Spelling suggestions: "subject:"lignocellulosique"" "subject:"lignocellulosic""
11 |
Modélisation et optimisation de la production de cellulases par Trichoderma reesei pour les bioraffineries lignocellulosiquesJourdier, Etienne 19 September 2012 (has links)
Dans le contexte énergétique et climatique mondial, le coût élevé des enzymes Cellulolytiques (cellulases) freine le développement des bioraffineries lignocellulosiques, pour produire des biocarburants et composés chimiques à partir d'une matière première végétale renouvelable. L'objectif de ce travail est de caractériser et de modéliser le métabolisme du micro-organisme Trichoderma reesei, afin d'optimiser le protocole industriel de production de cellulases. Cette étude a été réalisée sur des milieux modèles représentatifs de ceux attendus à l'échelle industrielle. Tout d'abord, la stoechiométrie des réactions de croissance et de production a été établie, puis une étude cinétique a été menée pour mesurer précisément le comportement du micro-organisme à forte induction de la production de cellulases. Le modèle résultant a été utilisé pour optimiser le protocole industriel de production. Ensuite, l'intégration de cette étape dans une bioraffinerie lignocellulosique a été étudiée, avec l'effet sur le métabolisme i) des mélanges de sucres disponibles, ii) des composés inhibiteurs issus de la dégradation de la lignocellulose, et iii) du changement d'échelle. Ces travaux ont fait progresser de façon substantielle les connaissances du métabolisme de T. reesei en ce qui concerne la production de cellulases, et les modèles développés sont des outils d'aide rationnelle à la définition d'un procédé de production de cellulases intégré dans une bioraffinerie lignocellulosique. / In the global energetic and climatic context, the high cost of the cellulolytic enzymes (cellulases) postpones the development of lignocellulosic biorefineries, dedicated to produce biofuels and chemical compounds from renewable vegetable feedstocks. The aim of this work was to measure and model the metabolism of the micro-organism Trichoderma reesei, in order to optimize the industrial protocol for the production of cellulase. This study was carried out using synthetic media representative of industrial ones. First, the stoichiometries of growth and protein production reactions were determined. Then, a kinetic study was conducted to precisely measure the specific rates of T. reesei at high induction of cellulase production. The resulting model was used to optimize the industrial production protocol. Finally the integration of this step in a lignocellulosic biorefinery was studied by determining the impacts on the metabolism of i) available sugar mixtures, ii) inhibitory compounds from lignocellulosic biomass degradation, and iii) scale-up. These results significantly contributed to improve the knowledge of T. reesei metabolism on cellulase production. The developed models are rational tools for the optimization of a cellulase production protocol suited to lignocellulosic biorefineries.
|
12 |
Apports de la Microscopie à Force Atomique à l’étude de phénomènes dynamiques en biologie et développement instrumental associé / Atomic Force Microscopy and related instrumental development as a tool to study dynamic processes in BiologyLambert, Eléonore 20 December 2018 (has links)
Le Laboratoire de Recherche en Nanosciences EA 4682 s’est récemment équipé de la microscopie à force atomique haute-vitesse (HS-AFM) permettant la visualisation en temps réel des dynamiques d’interactions d’un panel infini d’échantillons biologiques à l’échelle nanométrique. De nombreux champ de recherche nécessite la mise au point de techniques permettant à la fois une imagerie dynamique (vidéomicroscopie) mais également de plus en plus une imagerie haute résolution (microscopie champ proche). Ce couplage a été récemment obtenu grâce au développement de la microscopie à force atomique ultra-rapide. La limitation actuelle de ce microscope ultra-rapide, à savoir l’acquisition d’informations en relation uniquement avec la surface de l’objet biologique étudié, crée un rempart à l’obtention de connaissances nouvelles sur les dynamiques sous-jacentes que renferment certains systèmes biomoléculaires. Pour s’affranchir de cette contrainte, nous nous proposons dans ce projet de faire évoluer notre outil de nanocaractérisation en lui ajoutant des fonctionnalités optiques et des fonctionnalités permettant de faire de la spectroscopie de force. La conduite de ce projet se fera selon un travail de développement instrumental scindé en deux grandes étapes : - l’apport d’outils de microscopie optique conventionnels : FRAP – FRET – FLIM – Fluorescence – TIRFM. Nous couplons ainsi la nanocaractérisation hautement résolue spatialement et temporellement avec des informations intrinsèques de nos échantillons. Cette complémentarité apparaît de plus en plus comme fondamentale dans les demandes des biologistes. - la mise au point de protocoles de fonctionnalisation de leviers AFM afin de réaliser de la spectroscopie de force et ainsi obtenir des informations sur les propriétés mécaniques des échantillons biologiques. Ce projet de recherche sera réalisé au Laboratoire de Recherche en Nanosciences EA 4682, Université de Reims Champagne Ardenne sous la direction du Pr. Michael Molinari et du Dr. Maxime Ewald récemment recruté en tant que maître de conférences (sept. 2013) et qui pu démarrer la thématique de la microscopie AFM haute-vitesse au sein de l’équipe. Il s’effectuera en collaboration avec le Pr. T. Ando du Biophysics Lab’ de l’Université de Kanazawa (Japon) pour la partie instrumentation, et avec le Dr. Gabriel Paës pour l’étude des échantillons biologiques. Les objets étudiés lors de cette thèse seront liés au projet ANR Lignoprog qui vient de démarrer au 1er novembre 2014 porté par Dr. Gabriel Paës (INRA UMR FARE, Reims). Dans ce projet, des échantillons biologiques se doivent d’être caractériser en dynamique. Ils concernent la biomasse lignocellulosique (BL), réseau complexe de polymères constituant les parois végétales (PV). La complexité architecturale et chimique de la BL est un frein à sa conversion industrielle. Pour atteindre ce but, non seulement la fraction cellulosique mais aussi les fractions hémicellulosiques et ligneuses doivent être valorisées, sinon les bio-raffineries ne seront pas compétitives. Le principal challenge à relever est celui du coût élevé et de la relative faible efficacité de l’étape de déconstruction enzymatique de la BL. Avec les fonctionnalités d’imagerie développées dans ce projet, nous espérons apporter des éléments de réponses sur la déconstruction enzymatique. Par ailleurs, même si les objets étudiés seront principalement ceux du projet Lignoprog, une validation du dispositif pourra être réalisée en parallèle sur d’autres échantillons biologiques tels que des cellules vivantes seront envisagées : caractérisation, mise en évidence leur réactivité vis-à-vis des divers paramètres physiologiques du milieu (pH, concentration, composition), corrélation de ces résultats avec leurs propriétés mécaniques. / Our laboratory recently acquired a high-speed atomic force microscope (HS-AFM) which enables us to visualize in real time a wide range of biological samples and their dynamics of interaction at nanoscale. Several research fields require the development of new techniques in order to get high resolution imaging and dynamic imaging at the same time. This is why HS-AFM was developed. Its current limitation is that the only data it provides are about the surface which means we can’t get access to what occurs beneath. This is limiting the knowledge we could get about the underlying dynamics of some biomolecular system. In order to overcome this issue, we propose to upgrade this nanocharacterization tool by combining optical microscopy and force spectroscopy. This project of instrumental development will be in two major steps: - the adding of conventional optical microscopy : fluorescence, TIRFM, FRAP, FRET, FLIM. The aim is to nanocharacterize sample with highly spatiotemporal data combined in combination with integral data (fundamental to respond to biological issues) - the development of tip functionalization protocols in order to achieve force spectroscopy and get mechanical properties of biological samples This project will take place at the Laboratory of Research in Nanosciences, EA 4682, University of Reims Champagne Ardennes, under the supervision of Pr. Michael Molinari and Dr. Maxime Ewald who started HS-AFM among our team. We will collaborate with Pr. T. Ando from the Biophysics Lab of Kanazawa University (Japan) for the instrumental part and with Dr. Gabriel Paës for the biological samples. The samples used during this thesis will be linked to an ANR project called Lignoprog directed by Dr. Gabriel Paës (INRA, UMR FARE, Reims) and started on the first of November, 2014. In the project, the dynamical aspect of the biological samples is essential. Indeed, lignocellulosic biomass is a complex network of polymers composing plant cell wall. Its architectural and chemical complexity prevents its industrial conversion. In order to be cost-effective, bio refineries need to valorize all the fractions: cellulose, hemicelluloses and lignins. The major challenge is the high cost and low efficiency of the enzymatic hydrolysis of the lignocellulosic biomass. Our aim is to bring some answer to understand better and improve enzymatic hydrolysis thanks to the HS-AFM and the combination of new functionalities. By the way, the disposal might be validated on other biological samples in parallel, such as live cells in order to characterize them, enlighten their reactivity in response to physiological parameters of the medium (pH, concentration, composition) and correlate the results with mechanical properties.
|
13 |
Elaboration et évaluation biologique de nouveaux matériaux lignocellulosiques antibactériens / Elaboration and biological evaluation of new antibacterial lignocellulosic materialsKhaldi, Zineb 26 October 2018 (has links)
La contamination des surfaces par des bactéries et l’émergence de souches résistantes aux antimicrobiens sont des problèmes très préoccupants dans différents domaines tel que les domaines hospitalier et alimentaire. Cette contamination commence par l’adhésion de bactéries pathogènes sur une surface jusqu’à la formation de biofilms. Ces derniers contribuent à l’émergence de résistances de certaines souches bactériennes aux traitements conventionnels. Pour répondre à ces problèmes de contamination des surfaces, ces travaux de thèse portent sur le développement de nouveaux matériaux antibactériens à base de fibres de pâte à papier. Nous nous sommes intéressés, dans une première partie, à l’élaboration d’un papier antibactérien par le greffage, via un lien triazine, de deux composés d’huiles essentielles, le thymol et le carvacrol, connus pour leurs activités antibactériennes. L’évaluation microbiologique des matériaux élaborés, sur les deux souches bactériennes testées, E.coli et S.aureus, a montré un effet bactériostatique. Ces matériaux bloquent donc la croissance bactérienne empêchant ainsi la formation des biofilms. Une synergie entre le thymol et le carvacrol lorsqu’ils sont greffés sur les fibres de pâte à papier a également été montré. Dans une deuxième partie, notre étude s’est focalisée sur l’élaboration d’un papier antibactérien qui n’acquière son activité qu’après greffage et formation du motif actif « aryl-1,2,3-triazole ». Le greffage est réalisé par une réaction de « Click Chemistry », la cycloaddition de Huisguen catalysée par le cuivre I. Les tests antibactériens révèlent l’importance du substituant de l’aryle, l’influence du temps de contact et la pertinence d’utiliser des mélanges de matériaux. L’activité antibactérienne observée sur les fibres de la pâte thermomécanique est meilleure dans les deux parties. Les différents résultats obtenus sont décrits dans ce manuscrit. / The contamination of surfaces by bacteria and the emergence of antimicrobial resistant strains are very worrying problems in different areas such as hospital and food. This contamination begins with the adhesion of pathogenic bacteria on a surface until the formation of biofilms. These biofilms contribute to the emergence of resistances of certain bacterial strains to conventional treatments. To answer these problems of surface contamination, this thesis work focuses on the development of new antibacterial materials based on pulp fibers. In the first part, we focused on the development of an antibacterial paper by grafting, via triazine link, two essential oil compounds, thymol and carvacrol, known for their antibacterial activities. The microbiological evaluation of the developed materials against the two bacterial strains tested, E. coli and S. aureus, showed a bacteriostatic effect. These materials block the bacterial growth thus preventing the biofilms formation. Synergy between thymol and carvacrol grafted onto paper has also been shown. In a second part, our study focused on the development of an antibacterial paper that acquires its activity only after the grafting and formation of "aryl-1,2,3-triazole", the active motif. The grafting is carried out by a reaction of "Click Chemistry", the copper (I)-catalyzed Azide Alkyne Cycloaddition. The antibacterial tests reveal the importance of the aryl substituent, the influence of the contact time and the relevance of using mixtures of materials. The antibacterial activity observed on the thermomechanical pulp fibers is better in both parts. The different results obtained are described in this manuscript.
|
14 |
Valorisation énergétique de la biomasse lignocellulosique par digestion anaérobie : Prétraitement fongique aérobie / Energy recovery of lignocellulosic biomass by anaerobic digestion : Aerobic fungal pretreatmentLiu, Xun 18 December 2015 (has links)
La bioconversion en méthane de biomasses lignocellulosiques est l’une des alternatives les plus prometteuses pour la production de méthane issu de la digestion anaérobie. Toutefois, les biomasses lignocellulosiques présentent des caractéristiques bio-physico-chimiques très variables en raison leur composition biochimique et de l’organisation structurale très diverses. Par ailleurs, leur faible biodégradabilité en conditions anaérobie nécessite de les prétraiter avant méthanisation pour optimiser la production de méthane. Ce travail vise à évaluer l’influence des caractéristiques d’une large gamme de substrats lignocellulosiques sur leur biodégradabilité anaérobie et les corrélations entre leurs caractéristiques bio-physico-chimiques et le potentiel biométhanogène, et d’étudier les effets du prétraitement fongique en présence de Ceriporiopsis subvermispora sur le potentiel biométhanogène de biomasses lignocellulosiques sélectionnées dans la présente étude et de caractériser les changements de leurs caractéristiques après le prétraitement fongique. La caractérisation de 36 biomasses lignocellulosiques représentatives d’une large gamme de gisements potentiellement mobilisables a permis de mettre en évidence les corrélations linéaires entre le potentiel biométhanogène des biomasses et certaines de leur caractéristiques bio-physico-chimiques, dont la teneur en lignine et la demande biochimique en oxygène. Les biomasses sylvicoles et agricoles ont montré des caractéristiques distinctes de la biodégradabilité aérobie et anaérobie. Les résultats de prétraitement fongique sur les 5 biomasses ont permis de mettre en évidence que le champignon de pourriture blanche Ceriporiopsis subvermispora réagit distinctement selon la biomasse prétraitée. Pour certaines biomasses, le prétraitement fongique conduit à augmenter significativement la production de méthane et la vitesse de bioconversion en méthane. Cette espèce présente la capacité de dégrader sélectivement la lignine sur certaines biomasses et, sur d’autres, celle de dégrader de manière non-sélective des polysaccharides et des lignines. De plus, pour les deux souches de Ceriporiopsis subvermispora testées, des métabolismes différents ont été mis en évidence sur une même biomasse. Les résultats de compositions et ceux de l’analyse structurale des biomasses (initiales, autoclavées, contrôles, et prétraitées par Ceriporiopsis subvermispora) ont montré que leur structure peut être modifiée sans toutefois observer une transformation significative de leur composition biochimique. / Bioconversion to methane lignocellulosic biomass is one of the most promising alternatives for the production of methane from anaerobic digestion. However, lignocellulosic biomass has various bio-physicochemical characteristics due to their biochemical composition and diverse structural organization. Moreover, their low biodegradability in anaerobic condition requires pretreatment before methanation to optimize methane production. This work aims to evaluate the influence of the characteristics of a wide range of lignocellulosic substrates on their anaerobic biodegradability and correlations between their bio-physical-chemical characteristics and biomethane potential, and study the effects of fungal pretreatment in the presence of Ceriporiopsis subvermispora on the biogas potential of lignocellulosic biomass selected in this study and characterize their changes of their characteristics before and after the fungal pretreatment. The characterization of 36 representative lignocellulosic biomass of a wide range of potentially mobilized deposits allowed to highlight the linear correlations between biomethane potential of biomass and some of their bio-physical-chemical characteristics, of which the lignin content and biochemical oxygen demand. The forest and agricultural biomass exhibited distinct characteristics of the aerobic and anaerobic biodegradability. The results of fungal pretreatment of the 5 biomass indicated that the white rot fungus Ceriporiopsis subvermispora reacts distinctly depending on the pretreated biomass. For some biomass, fungal pretreatment leads to significant increase of methane production and the bioconversion rate of methane. This species presents the ability to selectively degrade lignin on some biomasses, in others, the ability to non-selectively degrade polysaccharides and lignins. In addition, for both strains of Ceriporiopsis subvermispora tested, different metabolisms were highlighted on the same biomass. The results of compositions and those of the structural analysis of biomass (initials, autoclaved, controls, and pretreated with Ceriporiopsis subvermispora) showed that their structure can be modified without observing a significant transformation of their biochemical composition.
|
15 |
Valorisation chimique de la biomasse oléagineuse d’origine béninoise : Lophira lanceolata et Carapa procera / Chemical enhancement of the oleaginous biomass from Benin : Lophira lanceolata and Carapa proceraNonviho, Guévara 22 April 2015 (has links)
Lophira lanceolata (Ll) et Carapa procera (Cp) sont des plantes oléagineuses, peu étudiées. Au Bénin, elles sont pourtant utilisées à des fins alimentaires, cosmétiques et thérapeutiques. Cette étude vise la caractérisation de leurs graines, coques et bois. Les huiles végétales de Ll ont été obtenues par différentes méthodes dont une aqueuse traditionnelle tandis que celle de Cp l’a été par utilisation d’hexane. De façon générale, les huiles de Ll montrent un profil nutritionnel riche en acides gras polyinsaturés (>50% m/m: masse pour masse). Outre ses propriétés chimiques meilleures, celle obtenue par le procédé traditionnel est plus riche en acides gras essentiels, en composés phytostéroliques comme le lupéol et en tocols. La torréfaction et l’utilisation d’enzymes ont également permis d’évaluer l’impact de ces méthodes sur la composition chimique des graines de Ll. Quant aux graines de Carapa p., elles présentent un profil plutôt abondant en acides gras monoinsaturés, en tocotriénols (85,56% m/m) et en lanostérols (28,03%, m/m). Les tourteaux, coques et bois des deux espèces montrent une variabilité chimique en composés pariétaux (extractibles, hémicelluloses, celluloses et lignines). Une caractérisation in fine des hémicelluloses de ces parties des deux plantes a permis de montrer qu’elles sont essentiellement de type glucuronoxylanes. Les extractibles de ces plantes ont également offert une large gamme de composés à connotations industrielles et pharmaceutiques positives. Enfin, les conditions optimales de la biosorbption du bleu de méthylène sur les coques de Lophira ont également été évaluées. Cette évaluation a permis de mettre en exergue la potentielle utilisation de ces résidus agroforestiers pour rendre potables les eaux usées industrielles / The chemical composition of wild oilseeds, such as Lophira lanceolata (Ll) and Carapa procera (Cp) of Benin is mostly unknown. Yet they undergo crafted transformations for food, cosmetic and therapeutic purposes. This study aims to characterize their seeds, hulls and woods. From these crops, different oils have been extracted. One of them has been produced in rural area according to aqueous ancestral method. On the whole, oils of Ll have presented an interesting nutritional profile. They are rich in polyunsaturated fatty acids (> 50% m/m: mass for mass), especially that extracted by artisanal process. Beyond its good chemical properties, it provides essential fatty acids, phytosterols such as lupeol and more tocols compounds. Roasting and the use of enzymes have also assessed the impact of these methods on the chemical composition of LI seeds. Differently, Cp oil’s has an abundant presence of MUFA, tocotrienols (85.56% w/w) and the richest composition in lanosterol (28.03%, m/m). The seeds cakes, hulls and wood of both species showed various distributions on chemical components (extractives, hemicellulose, cellulose and lignin). The characterization of hemicelluloses from different parts of plants has shown that they are essentially glucuronoxylans type. Extractives also offered a wide range of compounds mostly appreciated for industrial and pharmaceutical purposes. The chemical composition of the shells of Lophira was rich in organic compounds such as lignin (32.13%, dry weight) so their biosorbent capacity was evaluated. They showed methylene blue good adsorption capacity in aqueous solution, which highlighted their potential use in the purification of wastewater
|
16 |
Digestion anaérobie par voie sèche de résidus lignocellulosiques : Etude dynamique des relations entre paramètres de procédés, caractéristiques du substrat et écosystème microbien / Solid-state anaerobic digestion of lignocellulosic residues : Dynamical study of the relationship between process parameters, substrate characteristics and microbial ecosystemMotte, Jean-Charles 06 November 2013 (has links)
L'optimisation de la digestion anaérobie par voie sèche est actuellement limitée par un manque de connaissances fondamentales. En particulier, les effets des principaux paramètres de procédé sur la dynamique réactionnelle sont peu connus en digestion sèche : teneur en eau, propriétés du substrat ou taux d'inoculation. Ces conditions opératoires ont des conséquences importantes à l'échelle des micro-organismes par la modification des conditions environnementales locales. Si la relation entre les propriétés des substrats lignocellulosiques et l'activité de la biomasse microbienne est au cœur de la dynamique réactionnelle, elle reste très peu prise en compte lors de l'ajustement des conditions opératoires. Ce travail vise à comprendre l'impact des paramètres de procédé (teneur en eau, caractéristiques du substrat, taux d'inoculation) sur le développement, la structuration et l'activité des micro-organismes au cours de la digestion sèche de substrats lignocellulosiques, en vue de maitriser le procédé dans son ensemble. La stratégie retenue a consisté à suivre la dégradation de la paille de blé, modèle des résidus agricoles méthanisables, en réacteurs discontinus faiblement inoculés. Quatre séries d'expériences ont été mises en place pour : i) comprendre comment les paramètres de procédés impactent les réactions, ii) étudier le comportement métabolique des micro-organismes à faibles teneurs en eau, iii) déterminer comment les communautés microbiennes se spécialisent selon l'évolution des caractéristiques du substrat au cours de sa dégradation, et enfin iv) valider les résultats par un taux d'inoculation moins contraignant. Tout d'abord, le criblage des principaux paramètres de procédés (teneur en matières sèches, taille des particules et taux d'inoculation) a montré une évolution progressive de leurs effets au cours de l'avancement de la réaction, sur les processus de digestion. Ensuite, l‘étude de la fermentation en voie sèche a permis de montrer, qu'en présence d'eau libre, l'augmentation de la siccité n'impacte pas le métabolisme microbien, mais modifie les équilibres entre les communautés microbiennes. Le recours à un protocole de compartimentation de la biomasse microbienne spécialement développé dans cette thèse a mis en évidence une spécialisation forte et progressive des communautés microbiennes associées à l'hydrolyse du substrat, au cours de sa dégradation. Des observations par microscopie électronique à transmission indiquent que cette modification coïncide avec la dégradation progressive des tissus de la paille en fonction de leur degré de lignification. La mise en évidence de barrières physiques, récalcitrantes à la biodégradation et rarement décrites dans le contexte de la méthanisation, indique que l'accessibilité du substrat est le paramètre principal limitant la réaction. Ces informations suggèrent que le broyage du substrat est un prétraitement de choix en digestion sèche. Cependant, une dernière expérience a montré qu'en voie sèche, un broyage fin limite les gains de performances du procédé par une augmentation des risques d'acidification des digesteurs. / Nowadays, optimization of solid-state anaerobic digestion is limited by a lack of fundamental knowledge. In particular, the effects of the main process parameters, such as water content, substrate property or inoculation rate, on the reaction dynamics are poorly understood in solid-state anaerobic digestion. In fact, process parameters have consequences at microbial scale by the modification of the local environmental conditions. Nevertheless, even if the relationship between the lignocellulosic substrate characteristics and the microbial activity is a keystone of the reaction dynamics, it is rarely considered for the selection of operating conditions.This work aims to understand the influence of process parameters (total solid content, substrate characteristics, and inoculation ratio) on the microbial development, compartmentation and activity in order to optimize dry anaerobic digestion of lignocellulosic substrate. The selected strategy consisted in following wheat straw biodegradation, which is a model of agricultural wastes available for anaerobic digestion, in low inoculated batch reactors. Four series of experiment have been established to: i) understand the impact of process parameters on the reaction, ii) study the metabolic behavior of microorganisms face to low water content, iii) evaluate the relationship between substrate characteristics and modification of microbial communities and finally iv) validate results by less restricting inoculation rate.First, a screening of solid-state process parameters (total solid content, particle size and inoculation rate) showed a progressive change of their effect on digestion process during the reaction progress. Then, the study of dry fermentation indicated that, when water is free within the media, increasing total solid content has a low impact on the microbial metabolism, but modifies equilibriums between microbial communities. Based on a protocol developed to investigate the biomass compartmentation, we enlightened a strong and progressive specialization of the microbial communities associated to substrate hydrolysis during its biodegradation. Observations using transmission electronic microscopy indicated that this modification corresponds to a progressive degradation of the straw tissues depending on their lignification degree. Furthermore, the identification of physical barriers, rarely described in anaerobic digestion, suggests that substrate accessibility is the main parameter limiting the reaction. This information suggests that substrate milling can be theoretically a good pretreatment to improve dry anaerobic digestion. However, a last experiment showed that fine milling limits the process performances by a higher risk of acidification in digesters.
|
Page generated in 0.0694 seconds