Spelling suggestions: "subject:"microfluidic""
1171 |
Study of interface evolution between two immiscible fluids due to a time periodic electric field in a microfluidic channelMayur, Manik 09 December 2013 (has links) (PDF)
Since the past decade, use of electro-osmotic flow (EOF) as an alternative flow mechanism in microdevices is becoming more popular due to its less bulky and low maintenance system design. However, one of the biggest shortcomings for its usage in mainstream applications is that it requires the concerned liquid to be electrically conductive. One idea can be to use the flow of conductive fluids to transport non-conductive liquids passively via interfacial shear transfer. Such an idea can has numerous applications in a wide range of fields like bio-chemical processing (e.g. lab-on-a-chip reactors, mixers, etc.), to oil extraction from porous rock formations. One of the significant characteristics of micro-scale flows is high surface to volume ratio, which significantly highlights the role of multi-phase interfaces in such dynamics. The presence of a fluid-fluid interface in an EOF necessitates the characterization of the parameters responsible for hydrodynamic instability of such systems. The present work focuses on the role of steady and time-dependent electric stress (Maxwell stress), capillary force and disjoining pressure on fluid-fluid interfacial instability. A linear stability analysis of interfacial perturbation was performed for a thin film of electrolyte under DC and AC electric fields. Through long wave asymptotic analysis of the Orr-Sommerfeld equations, parametric stability thresholds of a thin aqueous film explored. Further, a set of experiments were performed in order to characterize the EOF in a rectangular microchannel. With the help of a Particle Tracking Velocimetry analysis, velocity distributions were obtained which agreed well to the theoretical values. This was further used to estimate PDMS zeta potential, which was found to be within the reported values in the existing literature. Liquid-liquid interfacial deformation was also explored under a time-periodic EOF and a wide range of the magnitudes of capillary force, and diffusive and convective transport.
|
1172 |
Fluidic microchemomechanical integrated circuits processing chemical informationGreiner, Rinaldo, Allerdissen, Merle, Voigt, Andreas, Richter, Andreas 08 April 2014 (has links) (PDF)
Lab-on-a-chip (LOC) technology has blossomed into a major new technology fundamentally influencing the sciences of life and nature. From a systemic point of view however, microfluidics is still in its infancy. Here, we present the concept of a microfluidic central processing unit (CPU) which shows remarkable similarities to early electronic Von Neumann microprocessors. It combines both control and execution units and, moreover, the complete power supply on a single chip and introduces the decision-making ability regarding chemical information into fluidic integrated circuits (ICs). As a consequence of this system concept, the ICs process chemical information completely in a self-controlled manner and energetically self-sustaining. The ICs are fabricated by layer-by-layer deposition of several overlapping layers based on different intrinsically active polymers. As examples we present two microchips carrying out long-term monitoring of critical parameters by around-the-clock sampling. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
1173 |
CMOS Contact Imagers for Spectrally-multiplexed Fluorescence DNA BiosensingHo, Derek 08 August 2013 (has links)
Within the realm of biosensing, DNA analysis has become an indispensable research tool in medicine, enabling the investigation of relationships among genes, proteins, and drugs. Conventional DNA microarray technology uses multiple lasers and complex optics, resulting in expensive and bulky systems which are not suitable for point-of-care medical diagnostics. The immobilization of DNA probes across the microarray substrate also results in substantial spatial variation. To mitigate the above shortcomings, this thesis presents a set of techniques developed for the CMOS image sensor for point-of-care spectrally-multiplexed fluorescent DNA sensing and other fluorescence biosensing applications.
First, a CMOS tunable-wavelength multi-color photogate (CPG) sensor is presented. The CPG exploits the absorption property of a polysilicon gate to form an optical filter, thus the sensor does not require an external color filter. A prototype has been fabricated in a standard 0.35μm digital CMOS technology and demonstrates intensity measurements of blue (450nm), green (520nm), and red (620nm) illumination.
Second, a wide dynamic range CMOS multi-color image sensor is presented. An analysis is performed for the wide dynamic-range, asynchronous self-reset with residue readout architecture where photon shot noise is taken into consideration. A prototype was fabricated in a standard 0.35μm CMOS process and is validated in color light sensing. The readout circuit achieves a measured dynamic range of 82dB with a peak SNR of 46.2dB.
Third, a low-power CMOS image sensor VLSI architecture for use with comparator based ADCs is presented. By eliminating the in-pixel source follower, power consumption is reduced, compared to the conventional active pixel sensor. A 64×64 prototype with a 10μm pixel pitch has been fabricated in a 0.35μm standard CMOS technology and validated experimentally.
Fourth, a spectrally-multiplexed fluorescence contact imaging microsystem for DNA analysis is presented. The microsystem has been quantitatively modeled and validated in the detection of marker gene sequences for spinal muscular atropy disease and the E. coli bacteria. Spectral multiplexing enables the two DNA targets to be simultaneously detected with a measured detection limit of 240nM and 210nM of target concentration at a sample volume of 10μL for the green and red transduction channels, respectively.
|
1174 |
CMOS Contact Imagers for Spectrally-multiplexed Fluorescence DNA BiosensingHo, Derek 08 August 2013 (has links)
Within the realm of biosensing, DNA analysis has become an indispensable research tool in medicine, enabling the investigation of relationships among genes, proteins, and drugs. Conventional DNA microarray technology uses multiple lasers and complex optics, resulting in expensive and bulky systems which are not suitable for point-of-care medical diagnostics. The immobilization of DNA probes across the microarray substrate also results in substantial spatial variation. To mitigate the above shortcomings, this thesis presents a set of techniques developed for the CMOS image sensor for point-of-care spectrally-multiplexed fluorescent DNA sensing and other fluorescence biosensing applications.
First, a CMOS tunable-wavelength multi-color photogate (CPG) sensor is presented. The CPG exploits the absorption property of a polysilicon gate to form an optical filter, thus the sensor does not require an external color filter. A prototype has been fabricated in a standard 0.35μm digital CMOS technology and demonstrates intensity measurements of blue (450nm), green (520nm), and red (620nm) illumination.
Second, a wide dynamic range CMOS multi-color image sensor is presented. An analysis is performed for the wide dynamic-range, asynchronous self-reset with residue readout architecture where photon shot noise is taken into consideration. A prototype was fabricated in a standard 0.35μm CMOS process and is validated in color light sensing. The readout circuit achieves a measured dynamic range of 82dB with a peak SNR of 46.2dB.
Third, a low-power CMOS image sensor VLSI architecture for use with comparator based ADCs is presented. By eliminating the in-pixel source follower, power consumption is reduced, compared to the conventional active pixel sensor. A 64×64 prototype with a 10μm pixel pitch has been fabricated in a 0.35μm standard CMOS technology and validated experimentally.
Fourth, a spectrally-multiplexed fluorescence contact imaging microsystem for DNA analysis is presented. The microsystem has been quantitatively modeled and validated in the detection of marker gene sequences for spinal muscular atropy disease and the E. coli bacteria. Spectral multiplexing enables the two DNA targets to be simultaneously detected with a measured detection limit of 240nM and 210nM of target concentration at a sample volume of 10μL for the green and red transduction channels, respectively.
|
1175 |
Development of a non contact calorimeter in isoperibolic millifluidic systems using InfraRed Thermography : applied to biphasic flows / Développement d’un calorimètre sans contact pour des systèmes isopériboliques millifluidiques : application aux écoulements diphasiquesRomano Mungaray, Marta 30 October 2013 (has links)
Ce travail porte sur le développement d’une technique de calorimétrie sans contact pour des écoulements diphasiques. Ces derniers sont réalisés sur la forme d’un train gouttes dans des tubes de taille millimétriques dans des supports isopériboliques. L’idée principale est de coupler la Thermographie Infrarouge et les outils microfluidiques pour proposer une technique adapté de mesure. L’utilisation de la microfluidique rend possible l’utilisation de très faibles volumes réactionnels limitant ainsi tout risque lié à la dangerosité des réactions réalisées au sein des gouttes, l’outil Infrarouge permet de suivre ces écoulements avec grande précision. Les résultats de ces travaux de thèse montrent que l’outil est capable d’estimer des propriétés thermo-physiques des écoulements non réactifs. Ainsi, que de caractériser de réactions chimiques en termes d’enthalpie et cinétique. Finalement cette dernière caractérisation a été comparée aux techniques classiques pour mettre en évidence la précision et les avantages de l’outil développé / This work concerns the development of a non-contact calorimeter for two-phase flow characterization. The biphasic flow is performed under a droplet configuration inside millimetric tubings which are inserted into the isoperibolic chip. The main idea is to combine the Infrared Thermography and microfluidic tools to propose a suitable technique for accurate measurements. Microfluidics enables the use of small reaction volumes thus limiting any risk of dangerous reactions inside droplets, the Infrared tool enables to monitor the thermal signature of these flows with high accuracy. The results of this thesis show that this tool is able to estimate the thermophysical properties of non-reactive flows. Also , it is possible to characterize chemical reactions in terms of enthalpy and kinetics . Finally the latter characterization was compared to conventional techniques to demonstrate the benefits and the precision of the tool.
|
1176 |
Développement de la technique de vélocimétrie par marquage moléculaire pour l'étude expérimentale des micro-écoulements gazeux / Development of molecular tagging velocimetry technique for experimental study of gaseous microflowsSamouda, Feriel 13 December 2012 (has links)
Ce travail de thèse porte sur le développement de la technique de Vélocimétrie par Marquage Moléculaire (Molecular Tagging Velocimetry - MTV) pour l’étude expérimentale des micro-écoulements gazeux internes. Les micro-écoulements gazeux sont des écoulements raréfiés, caractérisés par un nombre de Knudsen non négligeable. L’analyse de la littérature montre un besoin crucial de données expérimentales de grandeurs locales relatives aux micro-écoulements gazeux. Ces données permettraient une discussion pertinente de la précision et des limites d’applicabilité des différents modèles théoriques proposés dans la littérature pour l’étude du régime de glissement, régime raréfié le plus souvent rencontré en microfluidique gazeuse. Dans cette optique, un banc d’essais expérimental a été développé pour la mesure de champs de vitesses par MTV. La technique consiste à suivre des molécules traceuses d’acétone introduites dans le gaz en écoulement et qui deviennent phosphorescentes lorsqu’elles sont excitées par une source lumineuse UV. Les différents compromis pris en compte pour le développement de ce banc (choix du traceur et du matériau, conception du canal instrumenté,…), ainsi que les techniques d’acquisition et de traitement de signal sont détaillés dans le manuscrit. L’analyse expérimentale commence par une étude du signal de phosphorescence de l’acétone. Ensuite, la technique de vélocimétrie par marquage moléculaire est validée par la mesure de champs de vitesses dans des écoulements laminaires confinés en régime non raréfié. Les résultats obtenus sont comparés à des profils de vitesse théoriques d’un écoulement de Poiseuille à pression atmosphérique. Enfin, les premiers résultats obtenus à basse pression sont présentés et commentés. La détection du signal à un niveau de pression de 1kPa est encourageante et offre de nombreuses perspectives pour l’exploration d’écoulements en régime raréfié / This thesis focuses on the development of Molecular Tagging Velocimetry (MTV) technique for the experimental analysis of internal microflows of gases. Gaseous microflows are rarefied flows characterized by a non-negligible Knudsen number. A literature review highlights a crucial need of experimental data on velocity fields within gaseous microflows. These data are required for a relevant discussion on the validity and limits of applicability of the different boundary conditions proposed in the slip flow, which is a regime often encountered in gaseous microsystems. An experimental setup has been designed for analyzing by MTV the velocity distribution in microchannels. The technique consists in detecting the displacement of acetone molecules, introduced as tracers in a gas flow; these molecules exhibit phosphorescence once excited by a UV light source. The various compromises taken into account for the setup design (choice of tracer, laser, channel material and design, camera and intensifier…), as well as the acquisition and processing techniques are detailed in the manuscript. The experimental analysis starts with a study of the acetone phosphorescence signal. Then, the MTV technique is validated by velocity field measurements in internal laminar flows through a rectangular minichannel in non-rarefied regime. The obtained results are successfully compared to the theoretical velocity profile of a Poiseuille flow. Finally, preliminary results obtained at lower pressures are presented and commented. The signal detection at a pressure level as low as 1 kPa is encouraging and draws various perspectives for the exploration of rarefied regimes
|
1177 |
Hydrodynamics of gas-liquid Taylor flow in microchannels / Hydrodynamique des écoulements de Taylor gaz-liquide en microcanauxAbadie, Thomas 14 November 2013 (has links)
Cette thèse porte sur l’étude des écoulements de Taylor (ou poche/bouchon) gazliquide en microcanal. Ces écoulements où les effets de tension de surface sont prépondérants ont été étudiées expérimentalement et numériquement pour des géométries rectangulaires avec divers rapports d’aspects. Une première partie expérimentale a consisté à caractériser la formation de bulles (taille, fréquence) en fonction des conditions opératoires, des propriétés des fluides (notamment à travers le nombre capillaire) et du mode de mise en contact des fluides. La dynamique de l’écoulement établi a par la suite été étudiée à l’aide du code JADIM. La simulation de ces écoulements dominés par la tension de surface a nécessité de lever les limitations liées à la prise en compte de la force capillaire. En effet des courants parasites numériques sont créés à proximité de l’interface lors de la simulation d’écoulements capillaires. Une méthode Level Set a été implémentée et comparée à la méthode Volume of Fluid d’origine en termes de courants parasites. Des simulations numériques 3D ont permis l’étude des effets du nombre capillaire et de la géométrie sur la dynamique des bulles de Taylor (vitesse, pression et formes de bulles). Les effets inertiels souvent négligés ont été considérés et leur influence, notamment sur les sauts de pression à l’interface, a été mise en évidence. Le mélange dans le bouchon liquide a également été étudié. / This thesis focuses on the hydrodynamics of gas-liquid Taylor flow (or slug flow) in microchannels. These flows, which are generally dominated by surface tension forces, have been investigated in rectangular channels of various cross-sectional aspect ratios by means of both experimental visualizations and numerical simulations. The first experimental part aims at characterizing the bubble generation process (bubble length and frequency of break-up) depending on the operating conditions, the fluid properties, as well as the junction where both fluids merge. Numerical simulations of fully developed Taylor flow have been carried out with the JADIM code. The computation of such surface tension dominated flows requires an accurate calculation of the surface tension force. Some limitations of the Volume of Fluid method have been highlighted and a Level Set method has been developed in order to improve the calculation of capillary effects. Both methods have been compared in detail in terms of spurious currents. 3D numerical simulations have been performed and the influence of the capillary number, as well as the effects of geometry have been highlighted. Inertial effects have been taken into account and their influence on the pressure drop has been shown to be non-negligible. Mixing in the liquid slug has also been studied.
|
1178 |
Absorption Flow-Cytometry for Point-of-Care DiagnosticsBanoth, Earu January 2017 (has links) (PDF)
Medical devices are used widely at every stage of disease diagnosis and treatment. To eradicate certain infectious diseases, the development of highly sensitive diagnostic tools and techniques is essential. The work reported in this thesis presents a novel approach, which can be used for the diagnosis of various diseases in the field of clinical cytology. The central theme of this approach was to develop a simple, holistic and completely automated system for point-of-care (POC) diagnostics. This is realized through the Development of an Absorption Flow-Cytometer with Synergistic Integration of Microfluidic, Optics and simple Electronics. Quantitative diagnosis of malaria has been taken as test case for the characterization and validation of the developed technology.
Malaria is a life-threatening disease widely prevalent in developing countries. Approximately half the world population undergoes a test of malaria and it kills close to half a million people every year. Early detection and treatment will reduce the number of fatalities and also decrease its transmission rate. In the recent past, several diagnostic tools have been developed to detect malaria but there are varied demands on diagnostic instruments in healthcare settings and endemic contexts. The objective of this thesis is to develop an instrument capable of identifying malaria-infected red blood cells (i-RBCs) from a given few micro-liters of whole blood. The optical absorption properties of blood cells were measured at a single-cell level to diagnose malaria. The proof-of-concept for the instrument was established in four stages, after which a prototype was also developed and validated.
In the first stage, a system capable of simultaneously imaging cells and also measuring their optical absorbance properties was developed. The developed system was employed to characterize absorption properties of red blood cells (malaria-infected and healthy ones) on blood-smear. A custom-made bright-field transmission microscope in combination with a pair of laser diode and photo-detector was used to simultaneously image and measure transmittance of infected and uninfected RBCs.
In the second stage, the technique was extended to enable high-throughput measurements with the use of microfluidic sample handling and synchronous data acquisition. Using this technique, the optical absorbance and morphology of infected and healthy RBCs have been characterized in statistically significant numbers. The correlation between cell morphology (from images) and single-cell optical absorbance level helped to establish the thresholds for differentiating healthy and infected cells.
In the third stage, a portable prototype capable of assessing optical absorbance levels of single cells was fabricated. The developed prototype is capable of assessing cells at throughputs of about 1800 cells/ second. It was initially validated with sample suspensions containing infected and healthy RBCs obtained from malaria cultures. For the device to be usable at the field-level, it has to function in the presence of all other cellular components of whole blood. The optical absorbance of other cellular components of blood like white blood cells and platelets, were characterized. The device was finally tested with blood samples spiked with malaria-infected RBCs validating the overall proof-of-concept and the developed prototype. The deployment of such cost-effective, automated POC system would enable malaria diagnosis at remote locations and play a crucial role in the ongoing efforts to eradicate malaria. In future, the presented technology can be extended to develop POC diagnostic tool for other diseases as well.
As it enables quantitative estimation of malaria, the present optical absorption flow analyzer would also find application in disease prognosis monitoring, anti-malarial drug development and other studies requiring measurements on a single-cell basis. The hyper-imaging system can be used to characterize and validate the threshold information, and can be incorporated in the prototype. Thus, it is a continuous process to characterization and implementation in the prototype. The optofluidic absorption flow analyzer will help enable affordable clinical diagnostic testing in resource limited settings. This approach will be extended to diagnose other diseases, using differences in optical absorption as criteria for differentiating healthy and infected cells.
|
1179 |
Plataformas alternativas para sistemas eletroforéticos integrados com detecção condutométrica sem contato / Alternative platforms for electrophoretic systems integrated with contactless conductivity detectionLobo Júnior, Eulício de Oliveira 10 March 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-10-03T14:17:36Z
No. of bitstreams: 2
Dissertação - Eunício de Oliveira Lobo Junior - 2016.pdf: 5628245 bytes, checksum: cb5cfdfdb21a0a9bed0292decf6c094f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-10-03T14:18:22Z (GMT) No. of bitstreams: 2
Dissertação - Eunício de Oliveira Lobo Junior - 2016.pdf: 5628245 bytes, checksum: cb5cfdfdb21a0a9bed0292decf6c094f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-10-03T14:18:22Z (GMT). No. of bitstreams: 2
Dissertação - Eunício de Oliveira Lobo Junior - 2016.pdf: 5628245 bytes, checksum: cb5cfdfdb21a0a9bed0292decf6c094f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-03-10 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / This report describes the development of two alternative platforms for electrophoretic runs in microsystems. Firstly, the development of a hybrid capillary system that dispenses microfabrication steps is presented using fused silica capillaries interconnected by a commercial crossed shape interface. This hybrid system was coupled with contactless conductivity detector (C4D) to allow the determination of inorganic cations in biological samples. Electrokinetic sample injection was performed through gated mode approach for the first time in this arrangement. Operational parameters such as: (i) wave frequency and amplitude applied in C4D system, (ii) electrical potential applied in injection, (iii) injection time, (iv) detection point, (v) effect of capillary conditioning as well as and (vi) recovery percentage were extensively investigated and optimized. Better separations of cationic mixture containing NH4+, K+, Na+, Ca2+ and Mg2+ were achieved using a buffer system composed of 50 mM Lactic Acid, 20 mM Histidine and 3 mM 18-crown-6 on a capillary with effective length of 14.5 cm. . Addition of internal standard was used to ensure analytical reproducibility and allow the recording of merit figures. Linear behaviors were observed in concentration ranges between 10 and 100 M for NH4+, K+, Ca2+ e Mg2+, and 20-200 M for Na+. The limit of detection values calculated were 3.75 μM (NH4+), 3.70 μM (K+), 7.50 μM (Na+), 5.00 μM (Ca2+) and 5.35 μM (Mg2+). The concentration levels achieved for cations in biological samples ranged from 4,1 μM to 200 μM. Besides the hybrid system, this report also describes the development of an alternative methodology for the fabrication of high-relief masters for soft-lithography in poly(dimethylsiloxane) (PDMS) substrate. One of the innovative features makes reference to the use of low cost commercial photoresist from textile industry - poly(vinyl acetate) (PVAc) - which exhibits low toxicity. PVAc films were deposited on printed cirtuitry boards through the use of a homemade spincoater developed by desktop cooler, with rotation time control. This methodology allowed the production of high relief masters and PDMS channels with width and depth of 50 μm and 40 μm, respectively. Channels and masters profiles They were characterized with the following techniques: scan electron microscopy, perfilometry, optical and electrical. PDMS electrophoresis devices were successfully used for the separation of major inorganic cations. / Esta dissertação descreve o desenvolvimento de duas plataformas alternativas para a realização de eletroforese em microssistemas. Inicialmente é descrita um sistema eletroforético híbrido que dispensa etapas de microfabricação utilizando capilares de sílica fundida, conectados por uma interface comercial com formato em cruz. Este sistema capilar híbrido foi acoplado com detecção condutométrica sem contato (C4D) e aplicado na determinação de cátions inorgânicos (NH4+, K+, Na+, Ca2+, Mg2+) em amostras biológicas. A injeção de amostras foi realizada eletrocineticamente no modo gated, sendo o primeiro estudo em capilares utilizando esta modalidade de injeção. Foram avaliados os parâmetros operacionais de funcionamento do sistema incluindo (i) frequência e amplitude da onda senoidal aplicada ao sistema de detecção, (ii) potencial elétrico aplicado na injeção, (iii) tempo de injeção, (iv) composição do tampão, (v) ponto de detecção, (vi) efeito do condicionamento do capilar e (vii) recuperação. As melhores separações para uma mistura contendo os cátions inorgânicos foram obtidas usando-se um sistema tamponante composto de ácido lático 50 mM, histidina 20 mM e éter coroa (18-crown-6) 3 mM em um capilar com comprimento efetivo de 14,5 cm. As figuras de mérito analítico foram obtidas a partir da adição do íon Li+ como padrão interno, o qual assegurou confiabilidade nas análises quantitativas. A partir da otimização dos parâmetros analíticos, as curvas analíticas para os íons NH4+, K+, Ca2+ e Mg2+ exibiram comportamento linear (R2>0,99) na faixa de 10-100 M enquanto a curva analítica para o íon Na+ proporcionou resposta linear na faixa de 20-200 M. Os limites de detecção encontrados para os cinco cátions foram entre 3,75 μM (NH4+), 3,75 μM (K+), 7,50 μM (Na+), 5,00 μM (Ca2+) e 5,35 μM (Mg2+). O sistema desenvolvido foi explorado para a determinação dos cátions inorgânicos em amostras de urina, saliva e lágrimas. As concentrações encontradas nas amostras biológicas variaram de 4,1 μM a 200 μM. Além do sistema híbrido, a dissertação também apresenta uma metodologia de baixo custo para produção de moldes em alto relevo para litografia suave em poli(dimetilsiloxano) (PDMS). A principal inovação é o uso de fotoresiste de baixo custo, que se trata de uma emulsão fotossensível de poli(acetato de vinila) (PVAc) utilizada na indústria têxtil e que apresenta baixa toxicidade. Outra inovação é o controle da altura dos moldes utilizando um spincoater de produção própria, com controle de tempo de rotação. Com esta metodologia foram produzidos moldes em alto relevo, e microchips em PDMS com 50 μm de largura e 40 μm de altura. Foram realizadas separações eletroforéticas dos cátions NH4+,K+,Na+,Ca2+,Mg2+e Li+. As eficiências de separação variaram entre 73.000 e 120.000 pratos/m. O que comprova que a metodologia alternativa apresenta aplicabilidade microfluídica
|
1180 |
Point-of-Care High-throughput Optofluidic Microscope for Quantitative Imaging CytometryJagannadh, Veerendra Kalyan January 2017 (has links) (PDF)
Biological research and Clinical Diagnostics heavily rely on Optical Microscopy for analyzing properties of cells. The experimental protocol for con-ducting a microscopy based diagnostic test consists of several manual steps, like sample extraction, slide preparation and inspection. Recent advances in optical microscopy have predominantly focused on resolution enhancement. Whereas, the aspect of automating the manual steps and enhancing imaging throughput were relatively less explored. Cost-e ective automation of clinical microscopy would potentially enable the creation of diagnostic devices with a wide range of medical and biological applications. Further, automation plays an important role in enabling diagnostic testing in resource-limited settings.
This thesis presents a novel optofluidics based approach for automation of clinical diagnostic microscopy. A system-level integrated optofluidic architecture, which enables the automation of overall diagnostic work- ow has been proposed. Based on the proposed architecture, three different prototypes, which can enable point-of-care (POC) imaging cytometry have been developed. The characterization of these prototypes has been performed. Following which, the applicability of the platform for usage in diagnostic testing has been validated. The prototypes were used to demonstrate applications like Cell Viability Assay, Red Blood Cell Counting, Diagnosis of Malaria and Spherocytosis.
An important performance metric of the device is the throughput (number of cells imaged per second). A novel microfluidic channel design, capable of enabling imaging throughputs of about 2000 cells per second has been incorporated into the instrument. Further, material properties of the sample handling component (microfluidic device) determine several functional aspects of the instrument. Ultrafast-laser inscription (ULI) based glass microfluidic devices have been identi ed and tested as viable alternatives to Polydimethylsiloxane (PDMS) based microfluidic chips. Cellular imaging with POC platforms has thus far been limited to acquisition of 2D morphology. To potentially enable 3D cellular imaging with POC platforms, a novel slanted channel microfluidic chip design has been proposed. The proposed design has been experimentally validated by performing 3D imaging of fluorescent microspheres and cells. It is envisaged that the proposed innovation would aid to the current e orts towards implementing good quality health-care in rural scenarios. The thesis is organized in the following manner :
The overall thesis can be divided into two parts. The first part (chapters 2, 3) of the thesis deals with the optical aspects of the proposed Optofluidic instrument (development, characterization and validations demonstrating its use in poc diagnostic applications). The second part (chapters 4,5,6) of the thesis details the microfluidic sample handling aspects implemented with the help of custom fabricated microfludic devices, the integration of the prototype, func-tional framework of the device.
Chapter 2 introduces the proposed optofluidic architecture for implementing the POC tool. Further, it details the first implementation of the proposed platform, based on the philosophy of adapting ubiquitously available electronic imaging devices to perform cellular diagnostic testing. The characterization of the developed prototypes is also detailed.
Chapter 3 details the development of a stand-alone prototype based on the proposed architecture using inexpensive o -the-shelf, low frame-rate image sensors. The characterization of the developed prototype and its performance evaluation for application in malaria diagnostic testing are also presented. The chapter concludes with a comparative evaluation of the developed prototypes, so far.
Chapter 4 presents a novel microfludic channel design, which enables the enhancement of imaging throughput, even while employing an inexpensive low frame-rate imaging modules. The design takes advantage of radial arrangement of microfludic channels for enhancing the achievable imaging throughput. The fabrication of the device and characterization of achievable throughputs is presented. The stand-alone optofluidic imaging system was then integrated into a single functional unit, with the proposed microfluidic channel design, a viscoelastic effect based micro uidic mixer and a suction-based microfluidic pumping mechanism.
Chapter 5 brings into picture the aspect of the material used to fabricate the sample handling unit, the robustness of which determines certain functional aspects of the device. An investigative study on the applicability of glass microfluidic devices, fabricated using ultra-fast laser inscription in the context of the microfluidics based imaging flow cytometry is presented. As detailed in the introduction, imaging in poc platforms, has thus far been limited to acquisition of 2D images. The design and implementation of a novel slanted channel microfluidic chip, which can potentially enable 3D imaging with simplistic optical imaging systems (such as the one reported in the earlier chapters of this thesis) is detailed. A example application of the proposed microfludic chip architecture for imaging 3D fluorescence imaging of cells in flow is presented.
Chapter 6 introduces a diagnostic assessment framework for the use of the developed of m in an actual clinical diagnostic scenario. The chapter presents the use of computational signatures (extracted from cell images) to be employed for cell recognition, as part of the proposed framework. The experimental results obtained while employing the framework to identify cells from three different leukemia cell lines have been presented in this chapter.
Chapter 7 summarizes the contributions reported in this thesis. Potential future scope of the work is also detailed.
|
Page generated in 0.0682 seconds