• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 13
  • 5
  • Tagged with
  • 54
  • 26
  • 22
  • 20
  • 13
  • 13
  • 13
  • 12
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Non-equilibrium dynamics in ordered modulated phases

Riesch, Christian 03 July 2015 (has links)
In der vorliegenden Arbeit wird die Dynamik geordneter modulierter Phasen außerhalb des thermischen Gleichgewichts untersucht. Der Schwerpunkt liegt auf einem zweidimensionalen, streifenbildenden System, genannt Modell B mit Coulomb-Wechselwirkung, welches aus einem geordneten Anfangszustand unter dem Einfluß eines Rauschterms relaxiert. Aus den mittels numerischer Simulationen gewonnenen Daten wird die lokale Orientierung der Streifen extrahiert und deren raum-zeitliche Korrelationsfunktionen berechnet. Wir beobachten eine langsame Dynamik und Alterungseffekte in der Zwei-Zeit-Autokorrelationsfunktion, welche einer Skalenform folgt, die aus kritischen Systemen bekannt ist. Dies geht einher mit dem Wachstum einer räumlichen Korrelationslänge senkrecht zu den Streifen. Zu sehr späten Zeiten klingt die zugehörige räumliche Korrelationsfunktion mit einem Potenzgesetz ab. Weiterhin wird der Einfluß der Systemgröße und verschiedener Seitenverhältnisse auf die Dynamik des Orientierungsfeldes studiert, wobei ein Wachstumsprozeß parallel zur Ausrichtung der Streifen identifiziert wird. Es zeigt sich, daß dieser Prozeß für die Nichtgleichgewichtsdynamik entscheidend ist. Zwei weitere Modelle für modulierte Phasen werden in ähnlicher Weise untersucht. Die Swift-Hohenberg-Gleichung in der Variante mit erhaltenem sowie nicht erhaltenem Ordnungsparameter zeigt ebenfalls Alterungseffekte in der Dynamik der Streifenorientierung. In einem System, welches zweidimensionale hexagonale Muster bildet, werden Alterungseffekte in der Autokorrelationsfunktion der Verschiebung beobachtet. Jedoch sättigt die zugehörige räumliche Korrelationslänge bei einem endlichen Wert, was auf eine Unterbrechung der Alterung hindeutet.
42

Hochauflösende Rutherford-Streuspektrometrie zur Untersuchung von ZrO2-Schichtwachstum im Anfangsstadium

Vieluf, Maik 28 June 2010 (has links) (PDF)
Die vorliegende Arbeit entstand im Rahmen einer Kooperation des Forschungszentrums Dresden-Rossendorf mit Qimonda Dresden GmbH & Co. OHG. Mithilfe der hochauflösenden Rutherford-Streuspektrometrie (HR-RBS) wurden das Diffusionsverhalten und Schichtwachstum von ZrO2 auf SiO2 und TiN im Anfangsstadium untersucht. Auf Grund der exzellenten Tiefenauflösung von 0,3 nm an der Oberfläche stand die Analyse von Konzentrationsprofilen in ultradünnen Schichten, respektive an deren Grenzflächen im Vordergrund. Zur qualitativen Verbesserung der Messergebnisse wurde erstmals ein zweidimensionaler positionsempfindlicher Halbleiterdetektor in den Aufbau der HR-RBS implementiert und charakterisiert. Außerdem wurde ein Messverfahren in Betrieb genommen, das mögliche Schädigungen durch den Ioneneintrag in die Messprobe minimiert. Durch die Optimierung der experimentellen Bedingungen und die Entwicklung eines Programmpaketes zur Unterstützung des Analysten konnte ein effizienter Routine-Messablauf erstellt werden. Im Moment einer binären Kollision zwischen einfallendem Ion und Targetelement kommt es bei kleinem Stoßparameter zu Veränderungen des Ladungszustands der gestreuten Ionen, insbesondere durch die abrupte Geschwindigkeitsänderung des Projektils und der Überlappung der Elektronenwolken. Bei der HR-RBS mit Energie separierendem Dipolmagneten muss zur Interpretation von Streuspektren die Ladungszustandsverteilung der gestreuten Projektile bekannt sein. Erstmalig konnte eine signifikante Abhängigkeit der Ladungszustandsverteilung gestreuter C-Ionen sowohl von der Schichtdicke als auch der Ordnungszahl des detektierten Targetelements, hier der vierten Nebengruppe, nachgewiesen werden. Diese gewonnen Erkenntnisse ermöglichten systematische Untersuchungen zum ZrO2-Schichtwachstum im Anfangsstadium. Zur Herstellung der ZrO2-Schichten wurde die Atomlagenabscheidung (ALD) verwendet. Anhand der nachgewiesenen Agglomeration von ZrO2 auf nativen SiO2 wurde mithilfe der Rasterkraftmikroskopie (AFM) zur Bestimmung von Oberflächenrauigkeiten eine Methode konzipiert, welche die Auswirkung lokaler Schichtdickeninhomogenitäten auf die niederenergetische Flanke eines Streuspektrums berücksichtigt. Auf dieser Grundlage durchgeführte Simulationsrechnungen ergeben, dass keine Diffusion von Zr in die darunter liegende Schicht stattfand, jedoch eine ZrSiO4-Grenzflächenschicht existiert. Für das Wachstum von ZrO2 auf TiN wird aus den hoch aufgelösten Streuspektren ein völlig anderes Verhalten abgeleitet. Messungen zu Oberflächentopografien der TiN-Schicht liefern nicht zu vernachlässigende Werte für die Rauigkeit. Um den Einfluss der Oberflächenrauigkeit auf die Form des hoch aufgelösten Spektrums erfassen zu können, wurde eine Software entwickelt. Auf Basis von AFM-Messungen ermöglicht dieses Programm das Extrahieren einer Energieverteilung aus den Weglängen von ausschließlich an der Oberfläche gestreuten Ionen. Unter Berücksichtigung des Effekts der Oberflächenrauigkeit auf die HR-RBS Spektrenform konnte die Diffusion von Zr in das polykristalline TiN erstmals verifiziert werden. Die Beobachtungen weisen daraufhin, dass bereits nach dem ersten ALD-Zyklus ein geringer Anteil der deponierten Zr-Atome bis in eine Tiefe von etwa 3 nm in das TiN diffundiert. Die vorläufigen Ergebnisse legen Korngrenzendiffusion nahe. / This thesis originated from a cooperation between Research Center Dresden-Rossendorf and Qimonda Dresden GmbH & Co. OHG. By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO2 on SiO2 and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was emonstrated. This new knowledge allowed systematic investigations of the ZrO2 layer growth in the initial regime. The ZrO2 layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO2 on SiO2 a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO2/SiO2 interface was possible due to the extraction of the thickness variation by the atomic force microscopy (AFM). The boundary surface is sharp except for a small intermediate ZrSiO4 layer and no diffusion of Zr atoms in SiO2 could be detected. A quite different behaviour could be derived from high resolution spectra for the growth of ZrO2 on TiN. Measurements of the surface topography of the TiN layer revealed non negligible values for the surface roughness. A program was developed to capture the influence of the surface roughness on the shape of the high resolution spectrum. This software uses AFM measurements to extract an energy distribution from calculated path length differences for ions scattered at the sample surface. Diffusion of Zr into polycrystalline TiN was demonstrated for the first time taking into account the effect of the surface roughness on the shape of the spectra. This observation indicates that already after the first ALD reaction cycle a small part of the deposited Zr atoms diffuses into the TiN layer up to a depth of 3 nm. Such preliminary results suggest grain boundary diffusion.
43

Hot Brownian Motion

Rings, Daniel 18 February 2013 (has links) (PDF)
The theory of Brownian motion is a cornerstone of modern physics. In this thesis, we introduce a nonequilibrium extension to this theory, namely an effective Markovian theory of the Brownian motion of a heated nanoparticle. This phenomenon belongs to the class of nonequilibrium steady states (NESS) and is characterized by spatially inhomogeneous temperature and viscosity fields extending in the solvent surrounding the nanoparticle. The first chapter provides a pedagogic introduction to the subject and a concise summary of our main results and summarizes their implications for future developments and innovative applications. The derivation of our main results is based on the theory of fluctuating hydrodynamics, which we introduce and extend to NESS conditions, in the second chapter. We derive the effective temperature and the effective friction coefficient for the generalized Langevin equation describing the Brownian motion of a heated nanoparticle. As major results, we find that these parameters obey a generalized Stokes–Einstein relation, and that, to first order in the temperature increment of the particle, the effective temperature is given in terms of a set of universal numbers. In chapters three and four, these basic results are made explicit for various realizations of hot Brownian motion. We show in detail, that different degrees of freedom are governed by distinct effective parameters, and we calculate these for the rotational and translational motion of heated nanobeads and nanorods. Whenever possible, analytic results are provided, and numerically accurate approximation methods are devised otherwise. To test and validate all our theoretical predictions, we present large-scale molecular dynamics simulations of a Lennard-Jones system, in chapter five. These implement a state-of-the-art GPU-powered parallel algorithm, contributed by D. Chakraborty. Further support for our theory comes from recent experimental observations of gold nanobeads and nanorods made in the the groups of F. Cichos and M. Orrit. We introduce the theoretical concept of PhoCS, an innovative technique which puts the selective heating of nanoscopic tracer particles to good use. We conclude in chapter six with some preliminary results about the self-phoretic motion of so-called Janus particles. These two-faced hybrids with a hotter and a cooler side perform a persistent random walk with the persistence only limited by their hot rotational Brownian motion. Such particles could act as versatile laser-controlled nanotransporters or nanomachines, to mention just the most obvious future nanotechnological applications of hot Brownian motion.
44

Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts / Elektronischer Transport in metallischen Kohlenstoffnanoröhren mit Metallkontakten

Zienert, Andreas 19 March 2013 (has links) (PDF)
The continuous migration to smaller feature sizes puts high demands on materials and technologies for future ultra-large-scale integrated circuits. Particularly, the copper-based interconnect system will reach fundamental limits soon. Their outstanding properties make metallic carbon nanotubes (CNTs) an ideal material to partially replace copper in future interconnect architectures. Here, a low contact resistance to existing metal lines is crucial. The present thesis contributes to the theory and numerical description of electronic transport in metallic CNTs with metal contacts. Different theoretical approaches are applied to various contact models and electrode materials (Al, Cu, Pd, Ag, Pt, Au) are compared. Ballistic transport calculations are based on the non-equilibrium Greens function formalism combined with tight-binding (TB), extended Hückel theory (EHT) and density functional theory (DFT). Simplified contact models allow a qualitative investigation of both the influence of geometry and CNT length, and the strength and extent of the contact on the transport properties. In addition, such simple contact models are used to compare the influence of different electronic structure methods on transport. It is found that the semiempirical TB and EHT are inadequate to quantitatively reproduce the DFT-based results. Based on this observation, an improved set of Hückel parameters is developed, which remedies this insufficiency. A systematic investigation of different contact materials is carried out using well defined atomistic metal-CNT-metal structures, optimized in a systematic way. Analytical models for the CNT-metal interaction are proposed. Based on that, electronic transport calculations are carried out, which can be extended to large systems by applying the computationally cheap improved EHT. The metal-CNT-metal systems can then be ranked by average conductance: Ag ≤ Au < Cu < Pt ≤ Pd < Al. This corresponds qualitatively with calculated contact distances, binding energies and work functions of CNTs and metals. To gain a deeper understanding of the transport properties, the electronic structure of the metal-CNT-metal systems and their respective parts is analyzed in detail. Here, the energy resolved local density of states is a valuable tool to investigate the CNT-metal interaction and its influences on the transport. / Die kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport.
45

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 16 December 2014 (has links) (PDF)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.
46

Stochastic and temperature-related aspects of the Preisach model of hysteresis

Schubert, Sven 07 December 2011 (has links) (PDF)
Ziel der vorliegenden Arbeit ist es, das Preisach-Modell bezüglich stochastischer äußerer Felder und temperaturbezogener Aspekte zu untersuchen. Das phänomenologische Preisach-Modell wird oft erfolgreich angewendet, um Systeme mit Hysterese zu beschreiben. Im ersten Teil der Arbeit wird die Antwort des Preisach-Modells auf stochastische äußere Felder untersucht. Hier liegt das Augenmerk hauptsächlich auf der Autokorrelation; sie dient dazu den Einfluss des hysteretischen Gedächtnisses zu quantifizieren. Mit analytischen Methoden wird gezeigt, dass sich ein Langzeitgedächtnis, sichtbar in der Autokorrelation der Systemantwort, entwickeln kann, selbst wenn das treibende Feld unkorreliert ist. Im Anschluss werden diese Resultate, m.H. von Simulationen, auf äußere Felder ausgeweitet, die selbst Korrelationen aufweisen können. Der zweite Teil der Arbeit befasst sich mit dem Einfluss einer endlichen Temperatur auf das Preisach-Modell. Es werden unterschiedliche Methoden besprochen, wie das Nichtgleichgewichtsmodell in seiner mikromagnetischen Interpretation mit Temperatur als Gleichgewichtseigenschaft verknüpft werden kann. Eine Formulierung wird genutzt, um die Magnetisierung von Nickelnanopartikeln in einer Fullerenmatrix zu simulieren und mit Experimenten zu vergleichen. Des Weiteren wird die Relaxationsdynamik des Gedächtnisses des Preisach-Modells bei endlichen Temperaturen untersucht. / The aim of this thesis is to investigate the Preisach model in regard to stochastically driving and temperature-related aspects. The Preisach model is a phenomenological model for systems with hysteresis which is often successfully applied. Hysteresis is a widespread phenomenon which is observed in nature and the key feature of certain technological applications. Further, it contributes to phenomena of interest in social science and economics as well. Prominent examples are the magnetization of ferromagnetic materials in an external magnetic field or the adsorption-desorption hysteresis observed in porous media. Hysteresis involves the development of a hysteresis memory, and multistability in the interrelations between external driving fields and system response. In the first part, we mainly investigate the response of Preisach hysteresis models driven by stochastic input processes with regard to autocorrelation functions to quantify the influence of the system’s memory. Using rigorous methods, it is shown that the development of a hysteresis memory is reflected in the possibility of long-time tails in the autocorrelation functions, even for uncorrelated driving fields. In the case of uncorrelated driving, these long-time tails in the autocorrelations of the system’s response are determined only by the tails of the involved densities. They will be observed if there are broad Preisach densities assigning a high weight to elementary loops of large width and narrow input densities such that rare extreme events of the input time series contribute significantly to the output for a long period of time. Afterwards, these results are extended by simulations to driving fields which themselves show correlations. It is shown that the autocorrelation of the output does not decay faster than the autocorrelation of the input process. Further, there is a possibility that long-term memory in the hysteretic response is more pronounced in the case of uncorrelated driving than in the case of correlated driving. The behavior of the output probability distribution at the saturation values is quite universal. It is not affected by the presence of correlations and allows conclusions whether the input density is much more narrow than the Preisach density or not. Moreover, the existence of effective Preisach densities is shown which define equivalence classes of systems of input and Preisach densities which lead to realizations of the same output variable. The asymptotic behavior of an effective Preisach density determines the asymptotic correlation decay of the system’s response in the case of uncorrelated driving. In the second part, temperature-related effects are considered. It is reviewed how the non-equilibrium Preisach model in its micromagnetic picture can be related to temperature within the framework of extended irreversible thermodynamics. The irreversible response of a ferromagnetic material, namely, Nickel nanoparticles in a fullerene matrix, is simulated. The model includes superparamagnetism where ferromagnetism breaks down at temperatures lower than the Curie temperature and the results are compared to experimental data. Furthermore, we adapt known results for the thermal relaxation of the system’s memory in the form of a front propagation in the Preisach plane derived basically from solving a master equation and by the use of a contradictory assumption. A closer look is taken at short time scales which dissolves the contradiction and shows that the known results apply, taking into account the fact that the dividing line propagation starts with an additional delay time depending on the front coordinates in the Preisach plane. Additionally, it is outlined how thermal relaxation behavior in the Preisach model of hysteresis can be studied using a Fokker-Planck equation. The latter is solved analytically in the non-hysteretic limit using eigenfunction methods. The results indicate a change in the relaxation behavior, especially on short time scales.
47

Stochastic and temperature-related aspects of the Preisach model of hysteresis

Schubert, Sven 22 June 2011 (has links)
Ziel der vorliegenden Arbeit ist es, das Preisach-Modell bezüglich stochastischer äußerer Felder und temperaturbezogener Aspekte zu untersuchen. Das phänomenologische Preisach-Modell wird oft erfolgreich angewendet, um Systeme mit Hysterese zu beschreiben. Im ersten Teil der Arbeit wird die Antwort des Preisach-Modells auf stochastische äußere Felder untersucht. Hier liegt das Augenmerk hauptsächlich auf der Autokorrelation; sie dient dazu den Einfluss des hysteretischen Gedächtnisses zu quantifizieren. Mit analytischen Methoden wird gezeigt, dass sich ein Langzeitgedächtnis, sichtbar in der Autokorrelation der Systemantwort, entwickeln kann, selbst wenn das treibende Feld unkorreliert ist. Im Anschluss werden diese Resultate, m.H. von Simulationen, auf äußere Felder ausgeweitet, die selbst Korrelationen aufweisen können. Der zweite Teil der Arbeit befasst sich mit dem Einfluss einer endlichen Temperatur auf das Preisach-Modell. Es werden unterschiedliche Methoden besprochen, wie das Nichtgleichgewichtsmodell in seiner mikromagnetischen Interpretation mit Temperatur als Gleichgewichtseigenschaft verknüpft werden kann. Eine Formulierung wird genutzt, um die Magnetisierung von Nickelnanopartikeln in einer Fullerenmatrix zu simulieren und mit Experimenten zu vergleichen. Des Weiteren wird die Relaxationsdynamik des Gedächtnisses des Preisach-Modells bei endlichen Temperaturen untersucht. / The aim of this thesis is to investigate the Preisach model in regard to stochastically driving and temperature-related aspects. The Preisach model is a phenomenological model for systems with hysteresis which is often successfully applied. Hysteresis is a widespread phenomenon which is observed in nature and the key feature of certain technological applications. Further, it contributes to phenomena of interest in social science and economics as well. Prominent examples are the magnetization of ferromagnetic materials in an external magnetic field or the adsorption-desorption hysteresis observed in porous media. Hysteresis involves the development of a hysteresis memory, and multistability in the interrelations between external driving fields and system response. In the first part, we mainly investigate the response of Preisach hysteresis models driven by stochastic input processes with regard to autocorrelation functions to quantify the influence of the system’s memory. Using rigorous methods, it is shown that the development of a hysteresis memory is reflected in the possibility of long-time tails in the autocorrelation functions, even for uncorrelated driving fields. In the case of uncorrelated driving, these long-time tails in the autocorrelations of the system’s response are determined only by the tails of the involved densities. They will be observed if there are broad Preisach densities assigning a high weight to elementary loops of large width and narrow input densities such that rare extreme events of the input time series contribute significantly to the output for a long period of time. Afterwards, these results are extended by simulations to driving fields which themselves show correlations. It is shown that the autocorrelation of the output does not decay faster than the autocorrelation of the input process. Further, there is a possibility that long-term memory in the hysteretic response is more pronounced in the case of uncorrelated driving than in the case of correlated driving. The behavior of the output probability distribution at the saturation values is quite universal. It is not affected by the presence of correlations and allows conclusions whether the input density is much more narrow than the Preisach density or not. Moreover, the existence of effective Preisach densities is shown which define equivalence classes of systems of input and Preisach densities which lead to realizations of the same output variable. The asymptotic behavior of an effective Preisach density determines the asymptotic correlation decay of the system’s response in the case of uncorrelated driving. In the second part, temperature-related effects are considered. It is reviewed how the non-equilibrium Preisach model in its micromagnetic picture can be related to temperature within the framework of extended irreversible thermodynamics. The irreversible response of a ferromagnetic material, namely, Nickel nanoparticles in a fullerene matrix, is simulated. The model includes superparamagnetism where ferromagnetism breaks down at temperatures lower than the Curie temperature and the results are compared to experimental data. Furthermore, we adapt known results for the thermal relaxation of the system’s memory in the form of a front propagation in the Preisach plane derived basically from solving a master equation and by the use of a contradictory assumption. A closer look is taken at short time scales which dissolves the contradiction and shows that the known results apply, taking into account the fact that the dividing line propagation starts with an additional delay time depending on the front coordinates in the Preisach plane. Additionally, it is outlined how thermal relaxation behavior in the Preisach model of hysteresis can be studied using a Fokker-Planck equation. The latter is solved analytically in the non-hysteretic limit using eigenfunction methods. The results indicate a change in the relaxation behavior, especially on short time scales.
48

Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts

Zienert, Andreas 11 January 2013 (has links)
The continuous migration to smaller feature sizes puts high demands on materials and technologies for future ultra-large-scale integrated circuits. Particularly, the copper-based interconnect system will reach fundamental limits soon. Their outstanding properties make metallic carbon nanotubes (CNTs) an ideal material to partially replace copper in future interconnect architectures. Here, a low contact resistance to existing metal lines is crucial. The present thesis contributes to the theory and numerical description of electronic transport in metallic CNTs with metal contacts. Different theoretical approaches are applied to various contact models and electrode materials (Al, Cu, Pd, Ag, Pt, Au) are compared. Ballistic transport calculations are based on the non-equilibrium Greens function formalism combined with tight-binding (TB), extended Hückel theory (EHT) and density functional theory (DFT). Simplified contact models allow a qualitative investigation of both the influence of geometry and CNT length, and the strength and extent of the contact on the transport properties. In addition, such simple contact models are used to compare the influence of different electronic structure methods on transport. It is found that the semiempirical TB and EHT are inadequate to quantitatively reproduce the DFT-based results. Based on this observation, an improved set of Hückel parameters is developed, which remedies this insufficiency. A systematic investigation of different contact materials is carried out using well defined atomistic metal-CNT-metal structures, optimized in a systematic way. Analytical models for the CNT-metal interaction are proposed. Based on that, electronic transport calculations are carried out, which can be extended to large systems by applying the computationally cheap improved EHT. The metal-CNT-metal systems can then be ranked by average conductance: Ag ≤ Au < Cu < Pt ≤ Pd < Al. This corresponds qualitatively with calculated contact distances, binding energies and work functions of CNTs and metals. To gain a deeper understanding of the transport properties, the electronic structure of the metal-CNT-metal systems and their respective parts is analyzed in detail. Here, the energy resolved local density of states is a valuable tool to investigate the CNT-metal interaction and its influences on the transport. / Die kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport.
49

Hochauflösende Rutherford-Streuspektrometrie zur Untersuchung von ZrO2-Schichtwachstum im Anfangsstadium

Vieluf, Maik 03 June 2010 (has links)
Die vorliegende Arbeit entstand im Rahmen einer Kooperation des Forschungszentrums Dresden-Rossendorf mit Qimonda Dresden GmbH & Co. OHG. Mithilfe der hochauflösenden Rutherford-Streuspektrometrie (HR-RBS) wurden das Diffusionsverhalten und Schichtwachstum von ZrO2 auf SiO2 und TiN im Anfangsstadium untersucht. Auf Grund der exzellenten Tiefenauflösung von 0,3 nm an der Oberfläche stand die Analyse von Konzentrationsprofilen in ultradünnen Schichten, respektive an deren Grenzflächen im Vordergrund. Zur qualitativen Verbesserung der Messergebnisse wurde erstmals ein zweidimensionaler positionsempfindlicher Halbleiterdetektor in den Aufbau der HR-RBS implementiert und charakterisiert. Außerdem wurde ein Messverfahren in Betrieb genommen, das mögliche Schädigungen durch den Ioneneintrag in die Messprobe minimiert. Durch die Optimierung der experimentellen Bedingungen und die Entwicklung eines Programmpaketes zur Unterstützung des Analysten konnte ein effizienter Routine-Messablauf erstellt werden. Im Moment einer binären Kollision zwischen einfallendem Ion und Targetelement kommt es bei kleinem Stoßparameter zu Veränderungen des Ladungszustands der gestreuten Ionen, insbesondere durch die abrupte Geschwindigkeitsänderung des Projektils und der Überlappung der Elektronenwolken. Bei der HR-RBS mit Energie separierendem Dipolmagneten muss zur Interpretation von Streuspektren die Ladungszustandsverteilung der gestreuten Projektile bekannt sein. Erstmalig konnte eine signifikante Abhängigkeit der Ladungszustandsverteilung gestreuter C-Ionen sowohl von der Schichtdicke als auch der Ordnungszahl des detektierten Targetelements, hier der vierten Nebengruppe, nachgewiesen werden. Diese gewonnen Erkenntnisse ermöglichten systematische Untersuchungen zum ZrO2-Schichtwachstum im Anfangsstadium. Zur Herstellung der ZrO2-Schichten wurde die Atomlagenabscheidung (ALD) verwendet. Anhand der nachgewiesenen Agglomeration von ZrO2 auf nativen SiO2 wurde mithilfe der Rasterkraftmikroskopie (AFM) zur Bestimmung von Oberflächenrauigkeiten eine Methode konzipiert, welche die Auswirkung lokaler Schichtdickeninhomogenitäten auf die niederenergetische Flanke eines Streuspektrums berücksichtigt. Auf dieser Grundlage durchgeführte Simulationsrechnungen ergeben, dass keine Diffusion von Zr in die darunter liegende Schicht stattfand, jedoch eine ZrSiO4-Grenzflächenschicht existiert. Für das Wachstum von ZrO2 auf TiN wird aus den hoch aufgelösten Streuspektren ein völlig anderes Verhalten abgeleitet. Messungen zu Oberflächentopografien der TiN-Schicht liefern nicht zu vernachlässigende Werte für die Rauigkeit. Um den Einfluss der Oberflächenrauigkeit auf die Form des hoch aufgelösten Spektrums erfassen zu können, wurde eine Software entwickelt. Auf Basis von AFM-Messungen ermöglicht dieses Programm das Extrahieren einer Energieverteilung aus den Weglängen von ausschließlich an der Oberfläche gestreuten Ionen. Unter Berücksichtigung des Effekts der Oberflächenrauigkeit auf die HR-RBS Spektrenform konnte die Diffusion von Zr in das polykristalline TiN erstmals verifiziert werden. Die Beobachtungen weisen daraufhin, dass bereits nach dem ersten ALD-Zyklus ein geringer Anteil der deponierten Zr-Atome bis in eine Tiefe von etwa 3 nm in das TiN diffundiert. Die vorläufigen Ergebnisse legen Korngrenzendiffusion nahe. / This thesis originated from a cooperation between Research Center Dresden-Rossendorf and Qimonda Dresden GmbH & Co. OHG. By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO2 on SiO2 and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was emonstrated. This new knowledge allowed systematic investigations of the ZrO2 layer growth in the initial regime. The ZrO2 layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO2 on SiO2 a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO2/SiO2 interface was possible due to the extraction of the thickness variation by the atomic force microscopy (AFM). The boundary surface is sharp except for a small intermediate ZrSiO4 layer and no diffusion of Zr atoms in SiO2 could be detected. A quite different behaviour could be derived from high resolution spectra for the growth of ZrO2 on TiN. Measurements of the surface topography of the TiN layer revealed non negligible values for the surface roughness. A program was developed to capture the influence of the surface roughness on the shape of the high resolution spectrum. This software uses AFM measurements to extract an energy distribution from calculated path length differences for ions scattered at the sample surface. Diffusion of Zr into polycrystalline TiN was demonstrated for the first time taking into account the effect of the surface roughness on the shape of the spectra. This observation indicates that already after the first ALD reaction cycle a small part of the deposited Zr atoms diffuses into the TiN layer up to a depth of 3 nm. Such preliminary results suggest grain boundary diffusion.
50

Theoretical Investigation of High-k Gate Stacks in nano-MOSFETs

Nadimi, Ebrahim 19 July 2022 (has links)
Diese Arbeit beschäftigt sich mit der „First-Principles“ atomskaligen Modellierung der HfO2-basierten high-k-Gate-Isolatorschichten der Metalloxid-Halbleiter-Feldeffekttransistoren. Die theoretischen Untersuchungen basieren auf Dichtefunktionaltheorie und Nichtgleichgewicht-Greensche-Funktion-Formalismen. Eine der wichtigsten Eigenschaften eines Gate-Isolators ist der Wert seiner Bandlücke. Die Bandlücke eines gemischten Festkörpers aus SiO2 und ZrO2 oder HfO2 wird auf der Grundlage der „Generalized Quasi-Chemical“ Approximation in Kombination mit dem „Cluster Expansion“ Ansatz berechnet. Zu diesem Zweck wurde Dichtefunktionaltheorie für die Berechnung der Eigenschaften verschiedener Konfigurationen möglicher Elementarzellen durchgeführt. Es wurde ein fast linearer Verlauf für die Bandlücke eines aus SiO2 und HfO2 gemischten Festkörpers berechnet. Im Vergleich zu dem üblichen SiO2 Gate-Isolator, haben die high-k-Gate-Isolatoren eine höhere Defektdichte, die hauptsächlich aus Sauerstoffleerstellen bestehen. Dies führt zu mehreren Problemen, wie zum Beispiel höherer Leckstrom, Schwellenspannungsverschiebung und Degradation des Gateoxids. Daher wurde eine umfassende Untersuchung der verschiedenen Eigenschaften von Sauerstofffehlstellen in HfO2 durchgeführt, indem wichtige Parameter wie zum Beispiel die Formationsenergien und die Lage der Defektniveaus in der Bandlücke berechnet wurden. Es wurde durch die theoretischen Berechnungen gezeigt, dass die schädlichen Auswirkungen von Sauerstofffehlstellen durch die Einführung von Lanthan-Atomen in dem HfO2 Kristallgitter teilweise zu verringern sind. Energetisch gesehen bevorzugen die Lanthan-Atome die Hf-Gitterplätze in der Nachbarschaft einer Sauerstofffehlstelle und führen dadurch zu der Passivierung durch Sauerstoffleerstelle induzierten Defektniveaus. Die high-k-Isolatorschicht in den heutigen Transistoren besteht aus drei Schichten: einem Metallgate, einer HfO2-Schicht als Haupt-Gate-Isolator und einer sehr dünnen SiO2 Übergangsschicht zwischen Gateoxid und Si. Die Einführung eines Metallgates führt zu einigen Problemen bei der Einstellung einer geeigneten Schwellenspannung in den Transistoren. Theoretische Berechnungen in einer komplexen Modellstruktur von der Si/SiO2/HfO2-Grenzfläche zeigen, dass die dotierten Lanthan-Atome energetisch die SiO2/HfO2-Grenzfläche bevorzugen, was wiederum ein Dipolmoment an der Grenzfläche erzeugt. Dieses Dipolmoment kann verwendet werden, um die richtige Schwellenspannung wieder einzustellen. Schließlich wird in den experimentellen Messungen festgestelltes progressives Degradationsverhalten von high-k-Gate-Isolatoren mit einem theoretischen Modell erklärt. Dieses Modell basiert auf ab-initio-Berechnungen und zeigt, wie die Erzeugung geladener Sauerstoffleerstellen und deren Migration unter der angelegten Gatespannung zu einer progressiven Erhöhung des Leckstroms und folglich zu einer Degradation der Isolatorschicht führt.:List of Figures 7 List of Tables 9 List of Symbols 10 List of Abbreviations 11 Chapter 1: Introduction 12 Chapter 2: Theory of Atomic-Scale First-Principles Calculations 15 2.1 Theoretical methods 15 2.2 Density functional theory 17 2.3 Non-equilibrium Green’s function formalism 23 Chapter 3: Calculations for Bulk High-k Materials 27 3.1 Bulk high-k materials 27 3.2 Crystalline insulators 27 3.3 Solid solutions 29 3.3.1 Cluster expansion approach 30 3.3.2 Band gap and bowing parameter 33 3.3.3 Calculation of internal stress 40 3.4 Leakage current 41 Chapter 4: Defects in Bulk High-k Materials 43 4.1 Defects in high-k gate dielectrics 43 4.2 Oxygen vacancies in monoclinic HfO2 44 4.2.1 Neutral oxygen vacancies 44 4.2.2 Charged oxygen vacancies 46 4.3 Hybrid functional 50 4.4 Double oxygen vacancies 56 4.5 Interaction of oxygen vacancies with La-doping 61 4.5.1 La doping in m-HfO2 61 4.5.2 Complex LaHfVO defects 64 Chapter 5: Interface Properties of High-k Gate Stack 72 5.1 high-k gate-stack 72 5.1.1 Atomic-scale model structure for a high-k gate-stack 72 5.1.2 Electronic structure 74 5.1.3 Leakage current 76 5.2 Band offset 80 5.3 Threshold voltage engineering with La doping 84 Chapter 6: Degradation of the High-k Gate Stack 90 6.1 Reliability issues in high-k gate-stack 90 6.2 Calculations and experimental methods 91 6.3 Leakage current 92 6.4 Defect generation 100 6.5 Explaining progressive SILC in high-k dielectrics 102 Chapter 7: Conclusions 104 Bibliography 106 Selbständigkeitserklärung 119 Danksagung 120 Lebenslauf 121 Veröffentlichungen 122 / This thesis deals with the first-principles atomic-scale modeling of the HfO2-based high-k gate-insulator layer of the metal-oxide-semiconductor field-effect transistors. The theoretical investigations are based on density functional theory and non-equilibrium Green's function formalisms. One of the important properties of the gate insulator is the value of its band gap. The band gap of amorphous solid mixtures of SiO2 and ZrO2 or HfO2 is calculated based on generalized quasi-chemical approximation combined with a cluster expansion approach, by performing density functional calculations on different configurations of possible unit cells. An almost linear variation of the band gap is obtained for solid mixtures of SiO2 and HfO2. One drawback of the high-k gate-insulator, comparing to the standard SiO2, is high density of defects, particularly oxygen vacancies, which leads to several problems such as enhancement of the leakage current, threshold voltage instability, and degradation of the gate-oxide. A comprehensive investigation of different properties of oxygen vacancies in HfO2 is conducted by the calculation of formation energies and induced trap levels. It is shown based on theoretical calculations that the harmful effects of oxygen vacancies can be partially healed by introducing lanthanum atoms into the defected HfO2 crystal. Lanthanum atoms energetically prefer to occupy Hf lattice sites close to the oxygen vacancies and passivate the induced defect levels. The state-of-the-art high-k gate-stacks consist of a metal-gate on a HfO2 layer, as the main part of the gate insulator, and a very thin SiO2 intermediate layer between high-k material and Si. The introduction of a metal-gate raises some problem in the adjustment of an appropriate threshold voltage. Theoretical calculations in a complex model structure of the Si/SiO2/HfO2 interface reveals that the lanthanum atoms energetically prefer to stay at the SiO2/HfO2 interface, which in turn results in a dipole moment. This dipole moment can be employed to adjust the threshold voltage in high-k/metal-gate stacks. Finally, a theoretical model, which can quiet well explain the experimental measurements, is introduced for the progressive degradation of the high-k gate-insulators. This model is based on ab-initio calculations and shows how the generation of charged vacancies and their migration under the applied gate voltage leads to the progressive enhancement of the leakage current and consequently to the degradation of the insulator layer.:List of Figures 7 List of Tables 9 List of Symbols 10 List of Abbreviations 11 Chapter 1: Introduction 12 Chapter 2: Theory of Atomic-Scale First-Principles Calculations 15 2.1 Theoretical methods 15 2.2 Density functional theory 17 2.3 Non-equilibrium Green’s function formalism 23 Chapter 3: Calculations for Bulk High-k Materials 27 3.1 Bulk high-k materials 27 3.2 Crystalline insulators 27 3.3 Solid solutions 29 3.3.1 Cluster expansion approach 30 3.3.2 Band gap and bowing parameter 33 3.3.3 Calculation of internal stress 40 3.4 Leakage current 41 Chapter 4: Defects in Bulk High-k Materials 43 4.1 Defects in high-k gate dielectrics 43 4.2 Oxygen vacancies in monoclinic HfO2 44 4.2.1 Neutral oxygen vacancies 44 4.2.2 Charged oxygen vacancies 46 4.3 Hybrid functional 50 4.4 Double oxygen vacancies 56 4.5 Interaction of oxygen vacancies with La-doping 61 4.5.1 La doping in m-HfO2 61 4.5.2 Complex LaHfVO defects 64 Chapter 5: Interface Properties of High-k Gate Stack 72 5.1 high-k gate-stack 72 5.1.1 Atomic-scale model structure for a high-k gate-stack 72 5.1.2 Electronic structure 74 5.1.3 Leakage current 76 5.2 Band offset 80 5.3 Threshold voltage engineering with La doping 84 Chapter 6: Degradation of the High-k Gate Stack 90 6.1 Reliability issues in high-k gate-stack 90 6.2 Calculations and experimental methods 91 6.3 Leakage current 92 6.4 Defect generation 100 6.5 Explaining progressive SILC in high-k dielectrics 102 Chapter 7: Conclusions 104 Bibliography 106 Selbständigkeitserklärung 119 Danksagung 120 Lebenslauf 121 Veröffentlichungen 122

Page generated in 0.0399 seconds