Spelling suggestions: "subject:"neuen."" "subject:"neuer.""
221 |
Le rôle des régions frontales en mémoire épisodique lors de l'encodage et de la récupération de matériel verbal et non-verbal : études à l'aide de stimulations magnétiques transcrâniennesGagnon, Geneviève 17 April 2018 (has links)
La mémoire épisodique permet de se souvenir d’évènements dans leur contexte spatio-temporel. Les données issues de la neuroimagerie fonctionnelle ont mis en évidence que les régions préfrontales gauche et droite sont activées lors de l’encodage et de la récupération en mémoire épisodique, et ceci même lors de tâches mnésiques relativement simples. Sur la base de ces données, il est attendu que des patients présentant une atteinte frontale devraient présenter des déficits mnésiques. Or, de tels patients ont des performances déficitaires spécifiquement lors de tâches mnésiques complexes. Cette divergence quant à l’implication du cortex préfrontal pourrait s’expliquer par le fait que les activations obtenues à partir des techniques de neuroimagerie fonctionnelle sont le reflet de changements hémodynamiques : elles ne signifient pas que les régions activées soient essentielles au fonctionnement mnésique. La technique des Stimulations Magnétiques Transcrâniennes (SMT) permet de contourner certaines de ces limites et permet d’étudier, d’une manière sécuritaire, l’implication d’une région cérébrale donnée dans une fonction cognitive. Selon les paramètres de stimulations appliquées, il est possible d’interférer ou de faciliter les processus neuronaux d’une région donnée. Après une revue de la question et des principaux enjeux théoriques (Chapitre 1), l’objectif principal de la thèse, détaillé au Chapitre 2, était d’étudier le rôle des régions préfrontales dorsolatérales (CPFDL) en encodage et en récupération épisodique selon la nature verbale ou non-verbale du matériel à traiter et ce, à l’aide des effets inhibiteurs et facilitateurs que peuvent induire les SMT. Les bases neuronales de la mémoire épisodique ont donc été étudiées chez de jeunes adultes en santé dans le cadre de deux études originales, présentées aux Chapitres 3 et 4 de la thèse. En induisant des effets d’interférence avec les SMT, la première étude de la thèse a permis de démontrer le rôle essentiel des CPFDL gauche et droit lors de la mise en jeu des processus d’encodage et de récupération de matériel verbal et non-verbal. Les données d’une seconde étude, tablant sur les effets de facilitation des SMT, ont indiqué qu’il est possible d’améliorer le fonctionnement de la mémoire épisodique lorsque des SMT sont appliquées au niveau des CPFDL gauche et droit durant l’encodage ou la récupération. Les résultats des deux études de la thèse sont analysés à la lumière des données issues d’approches complémentaires lors du Chapitre 5. / Data from neuroimaging studies show right and left prefrontal cortex (PFC) activations during episodic encoding and retrieval. However, because functional neuroimaging findings rely on metabolic/hemodynamic indices, even if activations suggest that the activated areas are involved in a cognitive task; this does not necessarily mean that the activated regions are functionally crucial to episodic memory. Transcranial magnetic stimulation (TMS) is a brain stimulation technique that can transiently and safely interfere with ongoing neuronal activity in a targeted region. Depending on the stimulation parameters, it is possible to interfere with, or facilitate, neuronal activity. The first chapter of this thesis reviews current and past literature about on the prefrontal regions and its relation to episodic memory and different technique. This review lays the ground for the main objective (detailed in Chapter 2): to study the critical role of the dorsolateral PFC (DLPFC) in episodic encoding and retrieval processes, according to the nature of the material (verbal or non-verbal). Two original empirical investigations are included in this thesis. The first article (Chapter 3) highlights how the left and right DLPFC are essential for the encoding and retrieval of verbal and non-verbal information. The second article (Chapter 4) uses the potential facilitation effect of TMS for augmenting memory efficiency in young and healthy adults and actually showed that it is possible to improve the efficiency in episodic memory with TMS. These studies contribute to a better understanding of the role of the DLPFCs in episodic memory and promote TMS as a safe and efficient way to study human memory. Results of both studies are discussed in Chapter 5 in the light of data from other approaches.
|
222 |
Investigation of the brain central and peripheral neuroimmune dynamic in health and in maternal immune activationCarrier, Micaël 21 November 2024 (has links)
Le cerveau est la demeure d'une myriade de cellules autre que les neurones, travaillant ensemble pour assurer le développement et le bon fonctionnement du système nerveux central. En revanche, des troubles peuvent survenir de manière sexuellement dimorphique, ce qui signifie que l'inclusion des deux sexes dans l'étude des troubles neurodéveloppementaux est essentielle, car ils présentent généralement des phénotypes différents. Les cellules immunitaires telles que les microglies et les cellules dérivées de la moelle osseuse (BMDC) sont les soldats immunitaires défendant le corps et le cerveau. Les microglies interviennent aussi dans le développement du cerveau au niveau cellulaire et moléculaire. Leurs interactions avec les neurones sont perturbé dans les troubles neurodéveloppementaux. Pour les étudier, une gamme d'outils d'imagerie ont été développés capables de pousser nos connaissances de ces cellules. Ces outils ont montré que ces cellules interagissaient avec plus que seulement les neurones, comme les astrocytes et les cellules endothéliales de la vascularisation du cerveau, et leurs interactions sont dysfonctionnelles dans les troubles tel que la schizophrénie et la dépression. Il est connu que ces troubles peuvent être causés notamment pas des facteurs génétiques et environnementaux comme les infections pendant la grossesse. Des investigations cellules ont surligné les changements se produisant dans ces maladies impliquant les cellules immunitaires. Il est nécessaire de comprendre comment ces cellules interagissaient avec le parenchyme si nous voulons comprendre leur rôle en santé et en maladie. À cette fin, deux modèles ont été utilisés. Le premier est un modèle de double atteinte incluant une déficience du gène du récepteur de la fractalkine, une signalisation cruciale pour la communication microglie neurone. Cette épreuve génétique a été combinée avec une épreuve environnementale simulant une infection virale pendant la grossesse montrant une différence phénotypique entre les mâles et les femelles. Les mâles montrent des signes comportementaux ressemblant à la schizophrénie alors que les femelles montrent un comportement ressemblant à l'anxiété en plus de montrer une déficience dans la signalisation neuronale GABAergique. Les microglies dans la progéniture femelle venant de mères ayant subi l'épreuve double sont morphologiquement hypertrophiques, alors que les microglies de la progéniture mâle ont des processus plus épais et émoussés. Le deuxième modèle utilise un système de traçage des lignées cellulaires afin de suivre les cellules provenant de la moelle osseuse et leur progéniture. Cette méthode constitutive non invasive a été caractérisée. À cette fin, le rôle potentiel des BMDC a été investigué du développement postnatal du cerveau. Nous reportons pour la première fois une infiltration ponctuelle des BMDC pendant les deux premières semaines de la vie. Nous avons identifié une morphologie distincte des microglies en imagerie tout en adoptant des caractéristiques similaires à ceux-ci incluant l'expression de protéine exprimer par la microglie et l'effeuillage synaptique de type VGLUT1. La signalisation VGLUT1 est connue pour évoluer durant le développement du cerveau pour obtenir une signalisation excitatoire appropriée, des altérations ayant été rapportées dans les désordres comme la schizophrénie et l'épilepsie. Ces modèles ont aidés à découvrir des changements chez les microglies et les BMDC. Ces changements découlant de facteurs environnemental et génétique résultent en des altérations des neurones expliquant certains mécanismes des troubles neurodéveloppementaux. Ces découvertes renforcent les évidences de la littérature que le système immunitaire est quelque chose que l'on doit maintenir et préserver afin de prévenir les issues néfastes. / The brain is home to a myriad of cells other than neuron, working together to ensure development and proper functioning. However, issues can arise in a sexual dimorphic way, meaning that including both sexes is crucial when investigating neurodevelopmental disorder. Immune cells like microglia (IBA⁺FLT3⁻) and bone marrow-derived macrophages (IBA⁺FLT3⁺, BMDC) are immune soldiers defending the brain. However, microglia also intervene in brain development. How they interacted with neurons is essential to this role and this communication is disrupted in neurodevelopmental disorders. To study them, a myriad of imaging tools was developed to advance our knowledge of their role. These tools showed that these cells interact with many cell types, such as astrocytes and the vasculature-related cells, another dynamic process altered in disorders like schizophrenia and depression. It is known that these disorders arise from alterations coming from genetic and environmental factors, such as viral infection. Cellular investigation highlighted the changes happening in these diseases involving immune cells. In addition, it is necessary to understand how immune cells interact with the parenchyma to understand their role in health and disease including schizophrenia and depression. To this end, two models were studied in this work. The first model is a dual challenged model involving a genetic knockout for the fractalkine gene, a crucial pathway for microglia-neuron interaction. This model also included a mimicked viral infection during pregnancy showing different phenotype in male than in the female. Males had schizophrenia-like behavior and female showed anxiety-like behavior and decreased GABAergic signaling. Microglia in the prenatally challenged female KO offspring are shown to be hypertrophic, while microglia from the prenatally challenged male KO offspring are numerous and thick and blunted. The second model is a fate mapping tools able to identify cells coming from the bone marrow and their progeny. This non-invasive constitutive model was characterized by its potential as a tool in psychoneuroimmunology. To this end, the potential role of IBA⁺FLT3⁺ BMDC in neurodevelopment was investigated. We report for the first time the transient infiltration of IBA⁺FLT3⁺ BMDC in the brain during the two first week of life. We identify a distinct morphology from IBA⁺FLT3⁻ microglia in imaging while keeping many microglial features including the expression of protein expressed by microglia and the pruning of VGLUT1 synapses. The VGLUT1 pathways is known to evolve during brain development for proper excitatory signaling in the brain as alterations in the number of VGLUT1 buttons are seen in patients with schizophrenia and epilepsy. Overall, we approach the broad question of how immune cells are implicated in the brain development and its related disorders by using a combine approach using model of disease and models of health. These models helped us uncover the change in IBA⁺FLT3⁻ microglia and in IBA⁺FLT3⁺ BMDC in health and disease. We can see that they are very plastic, adapting their morphology to the brain environment, environmental factors, and the genetics. These findings reinforce the growing evidence that our immune system is something to be cared for and preserved in order to prevent detrimental outcomes.
|
223 |
La microscopie à illumination à tavelure laser de type HiLo pour l'imagerie volumétrique rapide de l'activité calcique du cerveau du poisson-zèbrePineau Noël, Valérie 13 December 2023 (has links)
Ce présent projet de maîtrise porte sur le développement et l'optimisation d'une technique d'imagerie volumétrique rapide à grand champ, appelée la microscopie HiLo, pour imager l'activité calcique du cerveau de poisson-zèbres transgéniques GCaMP au stade juvénile. La microscopie HiLo peut effectivement amener divers avantages au domaine, tels que les faibles coûts et la facilité de conception et d'alignement, tout en procurant des performances d'imagerie similaires aux techniques déjà utilisées dans le domaine. Elle produit des images sectionnées optiquement en combinant deux images à grand champ pour extraire les informations provenant uniquement du plan focal : une à illumination uniforme et l'autre à illumination à tavelures laser. Le contraste des tavelures laser est un paramètre intéressant pour moduler l'épaisseur du sectionnement optique selon les besoins. Dans ce projet, un module Python est développé pour aider à la conception optique, ce qui est employé pour concevoir et construire le microscope HiLo avec les composantes optiques optimales. Le microscope est testé de multiple façon expérimentalement, définissant ses paramètres d'imagerie et démontrant ses performances. Un des aspects les plus intéressants du système est l'incorporation d'une lentille à focale variable pour produire des images volumétriques ainsi qu'un réducteur de tavelures laser pour alterner entre les deux types d'illumination. Beaucoup de travail est fait en ce qui concerne leur optimisation et synchronisation dans le système HiLo. L'algorithme permettant de produire des images sectionnées optiquement avec les deux images brutes à grand champ est développé en langage de programmation Python pour faciliter son utilisation future. Finalement, l'utilisation du microscope HiLo pour acquérir des images d'activité calcique du cerveau de poisson-zèbres permet de conclure que cette technique est prometteuse pour obtenir de l'information sur les connectivités du cerveau selon différents stimuli et stades de développement compte tenu de sa rapidité d'acquisition, son sectionnement optique et son faible coût. / The goal of this master's project is to optimize and develop a widefield imaging technique called HiLo microscopy for fast volumetric calcium imaging in a juvenile transgenic zebrafish brain expressing GCaMP. HiLo microscopy brings multiple advantages to the field, such as the low cost and the ease to design and align it and its performance is comparable to techniques already used in the field. The HiLo technique produces optically sectioned images by combining two raw widefield images to extract the information coming exclusively from the focal plane only. The first of the two images is acquired with a uniform illumination and the second is acquired with a speckle illumination. The speckle contrast is an interesting parameter to tune the optical sectioning thickness because they are indicators of objects' depth position. In this project, a Python module is developed to simulate optical design and calculations, which is then used to design the HiLo microscope with the most optimal optical components. The microscope's function is also tested with many different experiments that define its imaging parameters and demonstrates its performances. Some of the most interesting aspects of this system are the use of an electrically tunable lens to scan the sample in depth and a laser speckle reducer that is used to switch between the uniform and speckle illumination patterns. A significant amount of work is done to optimize and synchronize the components in the system. Next, the algorithm used to produce the optically sectioned images is also developed in this project with the Python programming language to facilitate its future usage. Finally, the HiLo microscope is used to produce calcium imaging acquisitions of zebrafish brains, which show that HiLo microscopy is promising to obtain connectivity information of the brain with different stimuli and at different developmental stages due to its fast acquisition speed, optical sectioning and low cost.
|
224 |
Neuroimagerie et pharmacothérapie de la démence atypique : étude morphologique de la variante sémantique de l'aphasie primaire progressive et revue systématique de la pharmacothérapie en dégénérescence lobaire fronto-temporaleBouchard, Louis-Olivier 10 January 2025 (has links)
Les démences sont un enjeu majeur de santé. La dégénérescence lobaire fronto-temporale (DLFT), deuxième forme la plus prévalente de démence chez les personnes âgées de moins de 65 ans, inclut entre autres la variante sémantique de l’aphasie primaire progressive (svPPA), une maladie qui affecte particulièrement et initialement le langage. Anatomiquement, on sait déjà qu’on retrouve en svPPA une atrophie principalement marquée au niveau temporal, davantage à gauche et en antérieur. La connaissance des atteintes de la matière blanche est toutefois moins étoffée pour l’instant. Au niveau thérapeutique, il existe une controverse quant à l’approche à privilégier en DLFT : plusieurs molécules ont été étudiées, plusieurs sont prescrites et pourtant il n’y a ni consensus, ni recommandation à cet effet. Nos objectifs dans ce mémoire sont donc d’abord de mieux caractériser les atteintes cérébrales de la matière blanche et de la matière grise chez les patients atteints de svPPA, par une étude tractographique et volumétrique, et ensuite d’évaluer l’efficacité de la pharmacothérapie chez les patients avec DLFT en termes d’effet sur la cognition et sur des symptômes neuropsychiatriques, grâce à une revue systématique avec méta-analyse. En imagerie, notre étude a montré une diminution de la diffusion au niveau du fascicule longitudinal supérieur gauche, de la capsule externe gauche, du cingulum droit et du fascicule unciné bilatéralement et une atrophie plus marquée en temporal gauche, ainsi qu’au niveau de l’amygdale et des cortex fusiforme et entorhinal. En pharmacothérapie, aucune médication n’a démontré d’effet sur la cognition globale, mais certaines molécules ont montré un bénéfice potentiel sur le langage, l’impulsivité et la reconnaissance des émotions. Ce mémoire a ainsi permis des avancées au niveau de la caractérisation des atteintes cérébrales en svPPA et de faire le point sur l’état de la littérature en pharmacothérapie de la DLFT. / Dementia is a major health issue. Frontotemporal lobar degeneration (FTLD), the second most common dementia in individuals under 65 years of age, includes the semantic variant of primary progressive aphasia (svPPA), a disease affecting mainly and initially language. Anatomically, we know that svPPA patients show cortical atrophy, markedly in the temporal lobes, more in the left hemisphere and anteriorly. However, our knowledge of white matter damage is less developed. As for FTLD pharmacotherapies, there remains much controversy. Many molecules have been studied, some are currently prescribed, but there still is no consensus, nor any recommendation to this effect. Our objectives in this memoir were first to better characterize cerebral damage for white and grey matter in svPPA patients by means of a tractographic and volumetric study, and secondly to assess the effect on global cognition and specific neuropsychiatric symptoms of pharmacotherapy in FTLD patients, with a systematic review and meta-analysis. Imaging results show a diminution of fractional anisotropic diffusion in the left superior longitudinal fasciculus, external capsule, right cingulum and bilateral uncinate fasciculi. They also show atrophy, markedly in the left temporal lobe, amygdala, fusiform and entorhinal cortices. As for pharmacotherapy results, no medication was shown to have any beneficial effects on global cognition, but some drugs may improve language, impulsivity and emotion recognition. This memoir has indeed improved the characterization of cerebral damage in the svPPA and reviewed thoroughly the literature on pharmacotherapy in FLTD.
|
225 |
Association entre la ß-amyloïde et le déclin cognitif chez les individus âgés cognitivement sains : une revue systématiqueParent, Camille 11 March 2024 (has links)
Dans les dernières décennies, deux conceptualisations distinctes de la maladie d'Alzheimer (MA) se sont développées en parallèle, l'une étant axée sur son syndrome clinique et l'autre sur son processus pathophysiologique. Avec l'avènement des techniques d'imagerie cérébrale, le peptide ß-amyloïde a émergé comme biomarqueur principal de la MA. Son accumulation précoce dans le cerveau, qui précèderait de plusieurs années le déclin cognitif associé à la maladie, en a fait une cible centrale dans l'étude de la MA. L'hypothèse de la cascade amyloïde, selon laquelle l'accumulation anormale de ß-amyloïde dans le cerveau n'est non pas uniquement un marqueur mais bien la cause de la MA, s'est éventuellement établie comme l'hypothèse dominante du processus pathophysiologique de la maladie. Selon cette hypothèse, l'accumulation de ß-amyloïde serait étroitement liée à la progression clinique de la MA, et ses effets sur le déclin cognitif devraient se manifester avant même l'apparition des symptômes cliniques de la maladie. Pourtant, plusieurs résultats de recherche tendent à démontrer que cette relation n'est pas si claire. Dans une perspective de détection précoce et de prévention, il est crucial d'appréhender l'apparition et le développement de la MA en examinant la relation entre sa pathophysiologie putative et son syndrome clinique. Le présent mémoire doctoral s'intéresse à la relation entre l'accumulation de ß-amyloïde et le déclin cognitif à un stade précoce de la maladie, soit chez des individus âgés cognitivement sains, et à l'évolution de cette relation sur plusieurs années. L'objectif du mémoire est d'investiguer cette relation par une revue systématique de la littérature scientifique. À la lueur des résultats issus de cette revue, le mémoire réitère les enjeux reliés au diagnostic clinique et à la pathophysiologie de la MA et remet en question les orientations théoriques et les pratiques méthodologiques dans le domaine de la recherche sur la MA.Dans les dernières décennies, deux conceptualisations distinctes de la maladie d’Alzheimer (MA) se sont développées en parallèle, l’une étant axée sur son syndrome clinique et l’autre sur son processus pathophysiologique. Avec l’avènement des techniques d’imagerie cérébrale, le peptide ß-amyloïde a émergé comme biomarqueur principal de la MA. Son accumulation précoce dans le cerveau, qui précèderait de plusieurs années le déclin cognitif associé à la maladie, en a fait une cible centrale dans l’étude de la MA. L’hypothèse de la cascade amyloïde, selon laquelle l’accumulation anormale de ß-amyloïde dans le cerveau n’est non pas uniquement un marqueur mais bien la cause de la MA, s’est éventuellement établie comme l’hypothèse dominante du processus pathophysiologique de la maladie. Selon cette hypothèse, l’accumulation de ß-amyloïde serait étroitement liée à la progression clinique de la MA, et ses effets sur le déclin cognitif devraient se manifester avant même l’apparition des symptômes cliniques de la maladie. Pourtant, plusieurs résultats de recherche tendent à démontrer que cette relation n’est pas si claire. Dans une perspective de détection précoce et de prévention, il est crucial d’appréhender l’apparition et le développement de la MA en examinant la relation entre sa pathophysiologie putative et son syndrome clinique. Le présent mémoire doctoral s’intéresse à la relation entre l’accumulation de ß-amyloïde et le déclin cognitif à un stade précoce de la maladie, soit chez des individus âgés cognitivement sains, et à l’évolution de cette relation sur plusieurs années. L’objectif du mémoire est d’investiguer cette relation par une revue systématique de la littérature scientifique. À la lueur des résultats issus de cette revue, le mémoire réitère les enjeux reliés au diagnostic clinique et à la pathophysiologie de la MA et remet en question les orientations théoriques et les pratiques méthodologiques dans le domaine de la recherche sur la MA.
|
226 |
Segmentation de neurones pour imagerie calcique du poisson zèbre : des méthodes classiques à l'apprentissage profondPoirier, Jasmine 26 March 2024 (has links)
L’étude expérimentale de la résilience d’un réseau complexe repose sur la capacité à reproduire l’organisation structurelle et fonctionnelle du réseau à l’étude. Ayant choisi le réseau neuronal du poisson-zèbre larvaire comme modèle animal pour sa transparence, on peut utiliser des techniques telles que l’imagerie calcique par feuillet de lumière pour imager son cerveau complet plus de deux fois par seconde à une résolution spatiale cellulaire. De par les bonnes résolutions spatiale et temporelle, les données à segmenter représentent par le fait même un gros volume de données qui ne peuvent être traitées manuellement. On doit donc avoir recours à des techniques numériques pour segmenter les neurones et extraire leur activité.Trois techniques de segmentation ont été comparées, soit le seuil adaptatif (AT), la forêtd’arbres décisionnels (ML), ainsi qu’un réseau de neurones à convolution (CNN) déjà entrainé. Alors que la technique du seuil adaptatif permet l’identification rapide et presque sans erreurdes neurones les plus actifs, elle génère beaucoup plus de faux négatifs que les deux autres méthodes. Au contraire, la méthode de réseaux de neurones à convolution identifie plus deneurones, mais en effectuant plus de faux positifs qui pourront, dans tous les cas, être filtrés parla suite. En utilisant le score F1 comme métrique de comparaison, les performances moyennes de la technique de réseau de neurones (F1= 59,2%) surpassent celles du seuil adaptatif (F1= 25,4%) et de forêt d’arbres de décisions (F1= 48,8%). Bien que les performances semblent faibles comparativement aux performances généralement présentées pour les réseauxde neurones profonds, il s’agit ici d’une performance similaire à celle de la meilleure techniquede segmentation connue à ce jour, soit celle du 3dCNN, présentée dans le cadre du concours neurofinder (F1= 65.9%). / The experimental study of the resilience of a complex network lies on our capacity to reproduceits structural and functional organization. Having chosen the neuronal network of the larvalzebrafish as our animal model for its transparency, we can use techniques such as light-sheet microscopy combined with calcium imaging to image its whole brain more than twice every second, with a cellular spatial resolution. Having both those spatial and temporal resolutions, we have to process and segment a great quantity of data, which can’t be done manually. Wethus have to resort to numerical techniques to segment the neurons and extract their activity. Three segmentation techniques have been compared : adaptive threshold (AT), random deci-sion forests (ML), and a pretrained deep convolutional neural network. While the adaptive threshold technique allow rapid identification and with almost no error of the more active neurons, it generates many more false negatives than the two other methods. On the contrary, the deep convolutional neural network method identify more neurons, but generates more false positives which can be filtered later in the proces. Using the F1 score as our comparison metrics, the neural network (F1= 59,2%) out performs the adaptive threshold (F1= 25,4%) and random decision forests (F1= 48,8%). Even though the performances seem lower compared to results generally shown for deep neural network, we are competitive with the best technique known to this day for neurons segmentation, which is 3dCNN (F1= 65.9%), an algorithm presented in the neurofinder challenge.
|
227 |
Investigating the neural substrates of gambling disorder using multiple neuromodulation and neuroimaging approachesBouchard, Amy 13 December 2023 (has links)
Introduction : Le trouble du jeu de hasard et d'argent (GD) est caractérisé par un comportement de jeu inadapté qui interfère avec les activités personnelles ou professionnelles. Ce trouble psychiatrique est difficile à traiter avec les thérapies actuelles et les rechutes sont fréquentes. Les symptômes dépressifs et cognitifs (e.g., l'impulsivité), ainsi que le "craving" (désir intense de jouer) sont des facteurs prédictifs de rechutes. Une meilleure compréhension des substrats neuronaux et leurs significations cliniques pourraient mener au développement de nouveaux traitements. La stimulation transcrânienne à courant direct (tDCS) pourrait être l'un de ceux-ci car elle permet de cibler des circuits neuronaux spécifiques. De plus, la tDCS ciblant le cortex dorsolatéral préfrontal (DLPFC) pourrait améliorer les symptômes dépressifs et cognitifs et réduire le craving. Cependant, les effets précis de la tDCS sur la fonction cérébrale, ainsi que leurs significations cliniques, demeurent à être élucidés. Par ailleurs, étant donné que les patients avec GD présentent souvent des différences morphométriques par rapport aux individus en santé, il est possible de faire l'hypothèse que la morphométrie cérébrale influence les effets de la tDCS. Objectifs : Ce travail avait trois objectifs principaux. Le premier objectif était d'explorer s'il y avait des associations entre les substrats neuronaux et les symptômes cliniques et cognitifs. Le deuxième objectif était d'examiner les effets de la tDCS sur la fonction cérébrale. Le troisième objectif était d'explorer si la morphométrie du site de stimulation (DLPFC) pouvait influencer les effets de la tDCS sur les substrats neuronaux. Méthode : Nous avons réalisé quatre études différentes. Dans la première étude, nous avons mesuré la morphométrie cérébrale en utilisant l'imagerie par résonance magnétique (IRM) structurelle. Nous avons mesuré les corrélations entre la morphométrie et les symptômes cliniques (dépression, sévérité et durée du GD) et cognitifs (impulsivité). De plus, nous avons comparé la morphométrie des patients à celui d'une base de données normative (individus en santé) en contrôlant pour plusieurs facteurs comme l'âge. Dans la deuxième étude, nous avons mesuré la fonction cérébrale (connectivité fonctionnelle) des patients avec l'IRM fonctionnelle. Nous avons examiné s'il y avait des liens entre la connectivité fonctionnelle et les symptômes cognitifs (impulsivité et prise de risque) et cliniques (sévérité et durée du GD). Dans la troisième étude, nous avons étudié les effets de la tDCS sur la connectivité fonctionnelle et si la morphométrie du DLPFC pouvait influencer ces effets. Dernièrement, dans la quatrième étude, nous avons examiné si la morphométrie du DLPFC pouvait influencer les effets de la tDCS sur la neurochimie (avec la spectroscopie par résonance magnétique). Résultats : Nous avons démontré deux corrélations positives entre la superficie du cortex occipital et les symptômes dépressifs (étude I). Nous avons également mis en évidence une corrélation positive entre la connectivité fonctionnelle d'un réseau occipital et l'impulsivité (étude II). De plus, il y avait une corrélation positive entre la connectivité fonctionnelle de ce réseau et la sévérité du GD. Par ailleurs, il y avait des corrélations positives entre la connectivité fonctionnelle de l'opercule frontal droit et la prise de risque (étude II). En outre, la connectivité fonctionnelle d'un réseau cérébelleux était corrélée avec les symptômes dépressifs (étude II). Les patients avaient aussi plusieurs différences morphométriques par rapport aux individus en santé (cortex occipital, préfrontal, etc.). Nous avons démontré également que la tDCS appliquée sur le DLPFC a augmenté la connectivité fonctionnelle d'un réseau fronto-pariétal (étude III). Finalement, cette thèse a montré que la morphométrie du DLPFC influence les augmentations induites par la tDCS sur la connectivité fonctionnelle du réseau fronto-pariétal (étude III) et le niveau de GABA frontal (étude IV). Conclusions : Cette thèse démontre une importance clinique potentielle pour les régions occipitales, frontales et cérébelleuses, particulièrement pour les patients ayant des symptômes dépressifs ou cognitifs. De plus, elle montre que la tDCS peut renforcer le fonctionnement d'un réseau fronto-pariétal connu pour son rôle dans les fonctions exécutives. Il reste à déterminer si un plus grand nombre de sessions pourrait apporter des bénéfices cliniques additionnels afin d'aider les patients à résister le jeu. Finalement, les résultats de cette thèse suggèrent que la morphométrie des régions sous les électrodes pourrait aider à identifier les meilleurs candidats pour la tDCS et pourrait être considéré pour la sélection des cibles de stimulation. / Introduction: Gambling disorder (GD) is characterised by maladaptive gambling behaviour that interferes with personal or professional activities. This psychiatric disorder is difficult to treat with currently available treatments and relapse rates are high. Several factors can predict relapse, including depressive and cognitive (e.g., impulsivity, risk taking) symptoms, in addition to craving (strong desire to gamble). A better understanding of neural substrates and their clinical significance could help develop new treatments. Transcranial direct current stimulation (tDCS) might be one of these since it can target specific neural circuits. In addition, tDCS targeting the dorsolateral prefrontal cortex (DLPFC) could improve depressive and cognitive symptoms as well as reduce craving. However, the precise effects of tDCS on brain function, as well as their clinical significance, remain to be elucidated. Furthermore, considering that patients with GD often display morphometric differences as compared to healthy individuals, it may be worth investigating whether brain morphometry influences the effects of tDCS. Objectives: This work had three main objectives. The first objective was to explore whether there were associations between neural substrates and clinical and cognitive symptoms. The second objective was to examine the effects of tDCS on brain function. The third objective was to explore whether morphometry of the stimulation site (DLPFC) influenced the effects of tDCS on neural substrates. Methods: We carried out four different studies. In the first study, we investigated brain morphometry using structural magnetic resonance imaging (MRI). We tested for correlations between morphometry and clinical symptoms (depression, GD severity, GD duration) and cognitive symptoms (impulsivity). In addition, we compared the morphometry of patients with GD to that of a normative database (healthy individuals) while controlling for several factors such as age. In a second study, we assessed brain function (functional connectivity) in patients with functional MRI (fMRI). We examined whether there were associations between brain function and cognitive symptoms (impulsivity and risk taking) as well as clinical symptoms (GD severity and duration). In the third study, we examined tDCS-induced effects on brain function and whether morphometry of the DLPFC influenced these effects. Lastly, in the fourth study, we examined whether DLPFC morphometry influenced tDCS-induced effects on neurochemistry (using magnetic resonance spectroscopy imaging). Results: Firstly, we found two positive correlations between surface area of the occipital cortex and depressive symptoms (study I). We also showed a positive correlation between functional connectivity of an occipital network and impulsivity (study II). In addition, there was a positive correlation between functional connectivity of this network and GD severity (study II). In addition, there were positive correlations between functional connectivity of the right frontal operculum and risk-taking (study II). Also, functional connectivity of a cerebellar network was positively correlated with depressive symptoms (study II). Moreover, patients with GD had several morphometric differences as compared to healthy individuals (occipital and prefrontal cortices, etc.). Furthermore, we observed that tDCS over the DLPFC increased functional connectivity of a fronto-parietal circuit during stimulation (study III). Lastly, this thesis indicated that DLPFC morphometry influenced tDCS-induced elevations on fronto-parietal functional connectivity (study III) and frontal GABA levels (study IV). Conclusions: This thesis suggests the potential clinical relevance of occipital, frontal, and cerebellar regions, particularly for those with depressive and cognitive symptoms. It also indicates that tDCS can strengthen the functioning of a fronto-parietal network known to be implicated in executive functions. It remains to be seen whether a greater number of tDCS sessions could lead to clinical benefits to help patients resist gambling. Finally, the results of this thesis suggest that morphometry of the regions under the electrodes might help predict better candidates for tDCS and could be considered to select stimulation targets.
|
228 |
Development of a single-mode interstitial rotary probe for In Vivo deep brain fluorescence imagingCrépeau, Joël 19 April 2018 (has links)
Ce mémoire rend compte de l'expertise développée par l'auteur au Centre de recherchede l'Institut universitaire en santé mentale de Québec (CRIUSMQ) en endoscopie fibrée. Il décrit la construction d'un nouveau type de microscope optique, le MicroscopeInterstitiel Panoramique (PIM). Par la juxtaposition d'un court morceau de fibre à gradientd'indice et d'un prisme à l'extrémité d'une fibre monomode, la lumière laser estfocalisée sur le côté de la sonde. Pour former une image, cette dernière est rapidementtournée autour de son axe pendant qu'elle est tirée verticalement par un actuateurpiézo-électrique. Ce design de système rotatif d'imagerie interstitielle peu invasif est uneffort pour limiter les dégâts causés par la sonde tout en imageant la plus grande régionpossible en imagerie optique cérébrale profonde. / This thesis documents the expertise developed by the author at the Centre de recherchede l'Institut universitaire en santé mentale de Québec (CRIUSMQ) in fibered endoscopy, particularly the design and construction of a new kind of optical microscope: ThePanoramic Interstitial Microscope (PIM). Through the juxtaposition of a short piece ofGraded-Index fibre and a prism at the end of a single-mode fibre, laser light is focussedon the side of the probe. To form an image, the latter is quickly spun around its axiswhile it is being pulled vertically by a piezoelectric actuator. This minimally invasivefluorescence rotary interstitial imaging system is an endeavor to limit the damage causedby the probe while imaging enough tissue to provide good context to the user in deep brain optical imaging.
|
229 |
Enregistrement des fluctuations calciques des neurones dopaminergiques par microscopie multiphotonique dans la larve de poisson-zèbreBoily, Vincent 25 March 2024 (has links)
Titre de l'écran-titre (visionné le 16 août 2023) / Certaines caractéristiques de la larve de poisson-zèbre, telles que sa petite taille et sa transparence optique, en font un modèle stratégique en neurophotonique, en particulier avec la perspective d'études de l'activité du cerveau entier à l'échelle cellulaire. Malgré le relativement petit nombre de neurones présents dans le cerveau du poisson-zèbre, son organisation comprend plusieurs régions anatomiquement, biochimiquement et fonctionnellement analogues à celles présentes chez d'autres vertébrés, incluant l'humain. Les comportements émergeant de cette organisation forment un registre riche ouvrant la porte à la recherche en neurosciences. Par exemple, le système dopaminergique du poisson-zèbre régule plusieurs fonctions analogues chez l'humain, telles que les émotions et les fonctions motrices. Au cours de mon projet, j'ai modifié puis optimisé un microscope à fluorescence par excitation à deux photons, ce qui m'a permis de mesurer l'activité de plus de 60 000 neurones dans une lignée de poisson-zèbre transgénique exprimant un indicateur de calcium fluorescent (GCaMP6s) panneuronal. Pour identifier les neurones dopaminergiques, j'ai fait appel au marquage immunohistochimique des larves fixées suivant leur imagerie calcique. En projetant la localisation des neurones marqués sur les données fonctionnelles par recalage d'images, j'ai pu quantifier l'activité neuronale de la population dopaminergique. Enfin, pour mesurer les manifestations comportementales correspondant à l'activité neuronale, j'ai intégré au microscope un montage incluant un écran, projetant des stimuli visuels, et une caméra haute vitesse, captant les battements de queue. Ce montage a permis de corréler le comportement de nage de spécimens avec l'activité de neurones dont la distribution spatiale est cohérente avec la littérature. Mes travaux de maîtrise ont ainsi mis en place un modèle intégré d'imagerie neuronale, de stimulation sensorielle, et de comportement chez la larve de poisson-zèbre qui permettra d'explorer le rôle des différents circuits neuronaux dans le fonctionnement du cerveau ainsi que l'influence de l'exposome sur leur fonction.
|
230 |
RAE-1, acteur et marqueur de la prolifération de cellules neuralesPopa, Natalia 17 December 2012 (has links)
Les cellules neurales expriment des molécules dites immunes qui peuvent exercer des rôles différents de ceux exercés dans le système immunitaire. Les molécules du CMH-I classiques présentent des peptides représentatifs du contenu protéique de chaque cellule aux sentinelles du système immunitaire. Cependant, il est documenté que ces molécules ont aussi des fonctions « non immunes ». En effet, les molécules du CMH-I classiques jouent un rôle dans l'établissement et la plasticité des synapses. Sur divers types cellulaires, elles peuvent aussi interagir avec des récepteurs membranaires en cis, moduler leur stabilité à la membrane et en conséquence leur activité. RAE-1 est un membre de la famille des molécules du CMH-I, décrite initialement dans le système nerveux central embryonnaire. Pour le système immunitaire, RAE-1 est un ligand du récepteur activateur NKG2D, exprimé par les cellules NK, NKT, les lymphocytes T γδ et CD8+. RAE-1 est peu ou pas exprimé dans la plupart des tissus adultes. Son expression est induite par le stress génotoxique, la transformation tumorale ou l'infection virale ce qui permet au système immunitaire d'éliminer les cellules « malades » grâce à l'activation des cellules cytotoxiques exprimant NKG2D. Je décris l'expression de RAE-1 par les cellules neurales progénitrices et le rôle non immun de cette molécule dans la prolifération cellulaire. L'expression de RAE-1 est fortement corrélée au niveau de prolifération cellulaire et est dépendante du facteur de croissance EGF. / Neural cells express immune molecules which roles differ from those in the immune system. Classical MHC-I molecules present peptides originated from the proteic content of each cell to patrolling immune cells. However, these molecules can also have nonimmune roles. Indeed, classical MHC-I molecules participate in the establishment of synapses and synaptic plasticity. They can also interact in cis with different membrane receptors on different cell types, and modulate the receptors' membrane stability and activity. RAE-1, a member of MHC-I family, was initially described in the embryonic central nervous system. In the immune system, RAE-1 is a ligand of the activating receptor NKG2D, expressed by NK cells and by NKT, γδT and some CD8+ T lymphocytes. RAE-1 is weakly or not expressed in most adult tissues. Its expression is induced by genotoxic stress, tumoral transformation or viral infection and triggers the elimination of transformed cells by the cytotoxic immune cells which express NKG2D. I describe here the expression of RAE-1 by neural progenitor cells and its role in cell proliferation. RAE-1 expression level is highly correlated with the rate of cell proliferation and depends on the presence of epidermal growth factor (EGF). Exposition to EGF induces the colocalization of RAE-1 and phosphorylated EGF-receptor (EGFR) inside lipid rafts and endocytosed vesicles, which supports a role of RAE-1 as a partner of EGFR. RAE-1 expression is also induced in the nervous tissue in different models of CNS pathologies. In these conditions, RAE-1 could be expressed by proliferating microglia under the control of M-CSF.
|
Page generated in 0.0549 seconds