• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 21
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 123
  • 123
  • 119
  • 37
  • 31
  • 25
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A low noise PLL-based frequency synthesiser for X-band radar

Moes, Henderikus Jan 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--Stellenbosch University, 2008. / This thesis discusses the design, development and measured results of a phase-locked loop based frequency synthesiser for X-band Doppler radar. The objective is to obtain phase noise comparable or lower than that typically achieved with direct analogue frequency synthesis techniques. To meet this objective, a theoretical study of the noise contributions of individual components of the synthesiser and their effect on the total phase noise within and outside the loop bandwidth of the PLL is performed. The effect of different phase margins on the closed-loop frequency response of the PLL, and hence the total phase noise, is investigated. Based on the results, an optimal phase-frequency detector reference frequency, loop bandwidth, adequate phase margin, and suitable components are chosen for optimal phase noise performance. The total phase noise at the output of the synthesiser is calculated and it is shown that the phase noise specification can be met. A significant part of this thesis is devoted to the design, modelling and characterisation of a frequency multiplier, as well as to a combline and interdigital bandpass filter required for the frequency synthesiser. In the first case, a piecewise linear circuit model is used to model the behaviour of the nonlinear multiplier circuit. Fourier theory is used to calculate the large-signal driving point input and output impedances of the nonlinear circuit, enabling the computation of the circuit elements for the input and output matching networks. The measured response of the frequency multiplier under various different operating conditions is presented and discussed. The design of the microwave bandpass filters is based on the theory of coupling and external quality factors. To aid in the verification and optimisation of the design, a software simulation tool is used. The presented S-parameter measurements of the filters show how well the theory matches with what is obtained in practice. The measured spectral and phase noise response of various components comprising the synthesiser, are discussed. These measurements provide insight into the response of individual components under different operating conditions and show the behaviour of important subsystems of the synthesiser. The thesis culminates in the presentation of the measured phase noise of the complete synthesiser. It is shown how well the measured phase noise correlates with the calculated phase noise. In addition, the measured spectral content and transient behaviour of the synthesiser are investigated and discussed. High power spurious components at some output frequencies are indentified and reduced. The feasibility of using the developed prototype phase-locked loop based frequency synthesiser for coherent X-band Doppler radar is discussed and demonstrated.
52

Mixed signal design flow, a mixed signal PLL case study

Shariat Yazdi, Ramin January 2001 (has links)
Mixed-signal designs are becoming more and more complex every day. In order to adapt to the new market requirements, a formal process for design and verification of mixed signal systems i. e. top-down design and bottom-up verification methodology is required. This methodology has already been established for digital design. The goal of this research is to propose a new design methodology for mixed signal systems. In the first two chapters of this thesis, the need for a mixed signal design flow based on top-down design methodology will be discussed. The proposed design flow is based on behavioral modeling of the mixed signal system using one of the mixed signal behavioral modeling languages. These models can be used for design and verification through different steps of the design from system level modeling to final physical design. The other advantage of the proposed flow is analog and digital co-design. In the remaining chapters of this thesis, the proposed design flow was verified by designing an 800 MHz mixed signal PLL. The PLL uses a charge pump phase frequency detector, a single capacitor loop filter, and a feed forward error correction architecture using an active damping control circuit instead of passive resistor in loop filter. The design was done in 0. 18- <i>??</i> m CMOS process technology.
53

Memória: preservação de características individuais e de grupo em sistemas coerentes formados pelo acoplamento de osciladores / Memory: preservation of individual and group characteristics in coherent systems formed by the coupling of oscillators

Siqueira, Paulo de Tarso Dalledone 29 April 2003 (has links)
O presente trabalho propõe-se a oferecer respostas à questão de como a informação é preservada num sistema, focalizando-se na distinção entre os papéis desempenhados pelos constituintes elementares e pelos estruturais na preservação da memória desse sistema. Os sistema simulados circunscreveram-se a malhas, com diferentes graus de regularidade, compostas pelo acoplamento de osciladores não-lineares que apresentam comportamento coerente no estado de equilíbrio. Malhas de Sincronismo de Fase, também conhecidas por PLLs (Phase Locked Loops), foram adotadas como elementos constituintes básicos dos sistemas analisados. Para tanto, utilizou-se a plataforma de cálculo MATLAB-SIMULINK, acompanhando-se as evoluções dos diversos sistemas e de seus parâmetros dinâmicos associados, possibilitando o estabelecimento da correspondência entre os valores dos referidos parâmetros dinâmicos com parâmetros gráficos \"sensíveis\" à estrutura das malhas. Os resultados obtidos indicam a coexistência/cooperação das componentes estrutural e elementar na determinação dos valores dos parâmetros dinâmicos no estado de equilíbrio do sistema. No entanto, evidencia-se que tais componentes apresentam importâncias distintas na determinação dos diferentes parâmetros dinâmicos. / This work was conceived aiming to present some answers to how the information is preserved in a system. The focus was laid on the distinction between the tasks played by the elementary components and the structure of the system. The simulated systems were composed by coupled oscillators, more precisely by PLLs (Phase Locked Loops), arranged in networks of different regularities. Simulations were performed using Matlab-Simulink software to build a correlation between the final state dynamical parameters of the system and its degree of regularity. Results show the influence of both elementary and structural components on the system attained state. However the responses of characteristics parameters of the system to changes in the regularity of the structured network may greatly differ from one parameter to another. This behavior may suggest different strategies to preserve information of the system according to the information to be kept.
54

BICMOS implementation of UAA 4802.

January 1989 (has links)
by C.Y. Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1989. / Bibliography: leaves [147]-[148]
55

The RMS phase error of a phase-locked loop FM demodulator for standard NTSC video

Dubbert, Dale F January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries / Department: Electrical and Computer Engineering.
56

Nonlinear estimation theory and phase-lock loops.

Eterno, John S January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Vita. / Bibliography : leaves 226-229. / Ph.D.
57

CMOS Signal Synthesizers for Emerging RF-to-Optical Applications

Sharma, Jahnavi January 2018 (has links)
The need for clean and powerful signal generation is ubiquitous, with applications spanning the spectrum from RF to mm-Wave, to into and beyond the terahertz-gap. RF applications including mobile telephony and microprocessors have effectively harnessed mixed-signal integration in CMOS to realize robust on-chip signal sources calibrated against adverse ambient conditions. Combined with low cost and high yield, the CMOS component of hand-held devices costs a few cents per part per million parts. This low cost, and integrated digital processing, make CMOS an attractive option for applications like high-resolution imaging and ranging, and the emerging 5-G communication space. RADAR techniques when expanded to optical frequencies can enable micrometers of resolution for 3D imaging. These applications, however, impose upto 100x more exacting specifications on power and spectral purity at much higher frequencies than conventional RF synthesizers. This generation of applications will present unconventional challenges for transistor technologies - whether it is to squeeze performance in the conventionally used spectrum, already wrung dry, or signal generation and system design in the relatively emptier mm-Wave to sub-mmWave spectrum, much of the latter falling in the ``Terahertz Gap". Indeed, transistor scaling and innovative device physics leading to new transistor topologies have yielded higher cut-off frequencies in CMOS, though still lagging well behind SiGe and III-V semiconductors. To avoid multimodule solutions with functionality partitioned across different technologies, CMOS must be pushed out of its comfort zone, and technology scaling has to have accompanying breakthroughs in design approaches not only at the system but also at the block level. In this thesis, while not targeting a specific application, we seek to formulate the obstacles in synthesizing high frequency, high power and low noise signals in CMOS and construct a coherent design methodology to address them. Based on this, three novel prototypes to overcome the limiting factors in each case are presented. The first half of this thesis deals with high frequency signal synthesis and power generation in CMOS. Outside the range of frequencies where the transistor has gain, frequency generation necessitates harmonic extraction either as harmonic oscillators or as frequency multipliers. We augment the traditional maximum oscillation frequency metric (fmax), which only accounts for transistor losses, with passive component loss to derive an effective fmax metric. We then present a methodology for building oscillators at this fmax, the Maximum Gain Ring Oscillator. Next, we explore generating large signals beyond fmax through harmonic extraction in multipliers. Applying concepts of waveform shaping, we demonstrate a Power Mixer that engineers transistor nonlinearity by manipulating the amplitudes and relative phase shifts of different device nodes to maximize performance at a specific harmonic beyond device cut-off. The second half proposes a new architecture for an ultra-low noise phase-locked loop (PLL), the Reference-Sampling PLL. In conventional PLLs, a noisy buffer converts the slow, low-noise sine-wave reference signal to a jittery square-wave clock against which the phase of a noisy voltage-controlled oscillator (VCO) is corrected. We eliminate this reference buffer, and measure phase error by sampling the reference sine-wave with the 50x faster VCO waveform already available on chip, and selecting the relevant sample with voltage proportional to phase error. By avoiding the N-squared multiplication of the high-power reference buffer noise, and directly using voltage-mode phase error to control the VCO, we eliminate several noisy components in the controlling loop for ultra-low integrated jitter for a given power consumption. Further, isolation of the VCO tank from any varying load, unlike other contemporary divider-less PLL architectures, results in an architecture with record performance in the low-noise and low-spur space. We conclude with work that brings together concepts developed for clean, high-power signal generation towards a hybrid CMOS-Optical approach to Frequency-Modulated Continuous-Wave (FMCW) Light-Detection-And-Ranging (LIDAR). Cost-effective tunable lasers are temperature-sensitive and have nonlinear tuning profiles, rendering precise frequency modulations or 'chirps' untenable. Locking them to an electronic reference through an electro-optic PLL, and electronically calibrating the control signal for nonlinearity and ambient sensitivity, can make such chirps possible. Approaches that build on the body of advances in electrical PLLs to control the performance, and ease the specification on the design of optical systems are proposed. Eventually, we seek to leverage the twin advantages of silicon-intensive integration and low-cost high-yield towards developing a single-chip solution that uses on-chip signal processing and phased arrays to generate precise and robust chirps for an electronically-steerable fine LIDAR beam.
58

A 1.5 V, 2.4 GHz monolithic CMOS sub-integer-N frequency synthesizer for WLAN application. / CUHK electronic theses & dissertations collection

January 2011 (has links)
This thesis presents the design of a 2.4 GHz sub-integer-N PLL for IEEE 802.llb/g WLAN applications. The proposed PLL not only acquires the advantages of the integer-N PLL, such as simple structure and good spurious performance, but also offers some benefits (for example, faster settling time and better phase noise performance) as in the fractional-N PLL design. In this design, a novel quadrature-input programmable fractional frequency divider provides fractional division ratio in steps of 0.5 by the phase-switching technique. Its key building block is a dual divide-by-4 injection-locked frequency divider (ILFD), which is realized by coupling two conventional divide-by-4 ILFDs. Two different coupling schemes are introduced, namely the cross-coupling type and coherent-coupling type. In both schemes, symmetric configuration is maintained and hence does not degrade the PLL output phase quadrature accuracy. Furthermore, the generated phase pattern for phase switching is uniquely defined, which simplifies the phase-switching circuitry and suppresses the possibility of incorrect frequency division due to glitches. / To demonstrate the feasibility of the two proposed coupling methodologies, two subinteger-N PLLs with different fractional frequency dividers have been fabricated in a 0.35 11m standard CMOS process. In design 1, the dual divide-by-4 ILFD in the fractional frequency divider is implemented with the cross-coupling scheme while the coherent-coupling scheme is used in design 2. The measured spurious tones of both designs are under -64 dBc and their measured phase noise at 1 MHz frequency offset is less than -115 dBc/Hz. The two proposed frequency synthesizers settle at approximately 32 us and their phase mismatches of the quadrature outputs are better than 38 dB (characterized by image rejection ratio). Moreover, both designs individually occupy a chip area as small as 0.70 mm2. At a supply of 1.5 V, the total power consumption for each design is below 24.1 mW. / Wireless local area networks (WLANs) are being extensively deployed since their introduction in the late 1990s. Low cost, high performance frequency synthesizers are indispensable in WLAN telecommunication systems. Meanwhile, integer-N phase-locked loop (PLL) architecture is commonly chosen due to its low circuit complexity and clean output spectrum with few spurs. However, designers have to face the tradeoffs between frequency resolution, phase noise performance and switching time. To solve the above dilemma, fractional-N PLL architecture is proposed, but fractional spurs emerge in the output spectrum, degrading the spectrum purity. Sub-integer-N PLL is thus a compromise between the integer-N and fractional-N PLL. Its structure is same as that of the integer-N while fractional division is achieved by a fractional frequency divider that is not relied on time-varying modulus control as in the fractional-N PLL. / Chang, Ka Fai. / Adviser: Kwok-Keung Cheng. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 176-188). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
59

Synchronization of POTS Systems Connected over Ethernet

Lindblad, Jonatan January 2005 (has links)
<p>POTS (Plain Old Telephony Service) systems have traditionally been connected via synchronous connections. When installing new nodes in the telephone network, they may sometimes be connected via packet networks such as Ethernet. Ethernet is an asynchronous network which means that nodes connected to the network don’t have access to the same clock frequency if it is not provided in some other way. If two nodes have different clock frequency, the receiver’s buffer will eventually overflow or starve. While not being a severe problem for telephony, devices used for data transmission, e.g. modems and fax will not be able to function properly. To avoid this it is necessary to synchronize the nodes.</p><p>This thesis investigates methods to synchronize nodes connected over Ethernet by simulating them in Matlab. The simulations show that under certain circumstances it is possible to produce a clock signal conforming to relevant standards.</p>
60

Design of a low jitter digital PLL with low input frequency

Jung, Seokmin 05 June 2012 (has links)
Complex digital circuits such as microprocessors typically require support circuitry that has traditionally been realized using analog or mixed-signal macros. PLL circuits are used in many integrated applications such as frequency synthesizers and inter-chip communication interfaces. As process technologies advance and grow in complexity, the challenge of maintaining required analog elements and performance for use in circuits such as PLLs grows. Recently, digital PLL (DPLL) has emerged as an alternative to analog PLL to overcome many constraints such as low supply voltage, poor analog transistor behavior, larger area due to integrated capacitor and process variability. However, DPLLs have high deterministic jitter due to quantization noise of time-to-digital converter (TDC) and digitally-controlled oscillator (DCO) and struggle with random jitter of oscillator. In this thesis, hybrid analog/digital proportional/integral control is used to suppress TDC quantization error and digital phase accumulation techniques to mitigate DCO quantization error. VCO phase noise was reduced using an embedded voltage-mode feedback. This feedback loop is implemented by using a switched-C circuit which converts frequency to current. Designed in a 130nm CMOS process, the proposed DPLL generates more than 1GHz output frequency with low input frequency and achieves superior jitter performance compared to conventional DPLL in simulations. / Graduation date: 2013

Page generated in 0.6533 seconds