• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 14
  • 13
  • 12
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Generation of micro/nano metallic nanostructures using self-assembled monolayers as template and electrochemistry

She, Zhe January 2012 (has links)
This thesis studies a scheme to fabricate small-scaled metal structures by electrochemical metal deposition and lift off. The key point is the use of self-assembled monolayers (SAMs) to control both interfacial charge transfer in electrodeposition and adhesion of the deposit to the substrate. Patterned SAMs exhibiting blocking and non-blocking areas are applied as templates in electrochemical deposition of Cu or Au. Thiol SAMs on Au substrates are used, namely alkane thiols and thiols combining an aliphatic chain with a biphenyl or biphenyl analogous pyridine-phenyl moieties. The patterning of SAMs is realised with microcontact printing (μCP) and electron beam lithography. Electrochemical deposition based on defects in the SAMs is optimised towards generating small nanostructures and depending on the system single or stepped potential procedures are applied. Generated metal structures are transferred to an insulator by lift off. Au microstructures (~10 μm) have been made with microcontact printing and transferred onto epoxy glue, which can potentially be used as microelectrodes in electroanalytical chemistry. Sub-100 nm Cu features and sub-40 nm Au features have been created with electron beam lithography respectively. Lift off process has successfully transferred Cu nanostructures onto epoxy glue with high precision. In contrast to the deposition mediated by defects, Cu deposition mediated by discharging Pd²⁺ coordinated to a pyridine terminated SAM directly through the SAM molecules has been explored as a new approach. This new approach has potential to decrease the size of the metal structure further and the preliminary results show possibility of sub-10 nm features. SAMs prepared with a newly synthesised molecule, 3-(4'-(methylthio)-[1,1'-biphenyl]-4-yl)propane-1-thiol, are characterised by STM, XPS and NEXAFS. The metal structures are investigated by SEM, AFM and STM.
22

Integral Approach for Hybrid Manufacturing of Large Structural Titanium Space Components

Seidel, André 19 April 2022 (has links)
This thesis presents a newly developed manufacturing method, based on cyber-physically enhanced hybrid machining, regarding an optical bench (OB) made of Ti6Al4V alloy for the Advanced Telescope for High-ENergy Astrophysics (ATHENA). The method includes sophisticated hybrid laser metal deposition equipment and state-of-the-art cryogenic machining hardware. The derived strategy combines localized energy input, preheating, heat treatment, intermediate stress relief and machining. This results in a complex thermal history and remaining residual stresses, representing a considerable challenge for final precision machining. The method targets first time right machining based on iterative machining, process data-based tool path correction and spatially resolved root cause research based on process data modeling.:II. Table of Contents I. Acknowledgement ............................................................ III II. Table of Contents ................................................................. I 1. Introduction ........................................................................ 1 1.1 Foreword .................................................................................... 1 1.2 Research Subject Lot Size One ....................................................... 2 1.2.1 Historical Perspective ................................................................. 2 1.2.2 Going Full Cycle ......................................................................... 3 2. State of the Art in Titanium Processing ............................... 4 2.1 Conventional Processing................................................................ 4 2.2 Additive Manufacturing ................................................................. 5 2.2.1 Introduction .............................................................................. 5 2.2.2 Powder Bed Fusion ..................................................................... 6 2.2.3 Direct Energy Deposition ............................................................. 8 3. Derivation of a Flexible Hybrid Manufacturing System ...... 11 3.1 The ATHENA OB – a Large Structural Space Component ..................11 3.2 Material Constraints ....................................................................12 3.3 Solidification and Microstructural Content .......................................17 3.4 Residual Stresses and Intrinsic Heat Treatment ..............................22 3.4.1 Transient Temperature Gradients ................................................22 3.4.2 Residual Stresses and Degree of Fixity ........................................24 3.4.3 In-situ Stress Relief and Plastic Deformation ................................28 3.4.4 In-situ Martensite Decomposition and Thermal Trade-off ...............30 3.5 Melt Pool Considerations in Laser Metal Deposition ..........................36 3.6 Concept of Flexible Hybrid Manufacturing Cell .................................43 3.7 Process and Equipment Review by ESA ..........................................45 4. Realization of a Flexible Manufacturing Cell ...................... 45 4.1 Additive Processing with Hybrid Laser Metal Deposition ....................45 4.1.1 Principle Hardware ....................................................................45 4.2 Novel Local Shielding Solution ......................................................47 4.2.1 Melt Pool Observation towards Process Data Model ........................51 4.2.2 Energy Source Coupling .............................................................57 4.3 Subtractive Processing with Cryogenic Milling .................................57 4.3.1 General Considerations for Subtractive Processing ........................57 4.3.2 Cryogenic Machining Approach ...................................................58 4.3.3 Cryogenic Machining from the Materials Viewpoint ........................60 4.3.4 Cryogenic Machining of Additively Manufactured Ti-6Al-4V .............62 4.3.5 Principle Hardware for Cryogenic Milling with CO2..........................66 4.3.6 Intelligent Tool Spindle Future Part of the Process Data Model ........69 4.3.7 Carbon Dioxide Weighing Equipment and Switching Station ............70 4.3.8 Protective Measures for Safe Use of Cryogenic CO2 .......................72 4.4 Handling System .........................................................................74 4.4.1 Framework Considerations .........................................................74 4.4.2 Twin Robot System in the Initial State .........................................76 4.4.3 Integration of the ATHENA Turntable ...........................................79 4.4.4 Robot Calibration ......................................................................81 4.5 Lighting for Visual Inspection ........................................................84 4.6 Critical Design Review by ESA .......................................................84 5. Implementation and Validation ......................................... 85 5.1 Powdery Filler Material Selection ...................................................85 5.2 Basic Parameter Set for Additive Manufacturing ..............................87 5.2.1 Operating Point Selection ...........................................................87 5.2.2 Characterization and evaluation ..................................................89 5.2.3 Substrate to Structure Transition ................................................95 5.3 Energy Source Coupling ...............................................................99 5.3.1 Process Development ................................................................99 5.3.2 As-built Surface Treatment ...................................................... 103 5.3.3 Heat Treatment ...................................................................... 104 5.3.4 Mechanical Testing .................................................................. 106 5.3.5 Fractured Surfaces .................................................................. 108 5.3.6 Microstructure ........................................................................ 110 5.3.7 Linear Expansion Coefficient ..................................................... 113 5.4 Cryogenic Milling ....................................................................... 114 5.4.1 Strategy Approach .................................................................. 114 5.4.2 Milling Implementation ............................................................ 116 5.4.3 Technical Cleanliness ............................................................... 120 5.4.4 Accuracy and Duration ............................................................. 122 5.4.5 Surface Roughness.................................................................. 122 5.5 Process Data Model ................................................................... 123 6. Final Discussion and Conclusions..................................... 130 6.1 Summary ................................................................................. 130 6.2 Conclusions .............................................................................. 131 6.3 Outlook .................................................................................... 132 III. List of Figures ...................................................................... I IV. List of Tables .................................................................. VIII V. References ......................................................................... IX VI. Symbols and Units ....................................................... XXXVI VII. Abbreviations .............................................................. XXXIX VIII. Annex I ............................................................................ XLI IX. Annex II ....................................................................... XLIII X. Annex III ....................................................................... XLIV XI. Annex IV.......................................................................... XLV XII. Annex V ......................................................................... XLVI XIII. Annex VI....................................................................... XLVII XIV. Annex VII ................................................................... XLVIII
23

A Feasibility Study of an Automated Repair Process using Laser Metal Deposition (LMD) with a Machine Integrated Component Measuring Solutio

Säger, Florian January 2019 (has links)
The repair of worn or damaged components is becoming more attractive to manufacturers, since it enables them to save resources, like raw material and energy. With that costs can be reduced, and profit can be maximised. When enabling the re-use of components, the lifetime of a component can be extended, which leads to improved sustainability measures. However, repair is not applied widely, mainly because costs of repairing are overreaching the costs of purchasing a new component. One of the biggest expense factors of repairing a metal component is the labourintense part of identifying and quantifying worn or damages areas with the use of various external measurement systems. An automated measuring process would reduce application cost significantly and allow the applications to less cost intense component. To automate the repair process, in a one-machine solution, it is prerequisite that a measuring device is included in the machine enclosure. For that, different measuring solutions are being assessed towards applicability on the “Trumpf TruLaser Cell 3000 Series”. A machine that uses the Laser Metal Deposition (LMD) technology to print, respectively weld, metal on a target surface. After a theoretical analysis of different solutions, the most sufficient solution is being validated by applying to the machine. During the validation a surface models from a test-component is generated. The result is used to determine the capability of detecting worn areas by doing an automated target-actual comparison with a specialised CAM program. By verifying the capability of detecting worn areas and executing a successful repair, the fundamentals of a fully automated repair process can be proven as possible in a one-machine solution. / Tillverkare har börjat se stora möjligheter i att reparera slitna eller skadade komponenter som ett sätt att spara resurser, så som råmaterial och energi. Med den besparingen minskar kostnaderna och vinsten kan således maximeras. Reparation möjliggör även återanvändning av komponenter, vilket förlänger komponentens livslängd och leder till förbättrade hållbarhetsåtgärder. Dock tillämpas reparation inte i någon stor utsträckning i nuläget, främst eftersom kostnaderna för reparation överstiger kostnaderna för att köpa en ny komponent. En av de största kostnaderna för att reparera en metallkomponent är att identifiera och kvantifiera slitna eller skadade områden med hjälp av olika externa mätsystem, som är en väldigt arbetsintensiv process. En automatiserad mätprocess skulle minska avsökningskostnaden avsevärt och således reducera den totala kostnaden för komponenten. För att möjliggöra en automatiserad reparationsprocess i en enda maskinlösning är det en förutsättning att en mätanordning ingår i maskinhöljet. Därför har olika mätningslösningar utvärderats med avseende på användbarhet i "TRUMPF TruLaser Cell 3000 Series", vilket är en maskin som använder Laser Metall Deposition-teknik (LMD-teknik) för att skriva ut och svetsa metall på en definierad yta. En teoretisk analys av olika lösningar har utförts, där den teoretiskt mest lämpliga lösningen validerades genom att appliceras till maskinen. Valideringen genererade en modell av ytan av en testkomponent. Sedan utfördes en automatiserad, målrelaterad jämförelse med ett specialiserat CAM-program baserat på modellresultatet, för att bestämma möjligheten att upptäcka slitna områden. Genom att verifiera förmågan att upptäcka slitna områden samt genomförandet av en lyckad reparation kan grunden för en helt automatiserad reparationsprocess bevisas som möjlig i en enda maskinlösning. / Das reparieren von abgenutzten oder beschädigten Komponenten wird immer attraktiver für Hersteller. Es ermöglicht es Ressourcen einzusparen wie beispielsweise Rohmaterial und Energie, was die Lebenszeit einer Komponente verlängert und damit die Nachhaltigkeit verbessert. Allerdings ist Reparieren nach wie vor nicht weit verbreitet, hauptsächlich dadurch bedingt, dass die Reparaturkosten die Kosten für eine neue Komponente übersteigen. Einer der größten Kostenfaktoren des reparieren einer Metallkomponente ist der Arbeitsintensive Teil der Identifizierung und Quantifizierung des abgenutzten oder beschädigten Bereichs mit verschiedensten externen Vermessung Systemen. Ein automatisierter Vermessungsprozess würde die Kosten signifikant reduzieren und neue Applikationen ermöglichen. Das automatisieren der gesamte Prozesskette – in einer Single-Maschinenlösung – erfordert, dass eine Messeinrichtung im Bearbeitungsraum der Maschine angebracht wird. Dafür werden verschiedene Lösungen nach Anwendbarkeit an der Trumpf Laser Cell 3000 Serie hin beurteilt. Eine Maschine, welche Laser Metal Deposition (LMD) als Technologie anwendet um Material auf Oberflächen aufzubringen. Nach einer theoretischen Analyse verschiedener Lösungen wird die beste Lösung va durch anbringen an die Maschine validiert. Bei der Validierung wird ein Oberflächenmodel erzeugt. Das Ergebnis wird dann genutzt um die Fähigkeit zu belegen, dass beschädigte Stellen, durch einen Soll-Ist-Vergleich in einem speziellen CAM Programm, automatisch detektiert werden können. Basierend auf diesem Beleg und mit dem Ergebnis eine Komponente erfolgreich reparieren zu können, gilt die These eines automatisierten Reparaturprozesses in einer Single-Maschinenlösung als beweisen.
24

Phenomena in material addition to laser generated melt pools

Prasad, Himani Siva January 2019 (has links)
No description available.
25

Herstellung mesoskopischer Ringe und Stäbchen aus Gold

Kaufmann, Sabine 20 December 2012 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die templatgestützte Erzeugung metallischer Stäbchen und Ringstrukturen im Mikrometer- und Nanometerbereich. Derartige Strukturen besitzen vor allem aufgrund ihres außergewöhnlichen Verhaltes gegenüber elektromagnetischen Wellen ein hohes Potential für optische, elektronische, magnetische oder sensorische Anwendungen. Zunächst wird das Vorgehen zur Herstellung mesoskopischer Ringe durch die Infiltration von Kolloidkristallen aus Siliziumdioxid mittels geeigneter Präkursorlösungen detailliert betrachtet. Daraufhin werden Ansätze zur Optimierung einzelner Teilschritte vorgestellt. Im Anschluss erfolgt die Übertragung des Verfahrens auf die Herstellung von Goldringen. Neben der elektronenmikroskopischen Charakterisierung der Proben wird unter anderem durch energiedispersive Röntgenspektroskopie (EDXS), Elektronenrückstreubeugung (EBSD) und Röntgenphotoelektronenspektroskopie (XPS) bestätigt, dass die entstandenen Strukturen aus metallischem Gold bestehen. Ein weiterer Inhalt dieser Arbeit ist die Konzeption und Umsetzung einer Apparatur zur elektrochemischen Erzeugung von mesoskopischen Metallstäbchen im Inneren von porösen Aluminiumoxidmembranen. Im Anschluss wird die Herstellung von Silber- und Goldstäbchen beschrieben. Außerdem wird aufgeführt, wie die sequenzielle Abscheidung der beiden Metalle unter anschließender Auflösung des metallischen Silbers zur Erhöhung der Ausbeute an isolierten Goldstäbchen führt.
26

Process Mapping for Laser Metal Deposition of Wire using Thermal Simulations : A prediction of material transfer stability / Processkartläggning för lasermetalldeponering av tråd baserat på termiska simuleringar : En prediktering av materialöverföringsstabilitet

Lindell, David January 2021 (has links)
Additive manufacturing (AM) is a quickly rising method of manufacturing due to its ability to increase design freedom. This allows the manufacturing of components not possible by traditional subtractive manufacturing. AM can greatly reduce lead time and material waste, therefore decreasing the cost and environmental impact. The adoption of AM in the aerospace industry requires strict control and predictability of the material deposition to ensure safe flights.  The method of AM for this thesis is Laser Metal Deposition with wire (LMD-w). Using wire as a feedstock introduces a potential problem, the material transfer from the wire to the substrate. This requires all process parameters to be in balance to produce a stable deposition. The first sign of unbalanced process parameters are the material transfer stabilities; stubbing and dripping. Stubbing occurs when the energy to melt the wire is too low and the wire melts slower than required. Dripping occurs when too much energy is applied and the wire melts earlier than required.  These two reduce the predictability and stability that is required for robust manufacturing.  Therefore, the use of thermal simulations to predict the material transfer stability for LMD-w using Waspaloy as the deposition material has been studied.  It has been shown that it is possible to predict the material transfer stability using thermal simulations and criterions based on preexisting experimental data. The criterion for stubbing checks if the completed simulation result produces a wire that ends below the melt pool. For dripping two criterions shows good results, the dilution ratio is a good predictor if the tool elevation remains constant. If there is a change in tool elevation the dimensionless slenderness number is a better predictor.  Using these predictive criterions it is possible to qualitatively map the process window and better understand the influence of tool elevation and the cross-section of the deposited material. / Additiv tillverkning (AT) är en kraftigt växande tillverkningsmetod på grund av sin flexibilitet kring design och möjligheten att skapa komponenter som inte är tillverkningsbara med traditionell avverkande bearbetning.  AT kan kraftigt minska tid- och materialåtgång och på så sett minskas kostnader och miljöpåverkan. Införandet av AT i flyg- och rymdindustrin kräver strikt kontroll och förutsägbarhet av processen för att försäkra sig om säkra flygningar.  Lasermetalldeponering av tråd är den AT metod som hanteras i denna uppsats. Användandet av tråd som tillsatsmaterial skapar ett potentiellt problem, materialöverföringen från tråden till substratet. Detta kräver att alla processparametrar är i balans för att få en jämn materialöverföring. Är processen inte balanserad syns detta genom materialöverföringsstabiliteterna stubbning och droppning. Stubbning uppkommer då energin som tillförs på tråden är för låg och droppning uppkommer då energin som tillförs är för hög jämfört med vad som krävs för en stabil process. Dessa två fenomen minskar möjligheterna för en kontrollerbar och stabil tillverkning.  På grund av detta har användandet utav termiska simuleringar för att prediktera materialöverföringsstabiliteten för lasermetalldeponering av tråd med Waspaloy som deponeringsmaterial undersökts. Det har visat sig vara möjligt att prediktera materialöverföringsstabiliteten med användning av termiska simuleringar och kriterier baserat på tidigare experimentell data. Kriteriet för stubbning kontrolleras om en slutförd simulering resulterar i en tråd som når under smältan.  För droppning finns två fungerande kriterier, förhållandet mellan svetshöjd och penetrationsdjup om verktygshöjden är konstant, sker förändringar i verktygshöjden är det dimensionslös ”slenderness” talet ett bättre kriterium.  Genom att använda dessa kriterier är det möjligt att kvalitativt kartlägga processfönstret och skapa en bättre förståelse för förhållandet mellan verktygshöjden och den deponerade tvärsnittsarean.
27

Herstellung mesoskopischer Ringe und Stäbchen aus Gold

Kaufmann, Sabine 28 November 2012 (has links)
Gegenstand der vorliegenden Arbeit ist die templatgestützte Erzeugung metallischer Stäbchen und Ringstrukturen im Mikrometer- und Nanometerbereich. Derartige Strukturen besitzen vor allem aufgrund ihres außergewöhnlichen Verhaltes gegenüber elektromagnetischen Wellen ein hohes Potential für optische, elektronische, magnetische oder sensorische Anwendungen. Zunächst wird das Vorgehen zur Herstellung mesoskopischer Ringe durch die Infiltration von Kolloidkristallen aus Siliziumdioxid mittels geeigneter Präkursorlösungen detailliert betrachtet. Daraufhin werden Ansätze zur Optimierung einzelner Teilschritte vorgestellt. Im Anschluss erfolgt die Übertragung des Verfahrens auf die Herstellung von Goldringen. Neben der elektronenmikroskopischen Charakterisierung der Proben wird unter anderem durch energiedispersive Röntgenspektroskopie (EDXS), Elektronenrückstreubeugung (EBSD) und Röntgenphotoelektronenspektroskopie (XPS) bestätigt, dass die entstandenen Strukturen aus metallischem Gold bestehen. Ein weiterer Inhalt dieser Arbeit ist die Konzeption und Umsetzung einer Apparatur zur elektrochemischen Erzeugung von mesoskopischen Metallstäbchen im Inneren von porösen Aluminiumoxidmembranen. Im Anschluss wird die Herstellung von Silber- und Goldstäbchen beschrieben. Außerdem wird aufgeführt, wie die sequenzielle Abscheidung der beiden Metalle unter anschließender Auflösung des metallischen Silbers zur Erhöhung der Ausbeute an isolierten Goldstäbchen führt.
28

Development of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718

Makiewicz, Kurt Timothy 09 August 2013 (has links)
No description available.
29

Additive Manufacturing of Maraging 250 Steels for the Rejuvenation and Repurposing of Die Casting Tooling

Kottman, Michael Andrew 09 February 2015 (has links)
No description available.
30

Effets plasmoniques induits par des nanostructures d’argent sur des couches minces de silicium / Plasmonic effects induced by silver nanostructures on thin-films silicon

Mailhes, Romain 04 October 2016 (has links)
Le domaine du photovoltaïque en couches minces s’attache à réduire le coût de l’énergie photovoltaïque, en réduisant considérablement la quantité de matières premières utilisées. Dans le cas du silicium cristallin en couches minces, la réduction de l’épaisseur de la cellule s’accompagne d’une baisse drastique de l’absorption, notamment pour les plus fortes longueurs d’onde. Nombreuses sont les techniques aujourd’hui mises en œuvre pour lutter contre cette baisse de performance, dont l’utilisation des effets plasmoniques induits par des nanostructures métalliques qui permettent un piégeage de la lumière accru dans la couche absorbante. Dans ces travaux, nous étudions l’influence de nanostructures d’argent organisées suivant un réseau périodique sur l’absorption d’une couche de silicium. Ces travaux s’articulent autour de deux axes majeurs. L’influence de ces effets plasmoniques sur l’absorption est d’abord mise en évidence à travers différentes simulations numériques réalisées par la méthode FDTD. Nous étudions ainsi les cas de réseaux périodiques finis et infinis de nanostructures d’argent situés sur la face arrière d’une couche mince de silicium. En variant les paramètres du réseau, nous montrons que l’absorption au sein du silicium peut être améliorée dans le proche infrarouge, sur une large plage de longueurs d’onde. Le second volet de la thèse concerne la réalisation des structures modélisées. Pour cela, deux voies de fabrication ont été explorées et développées. Pour chacune d’entre elles, trois briques élémentaires ont été identifiées : (i) définition du futur motif du réseau grâce à un masque, (ii) réalisation de pores dans le silicium et (iii) remplissage des pores par de l’argent pour former le réseau métallique. La première voie de fabrication développée fait appel à un masque d’alumine, réalisé par l’anodisation électrochimique d’une couche d’aluminium, pour définir les dimensions du réseau métallique. Une gravure chimique assistée par un métal est ensuite utilisée pour former les pores, qui seront alors comblés grâce à des dépôts d’argent par voie humide. La seconde voie de fabrication utilise un masque réalisé par lithographie holographique, une gravure des pores par RIE et un remplissage des pores par dépôt d’argent electroless. Les substrats plasmoniques fabriqués sont caractérisés optiquement, au moyen d’une sphère intégrante, par des mesures de transmission, réflexion et absorption. Pour tous les substrats plasmoniques caractérisés, les mesures optiques montrent une baisse de la réflexion et de la transmission et une hausse de l’absorption pour les plus grandes longueurs d’onde. / Thin-film photovoltaics focus on lowering the cost reduction of photovoltaic energy through the significant reduction of raw materials used. In the case of thin-films crystalline silicon, the reduction of the thickness of the cell is linked to a drastic decrease of the absorption, particularly for the higher wavelengths. This decrease of the absorption can be fought through the use of several different light trapping methods, and the use of plasmonic effects induced by metallic nanostructures is one of them. In this work, we study the influence of a periodic array of silver nanostructures on the absorption of a silicon layer. This work is decomposed into two main axes. First, the influence of the plasmonic effects on the silicon absorption is highlighted through different numerical simulations performed by the FDTD method. Both finite and infinite arrays of silver nanostructures, located at the rear side of a thin silicon layer, are studied. By varying the parameters of the array, we show that the silicon absorption can be improved in the near infrared spectral region, over a wide range of wavelengths. The second part of the thesis is dedicated to the fabrication of such modeled structures. Two different approaches have been explored and developed inside the lab. For each of these two strategies, three major building blocks have been identified: (i) definition of the future array pattern through a mask, (ii) etching of the pattern in the silicon layer and (iii) filling of the pores with silver in order to form the metallic array of nanostructures. In the first fabrication method, an anodic alumina mask, produced by the electrochemical anodization of an aluminium layer, is used in order to define the dimensions of the metallic array. A metal assisted chemical etching is then performed to produce the pores inside the silicon, which will then be filled with silver through a wet chemical process. The second fabrication method developed involves the use of holographic lithography to produce the mask, the pores in silicon are formed by reactive ion etching and they are filled during an electroless silver deposition step. The fabricated plasmonic substrates are optically characterized using an integrating sphere, and transmission, reflection and absorption are measured. All the characterized plasmonic substrates shown a decrease of their reflection and transmission and an absorption enhancement at the largest wavelengths.

Page generated in 0.1267 seconds