11 |
Livscykelanalys : en miljöorienterad rapport / Lifecycle Analysis- an environmental-oriented reportGrönberg, Elisabeth, Sjölander, Rebecca January 2011 (has links)
Den textila industrin, en egen värld, är nu under rampljuset som en av de största miljöpåverkande industrierna. Precis som i fallet med många andra industrier så måste textilbranschen intensivt arbeta med att minska sin negativa påverkan på miljön. Slutmålet måste vara att helt balansera uttagen och insättningarna så att man skapar en bransch som blir klimat- och miljöneutral. I denna rapport har en livscykelanalys gjorts på en underställströja från Helly Hansen tillverkad av 99 % polypropylene. Inom denna livscykelanalys har vi noggrant studerat och undersökt fakta för att hitta de processer som har den största påverkan på miljön. Genom att undersöka material, energi- och resursförbrukning har lösningar för andra mindre miljöpåverkande alternativ tagits fram. Helly Hansen är ett företag som aktivt arbetar med att minska sin miljöpåverkan. De är bland annat medlemmar i Bluesign och driver inom denna organisation ett intensivt arbete för miljövänligare produkter, material och processer. Dock finns det ytterligare åtgärder som kan göras för att reducera en produkts miljöpåverkan. Ett exempel är att göra en livscykelanalys för att optimera produktionen. Som läsare av denna rapport är det upp till var och en att bestämma om de lösningarna som presenteras är värda att genomföra eller om livscykeln redan är optimerad utifrån ett miljöperspektiv och nuvarande förutsättningar. he textile industry, a world of its own, has now come under the spotlight for its role as one of the most affecting industries on the environment. It is important to make a change so that the natural balance doesn’t reach its limit and turn for the worse, beyond salvation. This report is a creation and a study of a lifecycle analysis for a Helly Hansen baselayer top made out of 99 % polypropylene. The goal was to identify processes which have primal impacts on the environment and are the cause of the largest emissions. By studying the materials used, energy and resource consumption, easy solutions have been established to lower emissions that are harming our eco-system for example by increasing the greenhouse effect. By controlling the consumption of energy and resources of a product in the textile industry, the environmental impact can be reduced. Helly Hansen is a company that actively works to reduce their carbon footprint by, amongst others, being members of the Bluesign group. However there are further measures that can be taken to reduce the impact on the environment, for example by doing lifecycle analyses to optimize production. It is up to the reader of this report to decide if the solutions for optimization presented are worth the investment given current conditions and the impact on the environment. / Program: Textil produktutveckling med entreprenörs- och affärsinriktning
|
12 |
The role of catalysts and algae in forming a sustainable solution for a global food and fuel crisisShirvani, Tara January 2012 (has links)
This thesis undertakes three separate lifecycle analyses to determine the emissions and fossil energy demand required to process algae biomass into renewable fuel and animal feed. A complete well-to-wheel fuel-cycle analysis is conducted for the production of biodiesel and jet biofuel from algae biomass. The environmental impacts of algae-based fuels for the road transportation and aviation industry are benchmarked against analogue conventional fossil fuels. This thesis demonstrates that algae biofuel production can only realize its inherent environmental advantage of reduced GHG emissions, once every step of the production chain is fully optimized and decarbonized. This includes smart co-product utilization, offsetting fertilizers through wastewater recycling, reusing exhaust gases as additional CO2 source and using decarbonized electricity, heat and indirect energy. The definition of a Catalyst Sensitivity Index (CSI) demonstrates how catalytic efficiency increases can impact the fossil energy consumption and the greenhouse gas emissions balance of catalyst-dependent processes. The CSI will allow the industry to highlight 'best practice catalysts' and draw conclusions for what efficiency gains one could anticipate with higher performance catalysts. For countries where a decarbonized electricity and heat grid is not available to guarantee low-carbon algae fuel production and the looming resource scarcity around marine feed production has become more pressing, the alternative use of algae for aquafeed production is recommended. This thesis analyses major routes towards the future cost-competitive production of microbial biomass as sustainable fish meal and oil source to meet a global demand for depleting fish feed supplies. A comprehensive economic cost analysis and lifecycle assessment demonstrates the feasibility of replacing global fish meal and fish oil supplies with low-carbon and affordable algae feed by the year 2030. This research reveals how algae feed production has the potential to transform a pressing resource tipping point into a turning point.
|
13 |
Hållbar utformning av en offentlig toalettbyggnad genom återbruk / Sustainable design of a public toilet building through reuseSandin, Cecilia, Holgersson, Mindy January 2023 (has links)
Today, the construction and property sector accounts for close to 40% of the global climate emissions. In Sweden, the waste from the construction industry is almost half of the total waste. That is a major problem and people need to get more aware of and increase the reuse, recycling and circular economy to reduce the climate footprint. The purpose of the study is to establish which materials can be reused to construct a public toilet building. A study has been made to illustrate if a building can be built in only reused materials and products. The goal is thereby to present an illustrated public toilet building with the materials that can be used to construct the building. The goal is also to display obstacles when building with only reused products. Through the use of a case study a public toilet building was designed to be placed in a fairytale world constructed by Aktiebolaget Boll & Stropp. Some of the materials that can be and is reused in the building is brick, glass, wood and procelain products. This case study has proven that it is to a high degree possible to build a public toilet in only reused materials.
|
14 |
Analys av klimatpåverkan och lokaliseringsbeslut för en Factory-In-A-Box produktionsanläggning / Analysis of climate impact and location decision for a Factory-In-A-Box production facilityDing, Yiming Alex, Qian, Liuyu January 2023 (has links)
Syftet med denna studie var att analysera lokaliseringsbeslut för en Factory-In-A-Box (FIAB) produktionsanläggning med fokus på dess klimatpåverkan genom användning av livscykelanalys (LCA). En FIAB produktionsanläggning användes som ett exempel för att utföra analysen. Metoden som användes för att bedöma klimatpåverkan var LCA, där kategorin global uppvärmningspotential (GWP) valdes som den primära indikatorn. Materialen som användes för tillverkning av personlig skyddsutrustning, såsom polyeten (PE), polyetentereftalat (PET), polypropen (PP), polyuretan (PUR) och syntetiskt gummi, analyserades. Dessutom studerades energianvändningen i produktionsanläggningen samt avfallshanteringsstrategier i både Turkiet och Sverige. Anledningen till det var att den utvalda Factory-In-A-Box fabriken hade sitt ursprung i Sverige, och Turkiet identifierades som en plats med avsevärd potential för produktion av enkla produkter som skulle kunna tillverkas med hjälp av FIAB-anläggningen i händelse av nödsituationer. Resultaten av detta arbete visade att mer än hälften av utsläpp av de personliga skyddsutrustningar som producerades av FIAB-fabriken av EQpack AB kom från material som hade använts i tillverkning och att användningen av återvunnet material borde prioriteras, då utsläppen av återvunnen polyeten var endast hälften så stora som utsläppen från primära material. Resultaten visade också att det inte fanns någon klimatmässig nackdel med att omlokalisera FIAB-fabriken till Turkiet, eftersom energianvändningen i Turkiet skulle medföra endast 4.4% ökning av emissionen än att producera varorna i Sverige, vilken jämnades ut med transport av varor från Sverige till Turkiet. Dock identifierades andra aspekter som behövde beaktas vid omlokalisering av en FIAB-fabrik till områden som hade drabbats av kris, till exempel krig eller jordbävningar. Sammanfattningsvis gav denna studie insikter om klimatpåverkan av EQpack AB:spersonliga skyddsutrustning och diskuterade olika aspekter som behöver övervägas vid beslut om lokalisering av en FIAB-produktionsanläggning. / This thesis describes a study aimed at analyzing the location decision for a Factory-In-A-Box (FIAB) production facility in terms of its climate impact using life cycle assessment (LCA). A FIAB production facility was used as a case study to conduct the analysis. LCA was employed to assess the climate impact, with global warming potential (GWP) chosen as the primary indicator. The materials used for manufacturing personal protective equipment, such as polyethylene (PE), polyethyleneterephthalate (PET), polypropylene (PP), polyurethane (PUR), and synthetic rubber, were analyzed. Additionally, the energy use in the production facility and waste management strategies in both Turkey and Sweden were examined. The reason to this was that Sweden is a baseline FIAB location and Turkey was chosen as one of the locations with high potential for simple products that can be produced using the FIAB-facility for emergency situations. This study showed that more than half of the emissions derived from the production of Personal Protective Equipment at the FIAB-factory, operated by EQpack AB, originated from the manufacturing materials. The results suggest prioritizing the use of recycled materials, as the emissions from recycled polyethylene were only half as large as those from primary materials. The results also revealed that, from a climate perspective, there was no obvious disadvantage in relocating the FIAB factory to Turkey. As the energy consumption in Turkey would result in 4.4% greater environmental burdens compared to producing the goods in Sweden, which would be covered by the transport of goods from Sweden to Turkey. However, other aspects needed to be considered when relocating a FIAB factory to areas affected by crises, such as war or earthquakes. In conclusion, this study provides insights into the climate impact of EQpack AB'spersonal protective equipment and discusses various aspects to consider when making decisions regarding the localization of a FIAB production facility.
|
15 |
Sustainability evaluation of proposal for a decentralized office space. : Case study, Växjö, SwedenFrenliden, Carl, Ljungman, Martin January 2022 (has links)
As the COVID-19 pandemic became widespread around the world, the need to be able to work from home became clear to help reduce the spread of the virus, while at the same time showing that working from home could be successful in the future. While working from home can be positive, it also has drawback as reduce social interactions, hard to set working boundaries and more. This paper examines the viability to introduce a decentralized office space trough environmental sustainability, economic sustainability and social sustainability for a reference apartment building and an energy renovated one compared to a centralized office space. This study shows that working from a decentralized office space will reduce emissions with better utilization of the apartment building, saving the companies money and having a reasonable payback period for investors, while giving employees better personaleconomic and more free time without compromising on the social sustainability from not meeting people and having a hard time to different on working hours and non-working hours.
|
16 |
Energy input, carbon intensity, and cost for ethanol produced from brown seaweedPhilippsen, Aaron 15 January 2013 (has links)
Brown macroalgae or brown seaweed is a promising source of ethanol that may avoid the challenges of arable land use, water use, lignin content, and the food vs. fuel debate associated with first generation and cellulosic ethanol sources; however, this promise is challenged by seaweed’s high water content, high ash content, and natural composition fluctuations. Notably, lifecycle studies of seaweed ethanol are lacking in the literature. To address this gap, a well-to-wheel model of ethanol production from farmed brown seaweed was constructed and applied to the case of Saccharina latissima farming in British Columbia (BC), Canada, to determine energy return on energy invested (EROI), carbon intensity (CI), and near shore seaweed farming production potential for seaweed ethanol and to examine the production cost of seaweed ethanol. Seaweed farming and ethanol production were modeled based on current BC farming methods and the dry grind corn ethanol production process; animal feed was included as an ethanol co-product, and co-product credits were considered. A seaweed ethanol yield calculation tool that accounts for seaweed composition was proposed, and a sensitivity study was done to examine case study data assumptions.
In the case study, seaweed ethanol had lower CI than sugarcane, wheat, and corn ethanol at 10.1 gCO2e/MJ, and it had an EROI comparable to corn ethanol at 1.78. Seaweed ethanol was potentially profitable due to significant revenue from animal feed sales; however, the market for seaweed animal feed was limited by the feed’s high sodium content. Near shore seaweed farming could meet the current demand for ethanol in BC, but world near shore ethanol potential is likely an order of magnitude lower than world ethanol production and two orders of magnitude lower than world gasoline production. Composition variation and a limited harvest season make solar thermal or geothermal seaweed drying and storage necessary for ethanol production in BC. Varying seaweed composition, solar thermal drying performance, co-product credits, the type of animal feed produced, transport distances, and seaweed farming performance in the sensitivity study gave an EROI of over 200 and a CI of -42 gCO2e/MJ in the best case and an EROI of 0.64 and CI of 33 gCO2e/MJ in the worst case. Co-product credits and the type of animal feed produced had the most significant effect overall, and the worst cases of seaweed composition and solar thermal seaweed drying system performance resulted in EROI of 0.64 and 1.0 respectively.
Brown seaweed is concluded to be a potentially profitable source of ethanol with climate benefits that surpass current ethanol sources; however, additional research into seaweed animal feed value, co-product credits, large scale seaweed conversion, and the feasibility of solar thermal or geothermal seaweed drying is required to confirm this conclusion. / Graduate
|
17 |
Hur stort får vi bo? : Klimatpåverkan per person i Sverige / How big living area can we allow? : Climate impact per person in SwedenLindqvist, Anna, Wolf, Michaela January 2019 (has links)
Purpose: The world is supposed to aim for a maximal global warming of 1,5 degrees Celsius which means an ecological footprint of 1,3-ton CO2e/person, year. How much does a sustainable living situation affect the living area per person? With the help of a typical Swedish house and a lifecycle analysis the living area is put in relation to the 1,5-degree aim. The purpose of this report is to investigate how the fulfilling of the 1,5-degree aim will affect the living area per person. Method: The research approach in the report is quantitative were a meta study and a case study compose the research strategy. The data collecting methods are a literature study and a document analysis. Lastly the report uses calculations and lifecycle analysis for analyzing and compiling the results. Findings: The goal value for the facility sector should come down to 0.3217ton CO2e/person, year. The typical-house uses 0,6637 ton CO2e/person, year. The results show an unsustainable situation from today’s living situation. It would take between eight to twelve people in the typical house to reach the goal value for the facility sector. Conclusion and recommendations: <li data-leveltext="" data-font="Symbol" data-listid="39" data-aria-posinset="1" data-aria-level="1">Individuals cannot understand their own effect of their living situation when it is measured in CO2e/square meter. Lifecycle analysis, energy-declarations and other things relevant for the living situation should be measured per person who uses the space to give perspective on the climate impact. <li data-leveltext="" data-font="Symbol" data-listid="39" data-aria-posinset="2" data-aria-level="1">A tangible goal value for a sector is extremely hard to define and mostly up to the contemplators’ value and logic. The breakdown of the sectors needs to become clearer and more consequent for a better possibility to compare. <li data-leveltext="" data-font="Symbol" data-listid="39" data-aria-posinset="3" data-aria-level="1">We got knowledge from Birkved, Brejnrod, Kalbar och Petersens (2017) report of how both the construction and consumption stages needs to change and how that isn’t nearly enough. Clearer instruments towards electricity from solar-, wind- and hydro power for real estate owners in all sizes is a recommendation. <li data-leveltext="" data-font="Symbol" data-listid="39" data-aria-posinset="4" data-aria-level="1">It is clear how both individuals and companies need to open their eyes for what it is going to take and how far it is to reach a sustainable situation. Which means that politics need to take a much harder grip on the situation. Such as the demand on the environment declaration should have a maximum value. Limitations: The lifecycle analysis has missing parts of the transport stage and the entire production stage. PRINCE’s version of how to divide the sectors is from 2014 but uses numbers from 2016 over Sweden’s total CO2e emissions. The facility sector contains more categories than what is taken into account in the lifecycle analysis / Syfte: Världen ska eftersträva en maximal global uppvärmning på 1,5 grad och därmed ett maximalt ekologiskt fotavtryck på 1,3 ton CO2e/person, år. Hur mycket påverkas boarean per person om man vill ha ett hållbart boende? Med hjälp av ett svenskt typhus och en livscykelanalysberäkning sätts boarean i relation till 1,5-gradsmålet. Examensarbetets syfte är att undersöka hur uppfyllandet av 1,5-gradsmålet påverkar boarean per person. Metod: Rapporten kommer genomföras med en kvantitativ forskningsansats där en metastudie och fallstudie utgör forskningsstrategin. Till dem används datainsamlingsmetoderna litteraturstudie och dokumentanalys. Slutligen sker bearbetning och dataanalys med hjälp av beräkningar och en livscykelanalys för att kunna sammanställa och jämföra resultat. Resultat: Målvärdet för boendesektorn bör komma ner till 0,3217 ton CO2e/person, år. Typhuset gör av med 0,6637 ton CO2e/person, år. Resultatet visar på en ohållbar situation utifrån dagens boendeförhållande. För att nå målet idag skulle det krävas att det bodde mellan åtta och tolv personer i det svenska nybyggda typhuset. Slutsats och rekommendationer: <li data-leveltext="%1." data-font="" data-listid="47" data-aria-posinset="1" data-aria-level="1">En individ kan inte förestå sin påverkan av sitt boende då det mäts i CO2e/kvm. Livscykelanalyser, energideklarationer och andra relevanta saker för boendet bör mätas per person som nyttjar ytan för att kunna ge perspektiv på klimatpåverkan. <li data-leveltext="%1." data-font="" data-listid="47" data-aria-posinset="2" data-aria-level="1">Ett konkret målvärde för en sektor är extremt svårdefinierat. Sektorernas indelningar skulle behöva bli tydligare och mer konsekventa för bättre jämförelsemöjligheter. <li data-leveltext="%1." data-font="" data-listid="47" data-aria-posinset="3" data-aria-level="1">Från bland annat Birkved, Brejnrod, Kalbar och Petersens (2017) rapport blev vi upplysta om hur både byggkonstruktion och drift behöver förändras men att det inte är tillräckligt. Hårdare styrmedel för el från sol-, vind- och vattenkraft för fastighetsägare av alla storlekar är en rekommendation. <li data-leveltext="%1." data-font="" data-listid="47" data-aria-posinset="4" data-aria-level="1">Det är tydligt hur både individer och företag behöver få upp ögonen för vad som krävs och hur långt det är att nå dit. Vilket innebär att politiken behöver ta mycket hårdare tag. Exempelvis skulle kravet om en klimatdeklaration på skede A1-A3 också kunna innehålla ett maximalt värde. Begränsningar: Livscykelanalysen rymmer inte den del som innefattar transporter från bygg och installationsprocessen i transport (A4) och inget av bygg och installationsprocessen (A5). PRINCE:s sektorindelning över växthusgasutsläpp från 2014 används med siffror från Naturvårdsverket från 2016 över Sveriges totala CO2-utsläpp. Boendesektorn innefattar fler utsläppsområden än vad som ingår i en livscykelanalys.
|
18 |
The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater TreatmentRodriguez-Winter, Thelma 18 August 2014 (has links)
No description available.
|
19 |
Miljö - och kostnadsanalys av UHPC som reparationsmaterial för bropelare / Sustainability of UHPC as a repair material for bridge piersHuq, Saraj, Milosevic, Ivan January 2020 (has links)
Byggindustrin har i dagsläget en negativ klimatpåverkan och infrastrukturen likaså. Många länder har därför försökt undersöka möjligheten att hitta ett långsiktigt och hållbart alternativ till det konventionella reparationsmaterialet. Olika material undersöks, olika optimerade betongrecept testas för att förstå hur miljöpåverkan har minimeras för att förlänga livslängden hos betongkonstruktioner. Vid reparation av en bro är det viktigt att ta hänsyn till både kostnader och miljöpåverkan under hela dess livscykel. Kostnader som uppstår är investeringskostnader samt drift- och underhållskostnader. Miljöpåverkan från betongkonstruktioner i produkt skedet består av materialframställning, byggtransporter och produktion på byggarbetsplatserna. totala växthusgasutsläppet summeras och beräknas i kg CO2-ekv. Syftet med detta examensarbete är att studera den långsiktiga hållbarheten hos UHPC med hjälp av beräkningsmodeller såsom livscykelanalys och livscykelkostnadsanalys med avsikt att applicera reparationstekniken. Flera UHPC recept ställs mot det konventionella reparationsmaterialet detta för att kunna bedöma miljöpåverkan och kostnadseffektiviteten hos materialen. Dvs om det går det att minska klimatutsläppet och kostnaderna. De jämförda recepten är olika UHPC-recept samt traditionell betong. Recepten appliceras slutligen på en befintlig bropelare för att undersöka de olika receptens tillämpbarhet som reparationsmaterial ur ett hållbarhetsperspektiv. Det saknas tillräckligt med kunskap om UHPC:s långtidseffekter, speciellt om reparationsintervall. Med åtanke på materialets höga draghållfasthet och beständighet tillsammans med UHPC:s strukturella egenskaper har antaganden gjorts att materialet är reparationsfri under konstruktionens livslängd. Det vill säga att bropelaren som undersökts med UHPC i studien inte behövt repareras under sin livslängd. Resultatet från livscykelkostnadsanalysen visar att UHPC är dyrare i både kubikmeter (m3) och kvadratmeter (m2) med tanke på täckskiktets tjocklek än traditionell betong i materialpriset. Men med tanke på att UHPC är underhållsfritt har den en mindre livscykelkostnad. Resultatet från livscykelanalysen visar att UHPC blandningarna har större miljöpåverkan per kubikmeter. Då de olika täckskiktetstjocklek relateras till pelarens längd erhålls resultat där UHPC medför slankare konstruktioner och besparingar upp emot 50% mindre betongvolym (för den 6 m långa pelaren i fallstudien). Med UHPC som reparationsmaterial medför det till att bron inte behöver repareras under dess livslängd. Bropelaren som repareras med UHPC kommer därför ha en mindre miljöpåverkan än den traditionella betongen. Långsiktig hållbarhet och mindre totala växthusgasutsläpp (som är i riktlinje med EU:s och regeringens klimatkrav) erhålls för anläggningskonstruktioner med UHPC. / The construction industry has a negative climate impact and so does the infrastructure. Which is due to frequent repairs that are not sustainable. Many countries have therefore tried to explore the possibility of finding a long-term and sustainable alternative to conventional repair materials. Different materials are examined, different optimized concrete recipes are tested to understand how the environmental impact can be minimized and the service life of concrete structures extended. When repairing a bridge, it is important to take into account both costs and environmental impact throughout its life cycle. Costs that arise are investment costs as well as operating and maintenance costs. The environmental impact from concrete structures in the product phase consists of material production, construction transports and production at construction sites. The total greenhouse gas emissions are summed up and calculated in kg CO2 eq. The purpose of this thesis is to study the long-term sustainability of UHPC using calculation models such as life cycle analysis and life cycle cost analysis with the intention of applying the repair technique. Several UHPC prescriptions are set against the conventional repair material in order to be able to assess the environmental impact and cost-effectiveness of the materials. That is, if it is possible to reduce climate emissions and costs. The compared recipes are different UHPC recipes and traditional concrete. The recipes are finally applied to an existing bridge pillar to investigate the applicability of the various recipes as repair materials from a sustainability perspective. There is a lack of knowledge about the long-term effects of UHPC, especially about repair intervals. Given the high tensile strength and durability of the material together with the structural properties of the UHPC, it has been assumed that the material is repair-free for the life of the structure. That is, the bridge pillar examined with UHPC in the study did not need to be repaired during its lifetime. The results from the life cycle cost analysis show that UHPC is more expensive in both cubicmeters (m3) and square meters (m2) given the thickness of the cover layer than traditional concrete in the material price. However, given that UHPC is maintenance free, it has a lower lifecycle cost. The results from the life cycle analysis show that the UHPC mixtures have a greater environmental impact per cubic meter when the cover layer varies. As the thickness of the different cover layers is related to the length of the pillar, results are obtained where UHPC leads to slimmer constructions and savings of up to 50% less concrete volume (for the 6 m long pillar in the case study). With UHPC as repair material, this means that the bridge does not need to be repaired during its service life. The bridge pillar that is repaired with UHPC will therefore have a smaller environmental impact than the traditional concrete. Long-term sustainability and smaller total greenhouse gas emissions (which are in line with EU and government climate requirements) are obtained for plant constructions with UHPC.
|
Page generated in 0.0475 seconds