. Coarser layers were obtained in a magnetic field (applied perpendicular to the electric current) when the electrodeposition was done from an electrolyte with surfactants. The number of grains increased with the magnetic field for the Ni layers electrodeposited from a bath free of surfactants and for a bath with SDS. As a consequence, the grain size decreased. In the case of the electrolyte with sulfirol 8, the number of grains decreased with the magnetic field, and their size increased. For the Ni-Fe alloys, which contained less than 10 at% Fe, the preferred crystalline orientation changes from (220), in the absence of a magnetic field, to (111), (when the magnetic field was applied perpendicular to the electric current). When the magnetic field lines were parallel to the electric current, both the (111) and (220) textures were preferred in almost the same proportion. As a general conclusion of this work it can be said that by choosing the right experimental condition, one can improve the morphology and the properties of the deposited layers by applying a magnetic field. At the same time, the mass transport processes can be influenced by a magnetic field.
|
133 |
Electrochemical Hydrogen Absorption by Zr-Cu-Al-Ni Metallic GlassesIsmail, Nahla 10 June 2002 (has links)
Effect of electrochemical absorption of hydrogen has been studied on the Zr-based amorphous alloys. The influence of hydrogen absorption on the stability of the amorphous phase and its crystallisation was investigated. Additionally, the cathodic hydrogen reaction mechanism on the surface of the alloy, the reversibility of the absorbed hydrogen and the hydrogen diffusion in the alloy were studied. These alloys are able to absorb large amounts of hydrogen (>1:1 hydrogen to metal ratio) but a rearrangement of the amorphous matrix takes place so that Cu rich areas are detected on the surface and Zr-hydride may precipitate. The thermal stability and crystallisation behaviour depends on the hydrogen concentration in the alloy. At low hydrogen concentration, the thermal stability deteriorates and primary crystallisation of Cu and/or Cu-rich phases is observed. At high hydrogen concentration, primary crystallisation of Zr-hydride takes place. The cathodic polarisation behaviour of amorphous Zr-based alloys as derived from Tafel plots reveals three characteristic potential regions reflecting the different mechanisms of hydrogen on the surface. In the Tafel region, hydrogen discharge and adsorption takes place on the alloy surface as fast steps reactions followed by the rate determining electrodic desorption reaction step in competition with hydrogen absorption as a fast step. In the further negative potential region, the current density is independent on the potential as both the Volmer and the Heyrowsky reactions take place at the same rate and the hydrogen mass transfer from the solution to the electrode surface is the rate-determining step. In the high polarisation region, all the partial hydrogen reactions take place intensively. The reversibility of the absorbed hydrogen tests reflects the possibility of hydrogen desorption from different energy sites in the amorphous alloy. The diffusion of hydrogen in the Zr-based alloys is comparable with that in the crystalline Pd and it is reduced in the pre-hydrogenated samples.
|
134 |
Entwurfsmethodik zur Auslegung von Aktoren basierend auf magnetischen FormgedächtnislegierungenTitsch, Christian 06 March 2024 (has links)
Die Geschichte der magnetischen Formgedächtnislegierungen (MFGL) ist im Kontext der Materialwissenschaften noch recht jung. In den letzten 30 Jahren sind dabei viele Erkenntnisse in der Forschung gewonnen worden. Der industrielle Durchbruch wiederum ist mit diesem Material noch nicht gelungen.
Die existierenden Publikationen zur Auslegung von magnetischen Formgedächtnis- (MFG)-Aktoren sind in dieser Arbeit daher aufbereitet und systematisiert worden. Dabei stellt insbesondere die thermische Auslegung eine Wissenslücke dar, die entsprechende Grundlagenuntersuchungen erfordert.
Aufbauend auf dieser Wissensbasis ist eine spezifische Entwurfsmethodik für MFGL entwickelt worden. Die Dimensionierung erfolgt zunächst mit analytischen Gleichungen, um eine zeit- und kosteneffiziente Vorgehensweise für Entwicklungsingenieure zu gewährleisten. Finite-Elemente-Methode-(FEM)-Software wird erst im zweiten Schritt zur Prüfung oder Optimierung eingesetzt. Außerdem kann mittels dieser Methodik auf unwirtschaftliche Iterationsschleifen und „trial and error“-Ansätze verzichtet werden. Abschließend ist die Methodik anhand eines Anwendungsszenarios verifiziert worden. Die abgeleiteten Anforderungen konnten dabei ohne Nachbesserungen oder weitere Iterationsschleifen erfüllt werden, so dass die Methodik eine strukturierte und erfolgreiche Entwicklung unterstützt hat.:1 Einleitung
2 Stand der Wissenschaft und Technik
3 Grundlagenuntersuchungen
4 Entwurfsmethodik für MFG-Aktoren
5 Zusammenfassung und Ausblick
|
135 |
Analyse und Optimierung des MSG-Auftragschweißens von eisenhaltigen, abrasionsbeständigen SchutzschichtenWilhelm, Gerald 02 November 2023 (has links)
Das Metall-Schutzgas-Auftragschweißen hat sich zur Herstellung von Verschleißschutzschichten in einer Dicke von mehreren Millimetern etabliert. Nebst den Vorteilen hinsichtlich Bedienbarkeit und Automatisierbarkeit weist es aber nur einen engen Freiheitsgrad bezüglich der Variation der Energieanteile im Lichtbogenbereich und daraus resultierend Limitierungen zur gezielten Modifikation der Mikrostrukturen von Verschleißschutzschichten auf.
In dieser Schrift werden auf der Basis einer Analyse der Wärmebilanz im Lichtbogenbereich unter Zugrundelegung relevanter Werkstoffsysteme Möglichkeiten zur Optimierung des MSG-Schweißens aufgezeigt sowie die Auswirkungen hinsichtlich einer verbesserten Mikrostruktur und daraus resultierend einer erhöhten Verschleißbeständigkeit der aufgeschweißten Schicht untersucht.
Im Besonderen werden die semifunktionsanalytische Berechnung der Aufmischung, das Auftragschweißen übereutektischer FeCrC-Schichten mittels des MSG- und des Plasma-MIG-Schweißprozesses, die Wärmeeinbringung beim Plasma-MIG-Schweißen und ein Modell für die Auflösungskinetik der Wolframschmelzkarbide beim MSG-Auftragschweißen von wolframschmelzkarbidhaltigen Pseudolegierungen behandelt.:1 Einleitung, Problemstellung und Zielsetzung 1
2 Stand von Wissenschaft und Technik 3
2.1 Das tribologische System 3
2.2 Verschleißarten, Verschleißmechanismen und Verschleiß- 4
erscheinungsformen
2.2.1 Oberflächenzerrüttung 5
2.2.2 Abrasion 6
2.2.3 Adhäsion 8
2.2.4 Tribochemische Reaktion 9
2.2.5 Verschleißerscheinungsformen 9
2.3 Verschleißmessgrößen 10
2.4 Modellbildung und Berechnung des tribologischen Verhaltens 10
2.4.1 Flächenpressung ohne Adhäsion 11
2.4.2 Flächenpressung mit Adhäsion 13
2.4.3 Scherungshypothese 15
2.4.4 Werkstoffliche Parameter der kontinuumsmechanisch 16
basierten Modelle zur Berechnung von
abrasivem Verschleiß
2.4.5 Modelle zur Berechnung von abrasivem Verschleiß heterogener Werkstoffe 18
2.5 Abrasionsbeständige Stähle und Gusslegierungen 23
2.5.1 Unlegierte Stähle 24
2.5.2 Niedriglegierte Stähle 24
2.5.3 Manganhartstähle 24
2.5.4 Werkzeugstähle 25
2.5.4.1 Kaltarbeitsstähle 26
2.5.4.2 Warmarbeitsstähle 27
2.5.4.3 Schnellarbeitsstähle 28
2.5.5 Abrasionsbeständige Stähle und Gusslegierungen 28
2.5.5.1 Perlitischer Hartguss 29
2.5.5.2 Ledeburitisch-martensitisches Gusseisen 29
2.5.5.3 Hochchromhaltige Gusseisen 30
2.6 Der Einsatz von weißen, hochchromhaltigen Gusslegierungen 33
unter abrasiv-korrosiven oder erosiv-korrosiven Bedingungen
2.7 Schweißzusatzwerkstoffe für den Hartauftrag 36
2.7.1 Allgemeines 36
2.7.2 Hartlegierungen gegen Abrasion durch mineralische Stoffe 36
2.7.3 Pseudolegierungen gegen Abrasion 38
2.8 MSG-Schweißprozesse für den Hartauftrag 42
2.8.1 Allgemeines 42
2.8.2 Möglichkeiten der erweiterten Verschiebung der Wärmebilanz 47
2.8.2.1 Modifizierung des grundwerkstoffseitigen Wärmeflecks 47
2.8.2.2 Mehrdrahtschweißen 50
2.8.2.3 Zusätzliche Erwärmung des Tropfendepots im Eindrahtverfahren 52
2.8.2.4 Hybridverfahren mit einer Drahtelektrode 52
2.9 Modelle zur Berechnung des Aufmischungsgrads beim MSG- Auftragschweißen 54
2.10 Stabilität der MSG-Schweißprozesse für den Hartauftrag 55
3 Forschungsbedarf, konzeptionelle Vorgehensweise, 58
Berechnungsmodelle und Versuchsplanung
3.1 Forschungsbedarf 58
3.2 Konzeptionelle Vorgehensweise 61
3.3 Berechnungsmodelle 62
3.3.1 Modell zur Berechnung der Aufmischung durch einen Lichtbogen 62
3.3.2 Modell zur Berechnung der Aufmischung durch eine modifizierte 70
Wärmequelle
3.3.2.1 Pendelquelle und Kreisringquelle 70
3.3.2.1.1 Beispielhafte Illustrationen 71
3.3.2.1.2 Grundfunktionen des Modells 72
3.3.2.1.3 Berechnungsverfahren 76
3.3.2.2 Goldak-Wärmequelle 82
3.3.3 Modell zur Berechnung der Auflösung der 83
Wolframschmelzkarbide
3.4 Versuchsplanung zur Schweißprozess- und 90
Schweißnahtanalyse
3.4.1 Übersicht 90
3.4.2 Versuchsplanung für die Basisschweißprozesse mit 91
Fülldrahtelektrode
3.4.3 Versuchsplanung für das Schweißen mit modifiziertem 94
werkstückseitigen Wärmefleck
3.4.3.1 Versuchsprogramm für das MSG-Auftragschweißen mit 95
pendelndem Schweißbrenner
3.4.3.2 Versuchsprogramm MSG-Auftragschweißen mit mechanisch induzierter 95
Rotation der Schweißdrahtelektrode
3.4.3.3 Versuchsprogramm für das Auftragschweißen mit dem
Plasma-MIG-Schweißprozess
3.4.4 versuchsplanung zur Verschiebung der Energieanteile zugunsten 98
des Abschmelzprozesses beim MSG Auftragschweißen mit einer
Fülldrahtelektrode
3.4.5 Versuchsplanung für das Auftragschweißen mit einer dicken 100
Massivdrahtelektrode
3.4.6 Versuchsprogramm für das Schweißen von Auftragschichten 101
mit erhöhter Beständigkeit gegen Tribokorrosion
3.4.7 Versuchsprogramm Schweißen von Auftragschichten auf Platten 102
3.4.8 Versuchsplanung zur Bestimmung der spezifischen Enthalpie 104
des Schweißtropfens
3.4.9 Planung der Schweißungen zur Ermittlung des thermischen 104
Wirkungsgrads des Plasma-MIG-Schweißprozesses
3.4.10 Planung der Schweißungen zur Ermittlung der Wolframkarbid- 105
auflösung im Zusatzwerkstoff
3.4.11 Versuchsplanung zur Ermittlung der Oberflächentemperaturen 106
des Schmelzbades und zur Auflösung der Wolframkarbide im
Schmelzbad
3.4.12 Versuchsplanung zur Auflösung der Wolframschmelzkarbide 107
im Schmelzbad mit reduzierter Schmelzbadströmung
4 Versuchsaufbau, Versuchsdurchführung und Methoden 108
der Prozessauswertung
4.1 Allgemeines 108
Vorgehensweise zur Ermittlung der elektrischen Schweißleistung 109
und zur Prozessstabilität sowie zur Bestimmung der Temperatur
der Schmelzbadoberfläche
4.3 Vorgehensweise zur kalorimetrischen Ermittlung des effektiven 113
Wärmewirkungsgrades der Plasma-MIG-Schweißprozesse
4.4 Vorgehensweise zur kalorimetrischen Ermittlung der Wärmeein- 115
bringung in den Schweißtropfen bei kurzschlussfreien
Schweißprozessen
4.5 Vorgehensweise zur Ermittlung der Auflösung der Wolframkarbide 118
im Tropfen
4.6 Drahtvorwärmung 118
4.7 Wiederaufschmelzung von Probensegmenten im Quarzglasrohr 119
5 Methodik und Analyseverfahren zur Charakterisierung 120
der Schweißnähte
5.1 FeCrC-Legierungen 120
5.1.1 Analyse der Schweißraupen 120
5.1.2 Stromdichte-Potenzial-Bestimmung 120
5.1.3 Verschleißuntersuchungen der Plattenauftragungen 122
5.2 Pseudolegierungen 124
6 Darstellung und Diskussion der Versuchs- und Berechnungs 126
ergebnisse
6.1 Charakterisierung der Schweißprozesse 126
6.1.1 Modifizierter Kurzlichtbogen mit reversiblem Drahtvorschub 126
6.1.1.1 Allgemeine Prozesscharakterisierung 126
6.1.1.2 Einfluss der Schweißprozessgase auf die Prozessstabilität 132
6.1.1.3 Einfluss der Drahtelektrode auf die Prozessstabilität 144
6.1.1.4 Einfluss der Drahtvorschubgeschwindigkeit auf die Prozess- 146
stabilität
6.1.2 Modifizierter Kurzlichtbogen mit konstanter Drahtvorschubge- 149
schwindigkeit
6.1.3 Impulslichtbogen 150
6.1.4 Der sprühlichtbogenähnliche Werkstoffübergang 154
6.1.5 Prozessinstabilitäten durch die Anwendung gefalzter Fülldraht- 154
elektroden
6.2 Energieeintrag in Zusatz- und Grundwerkstoff 155
6.2.1 Gesamtenergieeintrag 155
6.2.2 Energieeintrag in den Zusatzwerkstoff 156
6.2.3 Umgesetzte Leistung in der Lichtbogensäule beim Schweißen 162
im modifizierten Kurzlichtbogen
6.2.4 Energieeintrag in den Grundwerkstoff durch den Lichtbogen 162
6.3 Aufmischung 165
6.3.1 Steuerung der Aufmischung mittels Reduktion der zugeführten 165
elektrischen Leistung unter Anwendung von Fülldrahtelektroden
6.3.2 Steuerung der Aufmischung mittels Modifizierung des grund- 184
werkstoffseitigen Wärmeflecks
6.3.3 Zusammenhang zwischen Aufmischung, Gefüge und Härte 187
6.4 Abrasiver Verschleiß in Abhängigkeit von Gefüge und Härte 192
6.5 Berechnung des Primärkarbidanteils in Abhängigkeit vom Auf- 197
mischungsgrad
6.6 Einfluss des Stickstoffs im Schweißprozessgas auf die Korrosions- 206
beständigkeit der Auftragschweißung
6.7 Auftragschweißen mit einer dicken Massivdrahtelektrode und 214
externer Drahtvorwärmung
6.8 Prozessbezogene Auflösungskinetik der Wolframkarbide 218
6.8.1 Charakterisierung der Pulverregime und der Wolframkarbide 218
6.8.2 Auflösung der Wolframkarbide 220
6.8.2.1 Auflösung der WSC-Karbide im eisen- und nickelhaltigen 220
Tropfen
|
136 |
Elektrische Erzeugung, Detektion und Transport von spinpolarisierten Elektronen in Co2FeSi/GaAs-HybridstrukturenBruski, Pawel 12 February 2016 (has links)
Das Co2FeSi/GaAs-Hybridsystem wurde hinsichtlich seiner Eignung für Anwendungen in der Spintronik untersucht. Die Heusler-Legierung Co2FeSi ist ein aussichtsreicher Kandidat für derartige Anwendungen, weil der vollständig geordneten Kristallphase Halbmetallizität, d. h. eine Spinpolarisation von 100% an der Fermi-Energie, vorhergesagt wird. Zunächst wurde im Rahmen dieser Arbeit die elektrische Spininjektion und Spindetektion in lateralen Transportstrukturen in der sogenannten nicht-lokalen Konfiguration sowohl für die vollständig geordnete, als auch für eine teilweise ungeordnete Kristallphase mittels Spinventil- und Hanle-Messungen nachgewiesen. Die Abhängigkeiten der Spinsignale vom Strom und von der Temperatur konnten erklärt werden und eine Spininjektionsefizienz von 16 bzw. 9% wurde ermittelt. Für den praktischen Einsatz werden allerdings lokale Spinventile benötigt, deren Funktionsfähigkeit für beide kristallinen Ordnungen demonstriert wurde. Der Magnetowiderstand, der ein Maß für die Güte der lokalen Spinventile darstellt, beträgt 0.03% und liegt im Bereich des theoretisch zu erwartenden Wertes. Anhand des sogenannten Fert-Kriteriums konnten die Gründe für diesen niedrigen Wert aufgezeigt werden. Des Weiteren ließ ein Vergleich der lokalen und nicht-lokalen Spinsignale auf eine hohe Spinpolarisation des Co2FeSi schließen. Die Spinextraktion bietet neben der Spininjektion eine weitere Möglichkeit zur Erzeugung einer Spinakkumulation in einem Halbleiter. Die Stromabhängigkeiten von Spininjektion und Spinextraktion unterscheiden sich für beide kristallinen Phasen des Co2FeSi. Das stark unterschiedliche Verhalten konnte anhand des Einflusses der jeweiligen Bandstruktur auf die Spinerzeugung erklärt werden. Des Weiteren konnte aus dem Vergleich zwischen der Messungen und der theoretisch vorhergesagten Bandstruktur der halbmetallische Charakter der vollständig geordneten Kristallphase nachgewiesen werden. / The Co2FeSi/GaAs hybrid system was investigated regarding its suitability for spintronic applications. The Heusler-compound Co2FeSi is a promissing canditate for these kind of applications due to the predicted half-metallicity, i. e. a 100% spin polarisation at the Fermi energy, for its fully ordered crystall phase. The electrical spin injection and detection was demonstrated in lateral tranpost structures in the so called non-local geometry for the fully ordered and for a partly disordered crystall phase by observing spin valve signatures and Hanle characteristics. The current and temperature dependence of the spin signals was explained and a respective spin injection efficiencies of 16 and 9% determined. For practical use one needs local spin valves, which where demonstrated for both crystalline phases. The magnetoresistance, a measure of the goodness of a local spin valve, was 0.03%, i. e. in the theoretically expected range. Making use of the so-called Fert criterion the reasons for this low value could be pointed out. Further the quotient of the local and non-local spin signals implied a high spin polarisation of the Co2FeSi. Spin extraction is another method to create a spin accumulation in a semiconductor. The current dependece of the spin injection and the spin extraction signals strongly depends on the degree of ordering in the Co2FeSi lattice. The different behavior is explanied by the crucial influence of the respective electronic band structure on the spin generation processes. Further, the comparison between the measured signals and the theoretically calculated electronic band structure hints towards the half-metalicity of the fully ordered crystall phase of Co2FeSi.
|
137 |
Korrelation mikrostruktureller und mechanischer Eigenschaften von Ti-Fe-LegierungenSchlieter, Antje 30 July 2012 (has links) (PDF)
The effect of solidification conditions on microstructural and mechanical properties of eutectic TiFe alloy cast under different conditions was examined. Samples exhibit different ultrafine eutectic structures (β-Ti(Fe) solid solution + TiFe). Different cooling conditions lead to the evolution of ultrafine eutectic oval-shaped colonies or elongated lamellar colonies with preferred orientation. Isotropic as well as anisotropic mechanical properties were obtained. Alloys exhibit compressive strengths between 2200 and 2700 MPa and plastic strains between 7 and 19 pct. in compression.
|
138 |
Nanocrystalline Fe-Pt alloys: phase transformations, structure and magnetism / Nanokristalline Fe-Pt Legierungen: Phasenumwandlungen, Struktur und MagnetismusLyubina, Julia 18 May 2007 (has links) (PDF)
This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometer-sized grains. A comprehensive study of phase transformations and ordering in Fe-Pt alloys is performed by a combination of in-situ neutron powder diffraction and thermal analysis. The dependence of ordering processes on the alloy composition and initial microstructure (homogeneous A1 phase or multilayer-type) is established. Through the use of mechanical alloying and subsequent heat treatment it has been possible to achieve the formation of chemically highly ordered L10 FePt and, in the case of the Fe-rich and Pt-rich compositions, L12 Fe3Pt and FePt3 phases, respectively. Whereas in Pt-rich alloys the decoupling effect of the FePt3 phase leads to coercivity improvement, in Fe-rich nanocomposites a peculiar nanometer scale multilayer structure gives rise to remanence enhancement due to large effects of exchange interactions between the crystallites of the phases. The structure, magnetic properties and magnetisation reversal processes of these alloys are investigated. Experimentally observed phenomena are understood on the basis of a simple two-particle interaction model. Neutron diffraction has also been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. It has been shown that the magnetic moment of Fe atoms in L10-type Fe Pt alloys is sensitive to the compositional order. The results are compared to density functional calculations.
|
139 |
Protection of Aluminum Alloy (AA7075) from Corrosion by Sol-Gel TechniqueYounis, Ahmed 27 January 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung von Sol-Gel-Beschichtungen durch Optimierung der Ausgangszusammensetzung und der Applikations-Parameter für den Korrosionsschutz der Aluminium-Legierung AA7075. Verschiedene Arten von Silanen, z. B. Tetraethoxysilan (TEOS), Phenyltriethoxysilan (PTES) und Phenyltrimethoxysilan (PTMS) sind verglichen worden: Der Sol-Gel-Film aus PTMS präpariert, weist dabei die höchste Hydrophobizität auf, was sich insbesondere in den Barriere-Eigenschaften dieser Verbindung zeigte. Die Wirkung von Essigsäure als Katalysator in Sol-Gel-Prozessen wurden untersucht, um die optimale Katalysatorkonzentration für den Korrosionsschutz der beschichteten Proben zu ermitteln. Die Korrosionsbeständigkeit der beschichteten Proben sinkt bei höheren Konzentrationen des sauren Katalysators durch die Auflösung des Aluminiumoxids an der Substratoberfläche. Allerdings führten zu niedrige Konzentrationen des Katalysators zur Verlangsamung der Hydrolysereaktionen der Silane und es bildete sich poröse Sol-Gel-Schichten. Die Wärmebehandlung der beschichteten Aluminium-Proben ist für die Vernetzung des Films erforderlich. Eine Wärmebehandlung bei 300 ˚C für 2,5 Stunden ergab dabei den besten Korrosionsschutz. Höhere Temperaturen führten zu einer Verschlechterung der Eigenschaften der Filme, was mit der Zerstörung des organischen Teil des Films erklärt werden kann. Darüber hinaus verursachen zu niedrige Temperaturen einen geringeren Korrosionsschutz der beschichteten Aluminium-Proben. Vermutlich ist die geringe Vernetzung des Sol-Gel-Films bei Temperaturen was für als 300 ˚C verantwortlich. Die beschichteten Aluminium-Proben wuden mittels Raster-Elektronenmikroskopie (SEM), Energiedispersive Röntgenspektroskopie (EDX), Röntgen-Photoelektronenspektroskopie (XPS) und elektrochemischen Techniken charakterisiert. / The present work pertains to the development of sol-gel coatings by optimizing the composition and the application parameters for corrosion protection of aluminum alloy AA7075. Different kinds of silanes e.g. tetraethoxysilane (TEOS), phenyltriethoxysilane (PTES) and phenyltrimethoxysilane (PTMS) have been compared: the sol-gel film prepared from PTMS shows highest hydrophobicity manifested by the best barrier property of this compound. The effect of acetic acid as a catalyst on the chemistry of the sol is investigated in order to estimate the best catalyst concentration for better corrosion protection of the coated samples. The corrosion resistance of the coated samples is found to be decreasing at higher concentrations of the catalyst due to the dissolution of the aluminum oxide at the substrate surface in the acid sol. However, lower concentrations of the catalyst lead to low hydrolysis reactions of the silanes and non-dense sol-gel films have been formed. The heat treatment of the coated aluminum samples is required for cross-linking of the film. The heat treatment at 300 ˚C for 2.5 hours exhibits the best corrosion protection. Higher treatment-temperatures lead to degradation of the properties of the film which can be described in terms of destroying the organic part of the film. Moreover, low treatment-temperatures cause low corrosion protection of the coated aluminum samples which is presumably attributed to the low cross-linking of the sol-gel film at temperatures less than 300 ˚C. The coated aluminum samples are characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques.
|
140 |
Waermeleitfaehigkeit amorpher Cu-Sn-SchichtenSchmidt, Ralf 23 July 1998 (has links)
Es wird eine Methode vorgestellt, die es ermoeglicht,
Waermeleitfaehigkeitsmessungen an sowohl in-situ als auch
ex-situ hergestellten duennen Schichten durchzufuehren.
Es wurden Messungen der Waermeleitfaehigkeit und des elektrischen
Widerstandes fuer das System Cu_{x}Sn_{100-x} 0<=x<=100 im
Temperaturbereich von 1.2 K
bis 360 K durchgefuehrt. Die Proben wurden jeweils nach der
Herstellung im amorphen bzw. mikrokristallinen
Zustand und nach dem Anlassen auf 360 K im kristallisierten
Zustand gemessen.
Die Ergebnisse werden im Rahmen der in der Literatur
gebraeuchlichen Modelle diskutiert. Da es sich bei
Cu-Sn um ein metallisches System handelt, tragen sowohl
Elektronen als auch Phononen zur Waermeleitfaehigkeit bei.
Die Trennung der Beitraege mit Hilfe des Wiedemann-Franz'schen
Gesetzes bereitet wegen der starken Elektron-Phonon-Kopplung
Schwierigkeiten.
In der Waermeleitfaehigkeit der amorphen Cu-Sn-Legierungen
bei tiefen Temperaturen wird ein Bereich schwaecherer
Temperaturabhaengigkeit gefunden.
Dieser Plateaubereich deutet auf zusaetzliche Wechselwirkungsmechanismen
hin und verschiebt sich mit steigender Cu-Konzentration
zu kleineren Temperaturen. Er tritt bei den Cu-reichen Proben,
die aufgrund der hohen Kristallisationstemperatur einen geringeren
Kristallisationsgrad aufweisen, auch im kristallisierten Zustand
auf. Demzufolge ist das Plateau in diesem Fall zu tieferen
Temperaturen verschoben. Die Verschiebung des Plateaus mit der
Konzentration kann im Rahmen des Modells der Phonon-Rotonen
verstanden werden. Phonon-Rotonen sind lokalisierte niederenergetische
Anregungen, die bei Wellenzahlen Q_{pe}=K_{pe}
auftreten und bei einer charakteristischen Temperatur
T_{0} angeregt werden koennen. Sie tragen entgegen
den Debye-Phononen selbst
nicht zur Waermeleitfaehigkeit bei, sondern wirken als deren
Wechselwirkungspartner. K_{pe} bezeichnet die Lage eines elektronisch
induzierten Strukturpeaks, dessen Hoehe mit der Zusammensetzung
der Legierung skaliert. Die Hoehe des Strukturpeaks ist umgekehrt
proportional zur Anregungsenergie der Phonon-Roton-Zustaende.
Das bedeutet, dass ein Plateaubereich bei hohen Temperaturen
auftritt, wenn der Strukturfaktor bei K_{pe} klein ist und umgekehrt.
Damit ist es gelungen, im Gegensatz zum Modell
der Zwei-Niveau-Systeme die
Tieftemperaturanomalien in der Waermeleitfaehigkeit aehnlich wie
die Anomalien in der Thermokraft bei tiefen Temperaturen direkt
auf die Struktur der Proben zurueckzufuehren.
|
Page generated in 0.0498 seconds