• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 68
  • 38
  • 22
  • 17
  • 13
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 464
  • 87
  • 84
  • 79
  • 78
  • 76
  • 72
  • 62
  • 55
  • 49
  • 47
  • 47
  • 45
  • 43
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Mécanismes neuronaux sous-tendant l'apprentissage perceptif olfactif chez la souris adulte / Neuronal mechanisms of olfactory perceptual learning in adult mice

Moreno, Mélissa 28 June 2013 (has links)
Le bulbe olfactif est le siège d'une neurogenèse adulte pouvant jouer un rôle dans les apprentissages olfactifs. Nous nous sommes intéressés à son rôle dans un type d'apprentissage olfactif : l'apprentissage perceptif. Tout d'abord, l'enrichissement permet d'améliorer la discrimination d'odeurs proches : c'est l'apprentissage perceptif. En étudiant les effets de la suppression de la neurogenèse pendant l'enrichissement nous avons montré que la neurogenèse était nécessaire à l'apprentissage perceptif en modulant l'inhibition des cellules mitrales par les cellules granulaires. Ensuite, nous avons étudié le rôle de la noradrénaline dans cet apprentissage. La noradrénaline est nécessaire à l'apprentissage perceptif et suffisante pour en mimer les effets. De plus, nous avons montré que la neurogenèse bulbaire était essentielle à l'action de la noradrénaline pour permettre l'apprentissage perceptif. Enfin, nous nous sommes intéressés à l'effet du vieillissement sur l'apprentissage perceptif. Nous avons trouvé qu'il existait un défaut d'apprentissage perceptif chez la souris âgée en lien avec une diminution de la neurogenèse. En revanche, une stimulation noradrénergique permet de restaurer l'apprentissage perceptif sans modulation de la neurogenèse bulbaire suggérant l'existence de mécanismes compensatoires. L'apprentissage perceptif est sous-tendu par la neurogenèse bulbaire, via le système noradrénergique, pour permettre une hausse d'inhibition des cellules mitrales par les cellules granulaires améliorant la discrimination des odeurs proches. Avec l'âge, l'apprentissage perceptif peut être restauré suggérant une plasticité toujours présente dans un système olfactif vieillissant / The olfactory bulb is the target of a well described adult neurogenesis which has been involved in different kinds of learning. We focused on the role of adult neurogenesis on olfactory perceptual learning which consists on an improvement of olfactory discrimination after odor enrichment. We found that experience-driven improvement in olfactory discrimination (perceptual learning) requires the addition of newborn neurons in the olfactory bulb. More specifically, we showed that adult-born neurons are required for perceptual learning by modulating the inhibition of mitral cells by granule cells. Then, we studied the role of noradrenaline on perceptual learning. Direct manipulation of noradrenergic transmission significantly effect on adult-born neuron survival and perceptual learning. Finally, we investigated the effect of aging on perceptual learning. We found that perceptual learning was impaired by aging in line with an alteration of neurogenesis. However, noradrenergic stimulation restores perceptual learning without modulating neurogenesis suggesting compensatory mechanisms. Neural mechanisms underlying perceptual learning involve neurogenesis and noradrenergic system to allow an increase of mitral cell inhibition thanks to the granule cells leading to an improvement of odor discrimination. During aging, perceptual learning can be restored suggesting that the olfactory system is still plastic
322

Investigação molecular e funcional de proteínas do Grupo Polycomb e seu envolvimento com a neurogênese olfatória / Molecular and functional investigation of Polycomb Group proteins and their involvement in olfactory neurogenesis

Souza, Mateus Augusto de Andrade, 1989- 03 December 2015 (has links)
Orientador: Fabio Papes / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-27T05:41:39Z (GMT). No. of bitstreams: 1 Souza_MateusAugustodeAndrade_M.pdf: 6121419 bytes, checksum: a603ea19d560e8cfebddccca9b7d824a (MD5) Previous issue date: 2015 / Resumo: Em mamíferos, os neurônios sensoriais do Sistema Olfatório (OSNs) se encontram no interior da cavidade nasal, mas estão diretamente expostos ao ambiente externo. Por um lado, tal localização permite a esses neurônios o acesso imediato aos estímulos químicos ambientais, tomando vantagem do fluxo respiratório. Por outro lado, esses neurônios estão constantemente sujeitos a injúrias por agentes nocivos, como toxinas e patógenos, capazes de destruir essas células sensoriais. Sua perda constante, contudo, é contrabalanceada pela geração de novos OSNs durante toda a vida do indivíduo, fato que torna o Sistema Olfatório um dos poucos locais do organismo com neurogênese contínua na idade adulta. A regeneração dos OSNs tem atraído a atenção da comunidade científica tanto pelo seu potencial uso como modelo de estudo do Sistema Nervoso quanto pela sua potencial aplicação para o tratamento de doenças neurodegenerativas. Nesse sentido, muito conhecimento já foi produzido sobre a dinâmica de fatores de transcrição que acompanha a diferenciação dos progenitores neuronais olfatórios em OSNs. Porém, uma grande lacuna no conhecimento diz respeito a outros elementos capazes de coordenar esse processo, como os fatores moduladores da cromatina. Diante desse cenário, escolhemos como objeto de estudo as proteínas do Grupo Polycomb (PcG), que constituem uma maquinaria de controle transcricional relacionada a modificações na organização da cromatina. Neste trabalho, genes PcG selecionados foram caracterizados molecular e funcionalmente no epitélio olfatório principal de camundongos (MOE). Através de ensaios de hibridação in situ, cinco dos seis genes avaliados apresentaram expressão ubíqua por todo o epitélio (Cbx2, Cbx4, Phc2, Ezh1, Bcl6), enquanto um (Ezh2) mostrou-se expresso somente nos estratos basais do MOE. Em ensaios de colocalização, provamos que Ezh2 é expresso exclusivamente nos progenitores olfatórios, onde o processo de diferenciação se inicia, e em parte dos OSNs recém-diferenciados, ainda não funcionais. Esta foi a primeira vez que a expressão de um gene PcG foi analisada detalhadamente no Sistema Olfatório. O interessante perfil de expressão de Ezh2 foi sugestivo de um possível papel funcional relacionado à diferenciação dos progenitores olfatórios. Para investigar essa hipótese, utilizamos como ferramenta experimental a habilidade do MOE em se regenerar após a indução de injúrias específicas. Para isso, o MOE de camundongos foi lesionado quimicamente com o composto diclobenil, que leva à perda abrupta de OSNs, estimulando a proliferação e a diferenciação dos progenitores olfatórios para repovoar as regiões lesionadas. Os animais assim tratados receberam, por via intranasal, o fármaco GSK126, uma molécula inibidora específica da atividade da proteína EZH2. Acompanhando a regeneração subsequente do MOE, observamos que a inibição da atividade de EZH2 levou ao incremento de OSNs no epitélio, favorecendo a sua regeneração. Interessantemente, esse incremento também foi observado em MOEs não lesionados, mostrando que o efeito de GSK126 não é dependente da indução de injúrias prévias. Através dessa investigação molecular e funcional, buscamos contribuir para o melhor entendimento da diferenciação neuronal do MOE, e apontamos as proteína PcG como elementos importantes para esse processo / Abstract: In mammals, the olfactory sensory neurons (OSNs) are located inside the nasal cavity, but they are directly exposed to the external environment. Taking advantage of the respiratory flux, this location favors the access to the chemical stimuli presented by the environment. On the other hand, it leads OSNs to be continually damaged by pathogens and toxic substances carried by the inhaled air. However, the persistence of neuronal progenitors in the olfactory epithelium makes the constant reposition of the OSNs possible. This unique ability of regeneration makes the Olfactory System one of the few sites of neurogenesis throughout the adult life. Olfactory regeneration has attracted the attention scientific community because of its potential as a model of study of the Nervous System and application in the treatment of neurodegenerative diseases. A great amount of knowledge has been accumulated about the transcription factor dynamics that follows the differentiation of neuronal progenitors into OSNs. However, there is a great gap about other elements that could coordinate this process, such as chromatin modulator factors. In this scenario, we decided to study the Polycomb Group (PcG) proteins, a transcription control machinery involved in chromatin structure organization. In the present study, selected PcG genes were molecular and functionally analyzed in the mouse main olfactory epithelium (MOE). Using in situ hybridization assays, we characterized the expression of six PcG genes. Five of them were shown to be expressed throughout the MOE (Cbx2, Cbx4, Phc2, Ezh1, Bcl6), while one (Ezh2) was found only in the basal layers of this epithelium. Using colocalization strategies, we proved that Ezh2 gene is expressed exclusively in the olfactory progenitor cells, where the differentiation process begins, and in part of the newly differentiated OSNs that are still not functional. It was the first time that a PcG gene expression profile was finely analyzed in the Olfactory System. This interesting expression profile presented by Ezh2 suggested a possible involvement with the MOE neuronal progenitor differentiation. For this functional investigation, we used MOE¿s neuronal regeneration after specific injuries as an experimental tool. For this purpose, the MOE was chemically damaged by the compound dichlobenil, which causes a great loss of OSNs, stimulating proliferation and differentiation of neuronal progenitor cells, leading to the repopulation of the damaged tissue. Next, mice received by intranasal route the pharmacological inhibitor GSK126, which blocks EZH2 protein activity. The observation of the MOE regeneration that followed showed us that GSK126 application resulted in an increased number of OSNs, improving MOE regeneration. Interestingly, this increase was also found in intact MOEs, pointing that GSK126¿s effects do not depend on previous olfactory injuries. By this molecular and functional investigation, we aimed at a better understanding of olfactory neuronal differentiation, and we targeted the PcG proteins as relevant elements to this process / Mestrado / Genetica Animal e Evolução / Mestre em Genética e Biologia Molecular
323

Molecular mechanisms of neural stem cell plasticity and neuro-regeneration in an Alzheimer’s-like neurodegeneration model of adult zebrafish

Bhattarai, Prabesh 22 December 2020 (has links)
Aging human brains are prone to neurodegenerative disorders, the most common being the Alzheimer’s disease (AD). Currently, there is no cure for AD, and patients progressively lose neurons leading to reduction in the brain mass. Humans cannot circumvent and counteract this disease. For instance, chronic inflammation that manifests through mild to late stages of the pathology cannot be resolved. The synaptic degeneration that underlies cognitive decline cannot be reversed. As a general outcome, neurons deteriorate and new neurons cannot replace the lost ones. This is in part due to reduced proliferative and neurogenic ability of neural stem cells (NSCs), which normally produce neurons, albeit rather a limited lineage. Recently, in AD patients, neurogenic outcome was shown to reduce dramatically (Moreno-Jimenez et al., 2019; Tobin et al., 2019). This lack of neurogenic input from NSCs in human brains is emerging as a new aspect through which we might find a chance to counteract AD. One prominent question is to find ways to re-activate our NSCs in pathology conditions. Zebrafish is known to have a remarkable regenerative ability enabling it to regenerate its brain as well. Zebrafish brain possesses several neurogenic regions that harbor NSCs to allow continuous neurogenesis throughout adulthood and during regeneration. Radial glial cells in the zebrafish brain act as NSCs that respond to neuronal damage by enhancing brain plasticity and initiating neuroregeneration. Special molecular mechanisms are involved in activating NSCs to form new neurons and initiate the regenerative response. In my PhD project, I aimed to identify such regenerationassociated molecular mechanisms in AD-like neurodegenerative conditions. To investigate the molecular programs that mediate regenerative response in neurodegenerative conditions, we first generated an amyloid-mediated neurodegeneration model in adult zebrafish to mimic certain pathophysiological aspects of AD. We used synthetic Amyloid-β-42 (Aβ42) peptides and injected into the zebrafish brain using cerebroventricular microinjection (CVMI) method. These peptides were tagged with robust cell-penetrating peptide, which were previously shown to efficiently deliver cargo molecules into the zebrafish brain. This approach led to an acute model of neurodegeneration in which Aβ42 deposition was prominent in neurons in adult zebrafish brain, and also exhibited phenotypes reminiscent of human AD5 pathophysiology: apoptosis, inflammation, synaptic degeneration, and cognitive deficits. In contrast to the mammals, zebrafish brain induced the NSC proliferation and enhanced the neurogenesis to initiate a regenerative response. To identify the mechanisms behind this response, we performed whole-RNA transcriptome analyses, which revealed that several genes associated with immune-related signaling pathways were significantly enriched. We further found that Interleukin-4 (IL-4) is activated primarily in neurons and microglia in response to Aβ42, and is sufficient to increase NSC proliferation and neurogenesis. IL-4 binds to its cognate receptor IL4R that is expressed in NSCs, and activates the downstream signaling cascade via STAT6 phosphorylation. These results indicate that Aβ42-induced neurodegeneration in adult zebrafish brain leads to regenerative response mediated by direct activation of NSCs through a neuro-immune cross talk mediated by IL-4 signaling via STAT6 phosphorylation. In an approach to further elucidate how IL-4 signaling would mediate the NSCs response, we performed another whole-RNA transcriptome analyses after IL-4 treatment in homeostatic brains. We found that, apart from direct activation of NSC proliferation, IL-4 also has an indirect effect on NSCs through factors secreted by neurons. Single-cell transcriptomics further revealed the heterogeneity of the NSCs pool in the zebrafish brain, which responds directly or indirectly to Aβ42-induced IL-4. We found that IL-4 induces NSC proliferation and subsequent neurogenesis by suppressing the tryptophan metabolism and reducing the production of the neurotransmitter Serotonin. NSC proliferation was suppressed by Serotonin via downregulation of brain-derived neurotrophic factor (BDNF) in Serotonin-responsive periventricular neurons. BDNF itself enhanced NSC plasticity and neurogenesis via NGFRA/NFkB signaling in zebrafish. This regulatory network is not active in rodents. With these results, we identified a novel IL-4-dependent molecular mechanism of NSC proliferation that is mediated by Serotonin-BDNF-NGFRA regulatory axis. Our results elucidated a novel crosstalk through neuron-glia interaction that regulates regenerative neurogenesis in adult zebrafish AD model. Additionally, we identified two functionally distinct populations of NSCs, which mediate NSCs plasticity through distinct gene expression profiles and versatile signaling mechanisms. Collectively, we propose that zebrafish serves as an excellent model to investigate regeneration-associated mechanisms that enables the inherent capacity of enhanced regenerative neurogenesis upon neurodegeneration. We found that specific signaling6 mechanisms are active in specific subtypes of NSC populations in adult zebrafish brain. Since these mechanisms are normally inactive in NSCs of mammalian brains, particularly in rodents after AD-like conditions, we speculate that activating such candidate mechanisms in distinct NSCs population in mammalian brains could induce NSCs plasticity response. Indeed, our studies also suggested that some of these candidates could be harnessed to force human NSCs to become proliferative and neurogenic. Therefore, my PhD work opened up a new avenue of research that utilizes zebrafish for understanding what it takes for a vertebrate NSC to remain neurogenic even after AD pathology. Overall, I believe that this research route will be instrumental in designing nature-inspired therapeutic strategies for AD in regenerative medicine.
324

Pathological changes in Alexander disease : a comparative study in human and mice with GFAP mutations / Modifications neuropathologiques dans la maladie d'Alexander : une étude comparative chez l'homme et la souris avec des mutations GFAP

Abuawad, Mohammad 29 November 2017 (has links)
La maladie d'Alexander est une maladie neurodégénérative due à des mutations hétérozygotes du gène GFAP codant le principal filament intermédiaire des astrocytes matures. Nous avons étudié l'effet des mutations GFAP dans l'hippocampe d'un patient avec AxD infantile et de deux souris knockin, l'une portant une mutation dans le rod domain (p.R85C) et l'autre dans le tail domain (p.T409I). Chez le patient, nous décrivons pour la première fois: (i) des changements morphologiques sévères des cellules GFAP+ dans la zone subgranulaire du gyrus denté, qui ont perdu la plupart de leurs processus radiaux; (ii) une réactivité microgliale; (iii) et un déficit de la neurogénèse hippocampique postnatale. Nous avons trouvé des anomalies similaires dans les deux souris knockin, plus sévères chez les homozygotes. La comparaison de ces modèles a montré que ces anomalies prédominent chez les souris GFAPT409I, tandis que l’accumulation de GFAP est supérieure chez les souris GFAPR85C. La comparaison des deux modèles de souris a montré que les conséquences pathologiques dépendent la localisation de la mutation dans la GFAP. Ces résultats suggèrent qu'en plus du gain évident de fonction, d'autres dysfonctions astrocytaires dans peuvent être dues à une perte de fonction. De plus, nous avons traité les souris mutantes avec de la ceftriaxone, connu pour son effet neuroprotecteur, mais nous n'avons observé aucun effet significatif. Enfin, la mégalencéphalie étant fréquente chez les patients AxD, nous avons mesuré la quantité d'eau cérébrale chez les souris mutantes GFAP. Nous avons trouvé une augmentation significative de la teneur en eau chez les souris GFAPR85C/R85C âgées d'un an. Nous avons observé une localisation anormale de l'AQP4 dans les astrocytes des asouris mutées, pouvant participer au déséquilibre hydrique cérébral. / Alexander disease is a neurodegenerative disorder caused by heterozygous mutations of GFAP gene coding the major intermediate filament of mature astrocytes. We studied the effect of GFAP mutation in the hippocampus of infantile onset AxD patient and two novel knockin mouse models, one bearing a mutation located in the rod domain (p.R85C), and the other bearing a mutation located in the tail domain (p.T409I) of mouse Gfap. In the AxD patient, we describe for the first time: (i) obvious morphological changes of GFAP+ cells in the subgranular zone of the dentate gyrus, which have lost most of their radial processes; (ii) microglial reactivity; (iii) and deficit in postnatal hippocampal neurogenesis. We found similar abnormalities in the two knockin mouse lines, more obvious in homozygous mice. A comparison of these mouse models showed that pathological findings predominated in the GFAPT409I mice, whereas GFAP accumulated in larger amounts in the GFAPR85C mice. The comparison of the two mouse models showed that their pathological consequences depend on the location of the mutated residues in GFAP. These findings suggest that in addition to the evident gain of GFAP function, other astrocyte dysfunctions in this disease may be due to a loss of function of GFAP. In addition, we treated the mice mutants with ceftriaxone, which has been reported to have a neuroprotective effect, but we observe no significant effect. Finally, AxD patients have often megalencephaly, therefore we measured the brain water content in AxD mouse models. We found a significant increase in brain water content in the one year old GFAPR85C/R85C mice vs controls. We observed mislocalization of AQP4 in mutant mice astrocytes that can participated to water imbalance in brain.
325

Effets d'une exposition chronique à la musique sur le vieillissement chez le rat Wistar / Effects of chronic music exposure on age-related cognitive decline in Wistar rats

Rizzolo, Lou 19 November 2018 (has links)
Le déclin cognitif associé au vieillissement chez l’Homme, impacte fortement la vie quotidienne des personnes âgées. Si la pratique musicale apparait comme une activité de loisir prometteuse pour le maintien d’un bon fonctionnement cognitif au cours du vieillissement, les mécanismes neurobiologiques sous-jacents sont à l’heure actuelle, mal connus. L’objectif de ce travail a donc été d’étudier les effets d’une exposition tardive et chronique à la musique sur les performances comportementales et certains processus neurobiologiques au cours du vieillissement chez le rat Wistar. Si quelques études rapportent qu’une exposition à la musique améliore les performances d’apprentissage et de mémoire, associé à une augmentation de la neurogenèse hippocampique et du BDNF chez le Rongeur jeune adulte, il n’en existe aucune qui se soit intéressée à ces effets chez le Rongeur âgé. Des rats d’âge médian ont été répartis dans 2 groupes, l’un exposé à de la musique et l’autre à du bruit blanc, puis inclus dans une étude longitudinale, au cours de laquelle les performances comportementales ont été évaluées jusqu’à l’âge de 24 mois, suivi d’analyses biologiques. Ainsi, nous avons pu montrer qu’une exposition chronique à la musique démarrant à un âge médian, réduit le déclin cognitif associé au vieillissement. En revanche, la neurogenèse hippocampique et le BDNF n’apparaissent pas comme des mécanismes neurobiologiques potentiels impactés par la musique chez le rat âgé. / Cognitive decline associated to aging impacts daily life of elderly. While the music practice appears as promising leisure activity to prevent cognitive decline in elder, little is known about the neurobiological mechanisms involved. The aim of this work was to study the effects of music exposure on behavioral performances and some neurobiological processes across aging in rats. Indeed, improved behavioral performances together with an increased hippocampal neurogenesis and a higher BDNF expression were reported after music exposure in both young and adult animals. Yet, no study has so far investigated these effects in aged rats. After a fine appraisal of the cognitive state in middle-aged Wistar rats (15 months), they were divided in two groups, exposed either to classic music or to white noise. Thereafter, a longitudinal follow up of 9 months was performed. We observed for the first time that chronic music exposure alleviated age-related cognitive decline. However, contrary to what was observed in adult animals, we did not reported any differences in age-related changes of hippocampal neurogenesis and BDNF expression. These promising results of a beneficial effect of music exposure in the field of aging still lay open the question about the underlying mechanisms in the context of aging of the beneficial effect of music exposure.
326

Characterization of non-coding transcripts involved in the development of the cerebral cortex

Cavalli, Daniel 18 May 2020 (has links)
Der Cortex von Säugetieren ist der Hirnbereich, der fundamental für höhere kognitive Funktionen wie Lernen, Gedächtnis, Aufmerksamkeit und komplexes Denken ist. Die Entwicklung des Cortex wird von neuralen Vorläuferzellen gesteuert, die schnell proliferieren, um ihren Pool zu expandieren, bevor sie zu differenzierenden Zellteilungen wechseln, um alle Neuronen zu generieren, aus denen der reife sechs schichtige Neokortex besteht. Der schrittweise Wechsel von Selbsterneuerung zu Neurogenese ist ein zeitlich regulierter Prozess, dessen Fehler schwere lebenslange kognitive Erkrankungen verursachen können. Aus diesem Grund ist es enorm wichtig zu verstehen, welche Faktoren die Schicksalsentscheidung der neuralen Vorläuferzellen regulieren. In den letzten zwei Jahrzehnten haben mehrere Studien die Wichtigkeit von nicht-kodierenden RNAs, wie lange nicht-kodierende und micro RNAs, für diese zeitliche Regulierung hervorgehoben. Mithilfe der Generierung einer kombinatorischen RFP/GFP Reporter Mauslinie, die die Isolierung von proliferierenden und differenzierenden Vorläuferzellen und neugeborenen Neuronen erlaubt, wurde berichtet, dass die lange nicht-kodierende RNA Miat als ein Regulator des neuralen Vorläuferzellen-Schicksals mittels Spleißen fungiert. Die Arbeit dieser Thesis zeigt, dass die Überexpression von Miat den Wechsel der neuralen Vorläuferzellen von proliferierenden zu neurogenen Zellteilungen verzögert und etabliert eine Strategie, um Miat-gespleißte Ziele auf Einzelpopulationslevel während der Corticogenese zu entdecken. Außerdem wurde die doppelte Reporter Mauslinie genutzt, um einen umfassenden und kompletten Katalog von micro RNAs, die in neuralen Vorläuferzellen und Neuronen exprimiert sind, zu erstellen. Dies führte zur Identifizierung von miR-486-5p als ein neuer Regulator der neuralen Vorläuferzellen-Schicksalsentscheidung.
327

Genetic regulation of adult hippocampal neurogenesis: A Systems genetics approach using BXD recombinant inbred mouse strains

Subramanian Shanmugam, Suresh Kannan 01 June 2012 (has links)
Adult hippocampal neurogenesis is regulated at various levels and by various factors. Genetic influence is an important key determinant of adult neurogenesis and exerts its effects at all levels. In vivo studies have suggested that adult hippocampal neurogenesis is highly variable and heritable among different laboratory strains of mice. To dissect the genetic effect from other contributing factors, it is necessary to study adult neurogenesis under highly controlled environment conditions. We extracted adult hippocampal precursor cells (AHPCs) from 20 strains of the BXD set of recombinant inbred mice, cultured them and studied the effect of genetic background on neurogenesis. The BXD panel consists of mouse lines derived from an intercross between inbred parentals C57BL/6J and DBA/2J. Both of the parentals are fully sequenced and all the strains are well characterized in terms of genotypic and phenotypic characteristics. This allows us to use advanced genetic techniques to identify novel genomic loci and gene-gene interactions important in adult neurogenesis. Comparison of the AHPCs from 20 BXD strains, with respect to cell proliferation and neuronal and astrocytic differentiation in vitro, revealed a large variation for these traits across the strains. Proliferation, as measured by BrdU incorporation, showed over two- fold differences between the extremes. Similar differences were observed for neurogenic (4-fold) and astrogenic differentiation (2-fold). These three traits all showed strong heritability values indicating that the differences were mainly attributed to the genetic component. QTL mapping, with these phenotypic data, revealed that there was no major contribution from single loci controlling these traits. Instead, we found many loci with smaller effects associated with these traits. Gene expression profiling using RNA samples from proliferating cultures of the 20 BXD mice strains yielded two cis eQTL candidates that directly regulated proliferation, LRP6 and Chchd8. LRP6 is well known as a co-receptor of Wnt signaling, but the function of Chchd8 is not known. Further experimentation, using over expression and gene silencing demonstrated that LRP6 negatively regulates AHPCs proliferation. Thus, from this study using a system genetics approach, we were able to identify, LRP6 as a novel regulator of adult hippocampal neurogenesis.
328

Auswirkungen auf das adulte Gehirn bei prolongierter Substitution von Cannabidiol / Effects on the adult brain of prolonged substitution of cannabidiol

Müller, Melanie 09 March 2021 (has links)
No description available.
329

Neurogenic Lineage Decisions with Single Cell Resolution

Veloso, Ana 30 May 2022 (has links)
Die embryonale Neurogenese in Drosophila ist eine hochgradig koordinierte Abfolge von Zellschicksalsentscheidungen, die viele Ähnlichkeiten mit der Entwicklung des Nervensystems in Wirbeltieren aufweist. Diese Zellschicksalsentscheidungen sind räumlich und zeitlich koordiniert. Diese Zellen entstehen an stereotypen Positionen in jedem Segment und sind entlang zweier räumlicher Achsen angeordnet: der dorsoventralen und der anteroposterioren Achse. Neuroblasten teilen sich, um stereotype Zelllinien zu bilden, und die Zellen weisen charakteristische Zellmorphologien und -ziele auf, wobei die molekularen Mechanismen, die diese Merkmale bestimmen, noch weitgehend unbekannt sind. Jahrzehnte der Genetik haben einige Faktoren aufgedeckt, die für viele dieser Entscheidungen notwendig sind, aber ein Verständnis der einzelnen neurogenen Linien auf Genomebene war bis vor kurzem in vivo unmöglich. Ich habe mRNA aus Einzelzellen verwendet, um die Transkriptomdynamik von Schicksalsentscheidungen in der frühen Entwicklung des Nervensystems zu untersuchen. Mein Ziel ist es, zu entschlüsseln, wie sich Zellen unterscheiden, wenn Entscheidungen getroffen werden, die für die Entwicklung des Nervensystems wesentlich sind. Ich habe Transkriptomdaten von einzelnen Zellen aus Zehntausenden von Neuroblasten während der gesamten embryonalen Neurogenese erstellt. Es gelang mir, spezifische neurogene Populationen und ihre Genexpressionsprofile entlang ihrer Differenzierungswege zu identifizieren. Ich konnte die komplizierten zeitlichen Achsen, die das sich entwickelnde embryonale Nervensystem formen, teilweise entschlüsseln - ein Prozess, der von der Fliege bis zum Menschen konserviert ist. Diese Arbeit hat die Identifizierung lokalisierter Marker und sogar spezifischer Neuroblasten ermöglicht. Dieses Verständnis kann nun mit Informationen über die einzelnen Zellschicksale kombiniert werden, aus denen diese Neuroblasten hervorgehen, wie z. B. ihre spezifischen neuronalen und glialen Schicksale. / Embryonic neurogenesis in Drosophila is a highly coordinated sequence of cell fate decisions that bears many similarities to the development of the nervous system in vertebrates. These cell fate decisions are spatially and temporally coordinated. These cells arise at stereotypic positions in each segment and are arranged along two spatial axes: the dorsoventral axis and the anteroposterior axis. Neuroblasts divide to give rise to stereotypic lineages and the cells exhibit characteristic cell morphologies, branching patterns, and targets, the molecular mechanisms that determine these characteristics are still largely unknown. Decades of genetics have uncovered some factors necessary for many of these decisions, but understanding individual neurogenic lineages at the genome level has been impossible in vivo until recently. I have used Single cell mRNA to study the transcriptome dynamics that accompany important fate decisions in early nervous system development. My goal is to decipher how cells differ when decisions are made that are essential for nervous system development. This knowledge is invaluable for developing models for the in vivo mechanisms that allow individual cells in the nervous system to specify and differentiate. I have generated transcriptome data of single cells from tens of thousands of neuroblasts throughout embryonic neurogenesis. I was able to identify specific neurogenic populations and their gene expression profiles along their differentiation pathways. I was able to partially decipher the intricate temporal axes that shape the developing embryonic nervous system, a process that is conserved from fly to human. Single-cell transcriptomics has enabled the identification of localized markers and even specific neuroblasts. This understanding can now be combined with information about the individual cell fates that give rise to these neuroblasts, such as their specific neuronal and glial fates.
330

Neurogenesis in the adult brain, gene networks, and Alzheimer's Disease

Horgusluoglu, Emrin 15 May 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / New neurons are generated throughout adulthood in two regions of the brain, the dentate gyrus of the hippocampus, which is important for memory formation and cognitive functions, and the sub-ventricular zone of the olfactory bulb, which is important for the sense of smell, and are incorporated into hippocampal network circuitry. Disruption of this process has been postulated to contribute to neurodegenerative disorders including Alzheimer’s disease [1]. AD is the most common form of adult-onset dementia and the number of patients with AD escalates dramatically each year. The generation of new neurons in the dentate gyrus declines with age and in AD. Many of the molecular players in AD are also modulators of adult neurogenesis, but the genetic mechanisms influencing adult neurogenesis in AD are unclear. The overall goal of this project is to identify candidate genes and pathways that play a role in neurogenesis in the adult brain and to test the hypotheses that 1) hippocampal neurogenesis-related genes and pathways are significantly perturbed in AD and 2) neurogenesis-related pathways are significantly associated with hippocampal volume and other AD-related biomarker endophenotypes including brain deposition of amyloid-β and tau pathology. First, potential modulators of adult neurogenesis and their roles in neurodegenerative diseases were evaluated. Candidate genes that control the turnover process of neural stem cells/precursors to new functional neurons during adult neurogenesis were manually curated using a pathway-based systems biology approach. Second, a targeted neurogenesis pathway-based gene analysis was performed resulting in the identification of ADORA2A as associated with hippocampal volume and memory performance in mild cognitive impairment and AD. Third, a genome-wide gene-set enrichment analysis was conducted to discover associations between hippocampal volume and AD related endophenotypes and neurogenesis-related pathways. Within the discovered neurogenesis enriched pathways, a gene-based association analysis identified TESC and ACVR1 as significantly associated with hippocampal volume and APOE and PVLR2 as significantly associated with tau and amyloid beta levels in cerebrospinal fluid. This project identifies new genetic contributions to hippocampal neurogenesis with translational implications for novel therapeutic targets related to learning and memory and neuroprotection in AD.

Page generated in 0.0727 seconds