• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 307
  • 92
  • 59
  • 51
  • 12
  • 10
  • 7
  • 6
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 644
  • 280
  • 161
  • 138
  • 137
  • 100
  • 72
  • 69
  • 67
  • 66
  • 66
  • 63
  • 57
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Three Essays in Economics

Daniel G Kebede (16652025) 03 August 2023 (has links)
<p> The overall theme of my dissertation is applying frontier econometric models to interesting economic problems. The first chapter analyzes how individual consumption responds to permanent and transitory income shocks is limited by model misspecification and availability of data. The misspecification arises from ignoring unemployment risk while estimating income shocks. I employ the Heckman two step regression model to consistently estimate income shocks. Moreover, to deal with data sparsity, I propose identifying the partial consumption insurance and income and consumption volatility heterogeneities at the household level using Least Absolute Shrinkage and Selection Operator (LASSO). Using PSID data, I estimate partial consumption insurance against permanent shock of 63% and 49% for white and black household heads, respectively; the white and black household heads self-insure against 100% and 90% of the transitory income shocks, respectively. Moreover, I find income and consumption volatilities and partial consumption insurance parameters vary across time. In the second chapter I recast smooth structural break test proposed by Chen and Hong (2012), in a predictive regression setting. The regressors are characterized using the local to non-stationarity framework. I conduct a Monte Carlo experiment to evaluate the finite sample performance of the test statistic and examine an empirical example to demonstrate its practical application. The Monte Carlo simulations show that the test statistic has better power and size compared to the popular SupF and LM. Empirically, compared to SupF and LM, the test statistic rejects the null hypothesis of no structural break more frequently when there actually is a structural break present in the data. The third chapter is a collaboration with James Reeder III. We study the effects of using promotions to drive public policy diffusion in regions with polarized political beliefs. We estimate a model that allows for heterogeneous effects at the county-level based upon state-level promotional offerings to drive vaccine adoption during COVID-19. Central to our empirical application is accounting for the endogenous action of state-level agents in generating promotional schemes. To address this challenge, we synthesize various sources of data at the county-level and leverage advances in both the Bass Diffusion model and 10 machine learning. Studying the vaccine rates at the county-level within the United States, we find evidence that the use of promotions actually reduced the overall rates of adoption in obtaining vaccination, a stark difference from other studies examining more localized vaccine rates. The negative average effect is driven primarily by the large number of counties that are described as republican leaning based upon their voting record in the 2020 election. Even directly accounting for the population’s vaccine hesitancy, this result still stands. Thus, our analysis suggests that in the polarized setting of the United States electorate, more localized policies on contentious topics may yield better outcomes than broad, state-level dictates. </p>
542

Essays on Modern Econometrics and Machine Learning

Keilbar, Georg 16 June 2022 (has links)
Diese Dissertation behandelt verschiedene Aspekte moderner Ökonometrie und Machine Learnings. Kapitel 2 stellt einen neuen Schätzer für die Regressionsparameter in einem Paneldatenmodell mit interaktiven festen Effekten vor. Eine Besonderheit unserer Methode ist die Modellierung der factor loadings durch nichtparametrische Funktionen. Wir zeigen die root-NT-Konvergenz sowie die asymptotische Normalverteilung unseres Schätzers. Kapitel 3 betrachtet die rekursive Schätzung von Quantilen mit Hilfe des stochastic gradient descent (SGD) Algorithmus mit Polyak-Ruppert Mittelwertbildung. Der Algorithmus ist rechnerisch und Speicher-effizient verglichen mit herkömmlichen Schätzmethoden. Unser Fokus ist die Untersuchung des nichtasymptotischen Verhaltens, indem wir eine exponentielle Wahrscheinlichkeitsungleichung zeigen. In Kapitel 4 stellen wir eine neue Methode zur Kalibrierung von conditional Value-at-Risk (CoVaR) basierend auf Quantilregression mittels Neural Networks vor. Wir modellieren systemische Spillovereffekte in einem Netzwerk von systemrelevanten Finanzinstituten. Eine Out-of-Sample Analyse zeigt eine klare Verbesserung im Vergleich zu einer linearen Grundspezifikation. Im Vergleich mit bestehenden Risikomaßen eröffnet unsere Methode eine neue Perspektive auf systemisches Risiko. In Kapitel 5 modellieren wir die gemeinsame Dynamik von Kryptowährungen in einem nicht-stationären Kontext. Um eine Analyse in einem dynamischen Rahmen zu ermöglichen, stellen wir eine neue vector error correction model (VECM) Spezifikation vor, die wir COINtensity VECM nennen. / This thesis focuses on different aspects of the union of modern econometrics and machine learning. Chapter 2 considers a new estimator of the regression parameters in a panel data model with unobservable interactive fixed effects. A distinctive feature of the proposed approach is to model the factor loadings as a nonparametric function. We show that our estimator is root-NT-consistent and asymptotically normal, as well that it reaches the semiparametric efficiency bound under the assumption of i.i.d. errors. Chapter 3 is concerned with the recursive estimation of quantiles using the stochastic gradient descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers a computationally and memory efficient alternative to the usual empirical estimator. Our focus is on studying the nonasymptotic behavior by providing exponentially decreasing tail probability bounds under minimal assumptions. In Chapter 4 we propose a novel approach to calibrate the conditional value-at-risk (CoVaR) of financial institutions based on neural network quantile regression. We model systemic risk spillover effects in a network context across banks by considering the marginal effects of the quantile regression procedure. An out-of-sample analysis shows great performance compared to a linear baseline specification, signifying the importance that nonlinearity plays for modelling systemic risk. A comparison to existing network-based risk measures reveals that our approach offers a new perspective on systemic risk. In Chapter 5 we aim to model the joint dynamics of cryptocurrencies in a nonstationary setting. In particular, we analyze the role of cointegration relationships within a large system of cryptocurrencies in a vector error correction model (VECM) framework. To enable analysis in a dynamic setting, we propose the COINtensity VECM, a nonlinear VECM specification accounting for a varying system-wide cointegration exposure.
543

Advanced Nonparametric Bayesian Functional Modeling

Gao, Wenyu 04 September 2020 (has links)
Functional analyses have gained more interest as we have easier access to massive data sets. However, such data sets often contain large heterogeneities, noise, and dimensionalities. When generalizing the analyses from vectors to functions, classical methods might not work directly. This dissertation considers noisy information reduction in functional analyses from two perspectives: functional variable selection to reduce the dimensionality and functional clustering to group similar observations and thus reduce the sample size. The complicated data structures and relations can be easily modeled by a Bayesian hierarchical model, or developed from a more generic one by changing the prior distributions. Hence, this dissertation focuses on the development of Bayesian approaches for functional analyses due to their flexibilities. A nonparametric Bayesian approach, such as the Dirichlet process mixture (DPM) model, has a nonparametric distribution as the prior. This approach provides flexibility and reduces assumptions, especially for functional clustering, because the DPM model has an automatic clustering property, so the number of clusters does not need to be specified in advance. Furthermore, a weighted Dirichlet process mixture (WDPM) model allows for more heterogeneities from the data by assuming more than one unknown prior distribution. It also gathers more information from the data by introducing a weight function that assigns different candidate priors, such that the less similar observations are more separated. Thus, the WDPM model will improve the clustering and model estimation results. In this dissertation, we used an advanced nonparametric Bayesian approach to study functional variable selection and functional clustering methods. We proposed 1) a stochastic search functional selection method with application to 1-M matched case-crossover studies for aseptic meningitis, to examine the time-varying unknown relationship and find out important covariates affecting disease contractions; 2) a functional clustering method via the WDPM model, with application to three pathways related to genetic diabetes data, to identify essential genes distinguishing between normal and disease groups; and 3) a combined functional clustering, with the WDPM model, and variable selection approach with application to high-frequency spectral data, to select wavelengths associated with breast cancer racial disparities. / Doctor of Philosophy / As we have easier access to massive data sets, functional analyses have gained more interest to analyze data providing information about curves, surfaces, or others varying over a continuum. However, such data sets often contain large heterogeneities and noise. When generalizing the analyses from vectors to functions, classical methods might not work directly. This dissertation considers noisy information reduction in functional analyses from two perspectives: functional variable selection to reduce the dimensionality and functional clustering to group similar observations and thus reduce the sample size. The complicated data structures and relations can be easily modeled by a Bayesian hierarchical model due to its flexibility. Hence, this dissertation focuses on the development of nonparametric Bayesian approaches for functional analyses. Our proposed methods can be applied in various applications: the epidemiological studies on aseptic meningitis with clustered binary data, the genetic diabetes data, and breast cancer racial disparities.
544

Road Safety Assessment of U.S. States: A Joint Frontier and Neural Network ModelingApproach

Egilmez, Gokhan 24 September 2013 (has links)
No description available.
545

Three Essays on Residential Land Development

Wrenn, Douglas Harvey, II 19 December 2012 (has links)
No description available.
546

ON SOME INFERENTIAL ASPECTS FOR TYPE-II AND PROGRESSIVE TYPE-II CENSORING

Volterman, William D. 10 1900 (has links)
<p>This thesis investigates nonparametric inference under multiple independent samples with various modes of censoring, and also presents results concerning Pitman Closeness under Progressive Type-II right censoring. For the nonparametric inference with multiple independent samples, the case of Type-II right censoring is first considered. Two extensions to this are then discussed: doubly Type-II censoring, and Progressive Type-II right censoring. We consider confidence intervals for quantiles, prediction intervals for order statistics from a future sample, and tolerance intervals for a population proportion. Benefits of using multiple samples over one sample are discussed. For each of these scenarios, we consider simulation as an alternative to exact calculations. In each case we illustrate the results with data from the literature. Furthermore, we consider two problems concerning Pitman Closeness and Progressive Type-II right censoring. We derive simple explicit formulae for the Pitman Closeness probabilities of the order statistics to population quantiles. Various tables are given to illustrate these results. We then use the Pitman Closeness measure as a criterion for determining the optimal censoring scheme for samples drawn from the exponential distribution. A general result is conjectured, and demonstrated in special cases</p> / Doctor of Philosophy (PhD)
547

Statistical methods for variant discovery and functional genomic analysis using next-generation sequencing data

Tang, Man 03 January 2020 (has links)
The development of high-throughput next-generation sequencing (NGS) techniques produces massive amount of data, allowing the identification of biomarkers in early disease diagnosis and driving the transformation of most disciplines in biology and medicine. A greater concentration is needed in developing novel, powerful, and efficient tools for NGS data analysis. This dissertation focuses on modeling ``omics'' data in various NGS applications with a primary goal of developing novel statistical methods to identify sequence variants, find transcription factor (TF) binding patterns, and decode the relationship between TF and gene expression levels. Accurate and reliable identification of sequence variants, including single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (INDELs), plays a fundamental role in NGS applications. Existing methods for calling these variants often make simplified assumption of positional independence and fail to leverage the dependence of genotypes at nearby loci induced by linkage disequilibrium. We propose vi-HMM, a hidden Markov model (HMM)-based method for calling SNPs and INDELs in mapped short read data. Simulation experiments show that, under various sequencing depths, vi-HMM outperforms existing methods in terms of sensitivity and F1 score. When applied to the human whole genome sequencing data, vi-HMM demonstrates higher accuracy in calling SNPs and INDELs. One important NGS application is chromatin immunoprecipitation followed by sequencing (ChIP-seq), which characterizes protein-DNA relations through genome-wide mapping of TF binding sites. Multiple TFs, binding to DNA sequences, often show complex binding patterns, which indicate how TFs with similar functionalities work together to regulate the expression of target genes. To help uncover the transcriptional regulation mechanism, we propose a novel nonparametric Bayesian method to detect the clustering pattern of multiple-TF bindings from ChIP-seq datasets. Simulation study demonstrates that our method performs best with regard to precision, recall, and F1 score, in comparison to traditional methods. We also apply the method on real data and observe several TF clusters that have been recognized previously in mouse embryonic stem cells. Recent advances in ChIP-seq and RNA sequencing (RNA-Seq) technologies provides more reliable and accurate characterization of TF binding sites and gene expression measurements, which serves as a basis to study the regulatory functions of TFs on gene expression. We propose a log Gaussian cox process with wavelet-based functional model to quantify the relationship between TF binding site locations and gene expression levels. Through the simulation study, we demonstrate that our method performs well, especially with large sample size and small variance. It also shows a remarkable ability to distinguish real local feature in the function estimates. / Doctor of Philosophy / The development of high-throughput next-generation sequencing (NGS) techniques produces massive amount of data and bring out innovations in biology and medicine. A greater concentration is needed in developing novel, powerful, and efficient tools for NGS data analysis. In this dissertation, we mainly focus on three problems closely related to NGS and its applications: (1) how to improve variant calling accuracy, (2) how to model transcription factor (TF) binding patterns, and (3) how to quantify of the contribution of TF binding on gene expression. We develop novel statistical methods to identify sequence variants, find TF binding patterns, and explore the relationship between TF binding and gene expressions. We expect our findings will be helpful in promoting a better understanding of disease causality and facilitating the design of personalized treatments.
548

Semiparametric Bayesian Approach using Weighted Dirichlet Process Mixture For Finance Statistical Models

Sun, Peng 07 March 2016 (has links)
Dirichlet process mixture (DPM) has been widely used as exible prior in nonparametric Bayesian literature, and Weighted Dirichlet process mixture (WDPM) can be viewed as extension of DPM which relaxes model distribution assumptions. Meanwhile, WDPM requires to set weight functions and can cause extra computation burden. In this dissertation, we develop more efficient and exible WDPM approaches under three research topics. The first one is semiparametric cubic spline regression where we adopt a nonparametric prior for error terms in order to automatically handle heterogeneity of measurement errors or unknown mixture distribution, the second one is to provide an innovative way to construct weight function and illustrate some decent properties and computation efficiency of this weight under semiparametric stochastic volatility (SV) model, and the last one is to develop WDPM approach for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model (as an alternative approach for SV model) and propose a new model evaluation approach for GARCH which produces easier-to-interpret result compared to the canonical marginal likelihood approach. In the first topic, the response variable is modeled as the sum of three parts. One part is a linear function of covariates that enter the model parametrically. The second part is an additive nonparametric model. The covariates whose relationships to response variable are unclear will be included in the model nonparametrically using Lancaster and Šalkauskas bases. The third part is error terms whose means and variance are assumed to follow non-parametric priors. Therefore we denote our model as dual-semiparametric regression because we include nonparametric idea for both modeling mean part and error terms. Instead of assuming all of the error terms follow the same prior in DPM, our WDPM provides multiple candidate priors for each observation to select with certain probability. Such probability (or weight) is modeled by relevant predictive covariates using Gaussian kernel. We propose several different WDPMs using different weights which depend on distance in covariates. We provide the efficient Markov chain Monte Carlo (MCMC) algorithms and also compare our WDPMs to parametric model and DPM model in terms of Bayes factor using simulation and empirical study. In the second topic, we propose an innovative way to construct weight function for WDPM and apply it to SV model. SV model is adopted in time series data where the constant variance assumption is violated. One essential issue is to specify distribution of conditional return. We assume WDPM prior for conditional return and propose a new way to model the weights. Our approach has several advantages including computational efficiency compared to the weight constructed using Gaussian kernel. We list six properties of this proposed weight function and also provide the proof of them. Because of the additional Metropolis-Hastings steps introduced by WDPM prior, we find the conditions which can ensure the uniform geometric ergodicity of transition kernel in our MCMC. Due to the existence of zero values in asset price data, our SV model is semiparametric since we employ WDPM prior for non-zero values and parametric prior for zero values. On the third project, we develop WDPM approach for GARCH type model and compare different types of weight functions including the innovative method proposed in the second topic. GARCH model can be viewed as an alternative way of SV for analyzing daily stock prices data where constant variance assumption does not hold. While the response variable of our SV models is transformed log return (based on log-square transformation), GARCH directly models the log return itself. This means that, theoretically speaking, we are able to predict stock returns using GARCH models while this is not feasible if we use SV model. Because SV models ignore the sign of log returns and provides predictive densities for squared log return only. Motivated by this property, we propose a new model evaluation approach called back testing return (BTR) particularly for GARCH. This BTR approach produces model evaluation results which are easier to interpret than marginal likelihood and it is straightforward to draw conclusion about model profitability by applying this approach. Since BTR approach is only applicable to GARCH, we also illustrate how to properly cal- culate marginal likelihood to make comparison between GARCH and SV. Based on our MCMC algorithms and model evaluation approaches, we have conducted large number of model fittings to compare models in both simulation and empirical study. / Ph. D.
549

[pt] DIVERSIDADE DO LUCRO ENTRE AS PEQUENAS EMPRESAS BRASILEIRAS: O MERCADO DE CRÉDITO COMO UM DE SEUS POSSÍVEIS DETERMINANTES / [en] PROFIT DIVERSITY AMONG BRAZILIAN SMALL FIRMS PROFIT: CREDIT MARKET AS A DETERMINANT

CRISTINE CAMPOS DE XAVIER PINTO 04 December 2003 (has links)
[pt] Uma característica de alguns conta-próprias e dos empregadores com até cinco empregados brasileiros, é sua baixa produtividade e lucratividade. Além disso, entre estas pequenas empresas, existe uma grande diversidade de níveis de lucro, algumas com patamares de lucro altos quando comparadas às demais e outras com lucros irrisórios. A maioria dos estudiosos associa esta baixa produtividade das pequenas empresas brasileiras ao mercado de crédito em que elas atuam. Segundo eles, as imperfeições no mercado de crédito impedem que estas pequenas produções consigam obter o volume de capital necessário a execução dos projetos mais eficientes. Além disso, como algumas empresas enfrentam restrições creditícias mais severas que outras, elas podem ter produtividade diferentes e consequentemente níveis de lucro diferentes. Ao observar os dados fornecidos pelo IBGE em 1997 sobre estas pequena produções percebe-se que de fato elas operam em patamares de lucro diferentes, algumas com lucros bem acima da média e outras com lucros negativos, e utilizam volumes de capital muito diferentes em seu processo produtivo. Este resultado é estranho, uma vez que as pequenas empresas atuam nos mesmos mercados, sendo tomadoras de preços e provavelmente usam a mesma tecnologia, e portanto, segundo a teoria microeconômica convencional, teriam que empregar o mesmo volume de capital em seu processo produtivo e obter o mesmo nível de lucro. Nesta dissertação, propõe uma abordagem que relaciona o mercado de crédito a diversidade de lucro entre as pequenas empresas brasileiras, sendo as imperfeições credíticias um dos possíveis determinantes para a lucratividade e produtividade destas empresas. / [en] The self-employees and the employers with no more than five employees in Brazil are well known for their low productivity and for their low profitability. These small firms have a great variety of profits level among of them, with some having profits above the mean and others with negative profits. In the majority of the studies, low profitability and low productivity are associated with the imperfections in credit market. The majority of this enterprises do not get the sufficient capital to invest in the most productive projects, because of the restrictions in credit market. When we work with the data for the small employers and self-employees in Brazil, we see that the profits level differs among these firms, and they put different amount of capital in their production. This result is not expected, because the small firms in Brazil participate in the same markets, and probably have the same technology. Thus according to the microeconomic theory, they should have the same profits level and should use the same amount of capital in their production. This paper try to infer if the credit constrains are the only factor that affects small enterprises profit in Brazil.
550

A nonparametric Bayesian perspective for machine learning in partially-observed settings

Akova, Ferit 31 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Robustness and generalizability of supervised learning algorithms depend on the quality of the labeled data set in representing the real-life problem. In many real-world domains, however, we may not have full knowledge of the underlying data-generating mechanism, which may even have an evolving nature introducing new classes continually. This constitutes a partially-observed setting, where it would be impractical to obtain a labeled data set exhaustively defined by a fixed set of classes. Traditional supervised learning algorithms, assuming an exhaustive training library, would misclassify a future sample of an unobserved class with probability one, leading to an ill-defined classification problem. Our goal is to address situations where such assumption is violated by a non-exhaustive training library, which is a very realistic yet an overlooked issue in supervised learning. In this dissertation we pursue a new direction for supervised learning by defining self-adjusting models to relax the fixed model assumption imposed on classes and their distributions. We let the model adapt itself to the prospective data by dynamically adding new classes/components as data demand, which in turn gradually make the model more representative of the entire population. In this framework, we first employ suitably chosen nonparametric priors to model class distributions for observed as well as unobserved classes and then, utilize new inference methods to classify samples from observed classes and discover/model novel classes for those from unobserved classes. This thesis presents the initiating steps of an ongoing effort to address one of the most overlooked bottlenecks in supervised learning and indicates the potential for taking new perspectives in some of the most heavily studied areas of machine learning: novelty detection, online class discovery and semi-supervised learning.

Page generated in 0.0872 seconds