561 |
Nonparametric adaptive estimation for discretely observed Lévy processesKappus, Julia Johanna 30 October 2012 (has links)
Die vorliegende Arbeit hat nichtparametrische Schätzmethoden für diskret beobachtete Lévyprozesse zum Gegenstand. Ein Lévyprozess mit endlichen zweiten Momenten und endlicher Variation auf Kompakta wird niederfrequent beobachtet. Die Sprungdynamik wird vollständig durch das endliche signierte Maß my(dx):= x ny(dx) beschrieben. Ein lineares Funktional von my soll nichtparametrisch geschätzt werden. Im ersten Teil werden Kernschätzer konstruiert und obere Schranken für das korrespondierende Risiko bewiesen. Daraus werden Konvergenzraten unter Glattheitsannahmen an das Lévymaß hergeleitet. Für Spezialfälle werden untere Schranken bewiesen und daraus Minimax-Optimalität gefolgert. Der Schwerpunkt liegt auf dem Problem der datengetriebenen Wahl des Glättungsparameters, das im zweiten Teil untersucht wird. Da die nichtparametrische Schätzung für Lévyprozesse starke strukturelle Ähnlichkeiten mit Dichtedekonvolutionsproblemen mit unbekannter Fehlerdichte aufweist, werden beide Problemstellungen parallel diskutiert und die Methoden allgemein sowohl für Lévyprozesse als auch für Dichtedekonvolution entwickelt. Es werden Methoden der Modellwahl durch Penalisierung angewandt. Während das Prinzip der Modellwahl im üblichen Fall darauf beruht, dass die Fluktuation stochastischer Terme durch Penalisierung mit einer deterministischen Größe beschränkt werden kann, ist die Varianz im hier betrachteten Fall unbekannt und der Strafterm somit stochastisch. Das Hauptaugenmerk der Arbeit liegt darauf, Strategien zum Umgang mit dem stochastischen Strafterm zu entwickeln. Dabei ist ein modifizierter Schätzer für die charakteristische Funktion im Nenner zentral, der es erlaubt, die punktweise Kontrolle der Abweichung dieses Objects von seiner Zielgröße auf die gesamte reelle Achse zu erweitern. Für die Beweistechnik sind insbesondere Talagrand-Konzentrationsungleichungen für empirische Prozesse relevant. / This thesis deals with nonparametric estimation methods for discretely observed Lévy processes. A Lévy process X having finite variation on compact sets and finite second moments is observed at low frequency. The jump dynamics is fully described by the finite signed measure my(dx)=x ny(dx). The goal is to estimate, nonparametrically, some linear functional of my. In the first part, kernel estimators are constructed and upper bounds on the corresponding risk are provided. From this, rates of convergence are derived, under regularity assumptions on the Lévy measure. For particular cases, minimax lower bounds are proved. The rates of convergence are thus shown to be minimax optimal. The focus lies on the data driven choice of the smoothing parameter, which is being considered in the second part. Since nonparametric estimation methods for Lévy processes have strong structural similarities with with nonparametric density deconvolution with unknown error density, both fields are discussed in parallel and the concepts are developed in generality, for Lévy processes as well as for density deconvolution. The choice of the bandwidth is realized, using techniques of model selection via penalization. The principle of model selection via penalization usually relies on the fact that the fluctuation of certain stochastic quantities can be controlled by penalizing with a deterministic term. Contrarily to this, the variance is unknown in the setting investigated here and the penalty term is hence itself a stochastic quantity. It is the main concern of this thesis to develop strategies to dealing with the stochastic penalty term. The most important step in this direction will be a modified estimator of the unknown characteristic function in the denominator, which allows to make the pointwise control of this object uniform on the real line. The main technical tools involved in the arguments are concentration inequalities of Talagrand type for empirical processes.
|
562 |
Quantile methods for financial risk managementSchaumburg, Julia 27 February 2013 (has links)
In dieser Dissertation werden neue Methoden zur Erfassung zweier Risikoarten entwickelt. Markrisiko ist definiert als das Risiko, auf Grund von Wertrückgängen in Wertpapierportfolios Geld zu verlieren. Systemisches Risiko bezieht sich auf das Risiko des Zusammenbruchs eines Finanzsystems, das durch die Notlage eines einzelnen Finanzinstituts entsteht. Im Zuge der Finanzkrise 2007–2009 realisierten sich beide Risiken, was weltweit zu hohen Verlusten für Investoren, Unternehmen und Steuerzahler führte. Vor diesem Hintergrund besteht sowohl bei Finanzinstituten als auch bei Regulierungsbehörden Interesse an neuen Ansätzen für das Risikomanagement. Die Gemeinsamkeit der in dieser Dissertation entwickelten Methoden besteht darin, dass unterschiedliche Quantilsregressionsansätze in neuartiger Weise für das Finanzrisikomanagement verwendet werden. Zum einen wird nichtparametrische Quantilsregression mit Extremwertmethoden kombiniert, um extreme Markpreisänderungsrisiken zu prognostizieren. Das resultierende Value at Risk (VaR) Prognose- Modell für extremeWahrscheinlichkeiten wird auf internationale Aktienindizes angewandt. In vielen Fällen schneidet es besser ab als parametrische Vergleichsmodelle. Zum anderen wird ein Maß für systemisches Risiko, das realized systemic risk beta, eingeführt. Anders als bereits existierende Messgrößen erfasst es explizit sowohl Risikoabhängigkeiten zwischen Finanzinstituten als auch deren individuelle Bilanzmerkmale und Finanzsektor-Indikatoren. Um die relevanten Risikotreiber jedes einzelnen Unternehmens zu bestimmen, werden Modellselektionsverfahren für hochdimensionale Quantilsregressionen benutzt. Das realized systemic risk beta entspricht dem totalen Effekt eines Anstiegs des VaR eines Unternehmens auf den VaR des Finanzsystems. Anhand von us-amerikanischen und europäischen Daten wird gezeigt, dass die neue Messzahl sich gut zur Erfassung und Vorhersage systemischen Risikos eignet. / This thesis develops new methods to assess two types of financial risk. Market risk is defined as the risk of losing money due to drops in the values of asset portfolios. Systemic risk refers to the breakdown risk for the financial system induced by the distress of individual companies. During the financial crisis 2007–2009, both types of risk materialized, resulting in huge losses for investors, companies, and tax payers all over the world. Therefore, considering new risk management alternatives is of interest for both financial institutions and regulatory authorities. A common feature of the models used throughout the thesis is that they adapt quantile regression techniques to the context of financial risk management in a novel way. Firstly, to predict extreme market risk, nonparametric quantile regression is combined with extreme value theory. The resulting extreme Value at Risk (VaR) forecast framework is applied to different international stock indices. In many situations, its performance is superior to parametric benchmark models. Secondly, a systemic risk measure, the realized systemic risk beta, is proposed. In contrast to exististing measures it is tailored to account for tail risk interconnections within the financial sector, individual firm characteristics, and financial indicators. To determine each company’s relevant risk drivers, model selection techniques for high-dimensional quantile regression are employed. The realized systemic risk beta corresponds to the total effect of each firm’s VaR on the system’s VaR. Using data on major financial institutions in the U.S. and in Europe, it is shown that the new measure is a valuable tool to both estimate and forecast systemic risk.
|
563 |
Central limit theorems and confidence sets in the calibration of Lévy models and in deconvolutionSöhl, Jakob 03 May 2013 (has links)
Zentrale Grenzwertsätze und Konfidenzmengen werden in zwei verschiedenen, nichtparametrischen, inversen Problemen ähnlicher Struktur untersucht, und zwar in der Kalibrierung eines exponentiellen Lévy-Modells und im Dekonvolutionsmodell. Im ersten Modell wird eine Geldanlage durch einen exponentiellen Lévy-Prozess dargestellt, Optionspreise werden beobachtet und das charakteristische Tripel des Lévy-Prozesses wird geschätzt. Wir zeigen, dass die Schätzer fast sicher wohldefiniert sind. Zu diesem Zweck beweisen wir eine obere Schranke für Trefferwahrscheinlichkeiten von gaußschen Zufallsfeldern und wenden diese auf einen Gauß-Prozess aus der Schätzmethode für Lévy-Modelle an. Wir beweisen gemeinsame asymptotische Normalität für die Schätzer von Volatilität, Drift und Intensität und für die punktweisen Schätzer der Sprungdichte. Basierend auf diesen Ergebnissen konstruieren wir Konfidenzintervalle und -mengen für die Schätzer. Wir zeigen, dass sich die Konfidenzintervalle in Simulationen gut verhalten, und wenden sie auf Optionsdaten des DAX an. Im Dekonvolutionsmodell beobachten wir unabhängige, identisch verteilte Zufallsvariablen mit additiven Fehlern und schätzen lineare Funktionale der Dichte der Zufallsvariablen. Wir betrachten Dekonvolutionsmodelle mit gewöhnlich glatten Fehlern. Bei diesen ist die Schlechtgestelltheit des Problems durch die polynomielle Abfallrate der charakteristischen Funktion der Fehler gegeben. Wir beweisen einen gleichmäßigen zentralen Grenzwertsatz für Schätzer von Translationsklassen linearer Funktionale, der die Schätzung der Verteilungsfunktion als Spezialfall enthält. Unsere Ergebnisse gelten in Situationen, in denen eine Wurzel-n-Rate erreicht werden kann, genauer gesagt gelten sie, wenn die Sobolev-Glattheit der Funktionale größer als die Schlechtgestelltheit des Problems ist. / Central limit theorems and confidence sets are studied in two different but related nonparametric inverse problems, namely in the calibration of an exponential Lévy model and in the deconvolution model. In the first set-up, an asset is modeled by an exponential of a Lévy process, option prices are observed and the characteristic triplet of the Lévy process is estimated. We show that the estimators are almost surely well-defined. To this end, we prove an upper bound for hitting probabilities of Gaussian random fields and apply this to a Gaussian process related to the estimation method for Lévy models. We prove joint asymptotic normality for estimators of the volatility, the drift, the intensity and for pointwise estimators of the jump density. Based on these results, we construct confidence intervals and sets for the estimators. We show that the confidence intervals perform well in simulations and apply them to option data of the German DAX index. In the deconvolution model, we observe independent, identically distributed random variables with additive errors and we estimate linear functionals of the density of the random variables. We consider deconvolution models with ordinary smooth errors. Then the ill-posedness of the problem is given by the polynomial decay rate with which the characteristic function of the errors decays. We prove a uniform central limit theorem for the estimators of translation classes of linear functionals, which includes the estimation of the distribution function as a special case. Our results hold in situations, for which a square-root-n-rate can be obtained, more precisely, if the Sobolev smoothness of the functionals is larger than the ill-posedness of the problem.
|
564 |
Analyse de sensibilité fiabiliste avec prise en compte d'incertitudes sur le modèle probabiliste - Application aux systèmes aérospatiaux / Reliability-oriented sensitivity analysis under probabilistic model uncertainty – Application to aerospace systemsChabridon, Vincent 26 November 2018 (has links)
Les systèmes aérospatiaux sont des systèmes complexes dont la fiabilité doit être garantie dès la phase de conception au regard des coûts liés aux dégâts gravissimes qu’engendrerait la moindre défaillance. En outre, la prise en compte des incertitudes influant sur le comportement (incertitudes dites « aléatoires » car liées à la variabilité naturelle de certains phénomènes) et la modélisation de ces systèmes (incertitudes dites « épistémiques » car liées au manque de connaissance et aux choix de modélisation) permet d’estimer la fiabilité de tels systèmes et demeure un enjeu crucial en ingénierie. Ainsi, la quantification des incertitudes et sa méthodologie associée consiste, dans un premier temps, à modéliser puis propager ces incertitudes à travers le modèle numérique considéré comme une « boîte-noire ». Dès lors, le but est d’estimer une quantité d’intérêt fiabiliste telle qu’une probabilité de défaillance. Pour les systèmes hautement fiables, la probabilité de défaillance recherchée est très faible, et peut être très coûteuse à estimer. D’autre part, une analyse de sensibilité de la quantité d’intérêt vis-à-vis des incertitudes en entrée peut être réalisée afin de mieux identifier et hiérarchiser l’influence des différentes sources d’incertitudes. Ainsi, la modélisation probabiliste des variables d’entrée (incertitude épistémique) peut jouer un rôle prépondérant dans la valeur de la probabilité obtenue. Une analyse plus profonde de l’impact de ce type d’incertitude doit être menée afin de donner une plus grande confiance dans la fiabilité estimée. Cette thèse traite de la prise en compte de la méconnaissance du modèle probabiliste des entrées stochastiques du modèle. Dans un cadre probabiliste, un « double niveau » d’incertitudes (aléatoires/épistémiques) doit être modélisé puis propagé à travers l’ensemble des étapes de la méthodologie de quantification des incertitudes. Dans cette thèse, le traitement des incertitudes est effectué dans un cadre bayésien où la méconnaissance sur les paramètres de distribution des variables d‘entrée est caractérisée par une densité a priori. Dans un premier temps, après propagation du double niveau d’incertitudes, la probabilité de défaillance prédictive est utilisée comme mesure de substitution à la probabilité de défaillance classique. Dans un deuxième temps, une analyse de sensibilité locale à base de score functions de cette probabilité de défaillance prédictive vis-à-vis des hyper-paramètres de loi de probabilité des variables d’entrée est proposée. Enfin, une analyse de sensibilité globale à base d’indices de Sobol appliqués à la variable binaire qu’est l’indicatrice de défaillance est réalisée. L’ensemble des méthodes proposées dans cette thèse est appliqué à un cas industriel de retombée d’un étage de lanceur. / Aerospace systems are complex engineering systems for which reliability has to be guaranteed at an early design phase, especially regarding the potential tremendous damage and costs that could be induced by any failure. Moreover, the management of various sources of uncertainties, either impacting the behavior of systems (“aleatory” uncertainty due to natural variability of physical phenomena) and/or their modeling and simulation (“epistemic” uncertainty due to lack of knowledge and modeling choices) is a cornerstone for reliability assessment of those systems. Thus, uncertainty quantification and its underlying methodology consists in several phases. Firstly, one needs to model and propagate uncertainties through the computer model which is considered as a “black-box”. Secondly, a relevant quantity of interest regarding the goal of the study, e.g., a failure probability here, has to be estimated. For highly-safe systems, the failure probability which is sought is very low and may be costly-to-estimate. Thirdly, a sensitivity analysis of the quantity of interest can be set up in order to better identify and rank the influential sources of uncertainties in input. Therefore, the probabilistic modeling of input variables (epistemic uncertainty) might strongly influence the value of the failure probability estimate obtained during the reliability analysis. A deeper investigation about the robustness of the probability estimate regarding such a type of uncertainty has to be conducted. This thesis addresses the problem of taking probabilistic modeling uncertainty of the stochastic inputs into account. Within the probabilistic framework, a “bi-level” input uncertainty has to be modeled and propagated all along the different steps of the uncertainty quantification methodology. In this thesis, the uncertainties are modeled within a Bayesian framework in which the lack of knowledge about the distribution parameters is characterized by the choice of a prior probability density function. During a first phase, after the propagation of the bi-level input uncertainty, the predictive failure probability is estimated and used as the current reliability measure instead of the standard failure probability. Then, during a second phase, a local reliability-oriented sensitivity analysis based on the use of score functions is achieved to study the impact of hyper-parameterization of the prior on the predictive failure probability estimate. Finally, in a last step, a global reliability-oriented sensitivity analysis based on Sobol indices on the indicator function adapted to the bi-level input uncertainty is proposed. All the proposed methodologies are tested and challenged on a representative industrial aerospace test-case simulating the fallout of an expendable space launcher.
|
565 |
Restauration d'images Satellitaires par des techniques de filtrage statistique non linéaire / Satellite image restoration by nonlinear statistical filtering techniquesMarhaba, Bassel 21 November 2018 (has links)
Le traitement des images satellitaires est considéré comme l'un des domaines les plus intéressants dans les domaines de traitement d'images numériques. Les images satellitaires peuvent être dégradées pour plusieurs raisons, notamment les mouvements des satellites, les conditions météorologiques, la dispersion et d'autres facteurs. Plusieurs méthodes d'amélioration et de restauration des images satellitaires ont été étudiées et développées dans la littérature. Les travaux présentés dans cette thèse se concentrent sur la restauration des images satellitaires par des techniques de filtrage statistique non linéaire. Dans un premier temps, nous avons proposé une nouvelle méthode pour restaurer les images satellitaires en combinant les techniques de restauration aveugle et non aveugle. La raison de cette combinaison est d'exploiter les avantages de chaque technique utilisée. Dans un deuxième temps, de nouveaux algorithmes statistiques de restauration d'images basés sur les filtres non linéaires et l'estimation non paramétrique de densité multivariée ont été proposés. L'estimation non paramétrique de la densité à postériori est utilisée dans l'étape de ré-échantillonnage du filtre Bayésien bootstrap pour résoudre le problème de la perte de diversité dans le système de particules. Enfin, nous avons introduit une nouvelle méthode de la combinaison hybride pour la restauration des images basée sur la transformée en ondelettes discrète (TOD) et les algorithmes proposés à l'étape deux, et nos avons prouvé que les performances de la méthode combinée sont meilleures que les performances de l'approche TOD pour la réduction du bruit dans les images satellitaires dégradées. / Satellite image processing is considered one of the more interesting areas in the fields of digital image processing. Satellite images are subject to be degraded due to several reasons, satellite movements, weather, scattering, and other factors. Several methods for satellite image enhancement and restoration have been studied and developed in the literature. The work presented in this thesis, is focused on satellite image restoration by nonlinear statistical filtering techniques. At the first step, we proposed a novel method to restore satellite images using a combination between blind and non-blind restoration techniques. The reason for this combination is to exploit the advantages of each technique used. In the second step, novel statistical image restoration algorithms based on nonlinear filters and the nonparametric multivariate density estimation have been proposed. The nonparametric multivariate density estimation of posterior density is used in the resampling step of the Bayesian bootstrap filter to resolve the problem of loss of diversity among the particles. Finally, we have introduced a new hybrid combination method for image restoration based on the discrete wavelet transform (DWT) and the proposed algorithms in step two, and, we have proved that the performance of the combined method is better than the performance of the DWT approach in the reduction of noise in degraded satellite images.
|
566 |
Developments in statistics applied to hydrometeorology : imputation of streamflow data and semiparametric precipitation modeling / Développements en statistiques appliquées à l'hydrométéorologie : imputation de données de débit et modélisation semi-paramétrique de la précipitationTencaliec, Patricia 01 February 2017 (has links)
Les précipitations et les débits des cours d'eau constituent les deux variables hydrométéorologiques les plus importantes pour l'analyse des bassins versants. Ils fournissent des informations fondamentales pour la gestion intégrée des ressources en eau, telles que l’approvisionnement en eau potable, l'hydroélectricité, les prévisions d'inondations ou de sécheresses ou les systèmes d'irrigation.Dans cette thèse de doctorat sont abordés deux problèmes distincts. Le premier prend sa source dans l’étude des débits des cours d’eau. Dans le but de bien caractériser le comportement global d'un bassin versant, de longues séries temporelles de débit couvrant plusieurs dizaines d'années sont nécessaires. Cependant les données manquantes constatées dans les séries représentent une perte d'information et de fiabilité, et peuvent entraîner une interprétation erronée des caractéristiques statistiques des données. La méthode que nous proposons pour aborder le problème de l'imputation des débits se base sur des modèles de régression dynamique (DRM), plus spécifiquement, une régression linéaire multiple couplée à une modélisation des résidus de type ARIMA. Contrairement aux études antérieures portant sur l'inclusion de variables explicatives multiples ou la modélisation des résidus à partir d'une régression linéaire simple, l'utilisation des DRMs permet de prendre en compte les deux aspects. Nous appliquons cette méthode pour reconstruire les données journalières de débit à huit stations situées dans le bassin versant de la Durance (France), sur une période de 107 ans. En appliquant la méthode proposée, nous parvenons à reconstituer les débits sans utiliser d'autres variables explicatives. Nous comparons les résultats de notre modèle avec ceux obtenus à partir d'un modèle complexe basé sur les analogues et la modélisation hydrologique et d'une approche basée sur le plus proche voisin. Dans la majorité des cas, les DRMs montrent une meilleure performance lors de la reconstitution de périodes de données manquantes de tailles différentes, dans certains cas pouvant allant jusqu'à 20 ans.Le deuxième problème que nous considérons dans cette thèse concerne la modélisation statistique des quantités de précipitations. La recherche dans ce domaine est actuellement très active car la distribution des précipitations exhibe une queue supérieure lourde et, au début de cette thèse, il n'existait aucune méthode satisfaisante permettant de modéliser toute la gamme des précipitations. Récemment, une nouvelle classe de distribution paramétrique, appelée distribution généralisée de Pareto étendue (EGPD), a été développée dans ce but. Cette distribution exhibe une meilleure performance, mais elle manque de flexibilité pour modéliser la partie centrale de la distribution. Dans le but d’améliorer la flexibilité, nous développons, deux nouveaux modèles reposant sur des méthodes semiparamétriques.Le premier estimateur développé transforme d'abord les données avec la distribution cumulative EGPD puis estime la densité des données transformées en appliquant un estimateur nonparamétrique par noyau. Nous comparons les résultats de la méthode proposée avec ceux obtenus en appliquant la distribution EGPD paramétrique sur plusieurs simulations, ainsi que sur deux séries de précipitations au sud-est de la France. Les résultats montrent que la méthode proposée se comporte mieux que l'EGPD, l’erreur absolue moyenne intégrée (MIAE) de la densité étant dans tous les cas presque deux fois inférieure.Le deuxième modèle considère une distribution EGPD semiparamétrique basée sur les polynômes de Bernstein. Plus précisément, nous utilisons un mélange creuse de densités béta. De même, nous comparons nos résultats avec ceux obtenus par la distribution EGPD paramétrique sur des jeux de données simulés et réels. Comme précédemment, le MIAE de la densité est considérablement réduit, cet effet étant encore plus évident à mesure que la taille de l'échantillon augmente. / Precipitation and streamflow are the two most important meteorological and hydrological variables when analyzing river watersheds. They provide fundamental insights for water resources management, design, or planning, such as urban water supplies, hydropower, forecast of flood or droughts events, or irrigation systems for agriculture.In this PhD thesis we approach two different problems. The first one originates from the study of observed streamflow data. In order to properly characterize the overall behavior of a watershed, long datasets spanning tens of years are needed. However, the quality of the measurement dataset decreases the further we go back in time, and blocks of data of different lengths are missing from the dataset. These missing intervals represent a loss of information and can cause erroneous summary data interpretation or unreliable scientific analysis.The method that we propose for approaching the problem of streamflow imputation is based on dynamic regression models (DRMs), more specifically, a multiple linear regression with ARIMA residual modeling. Unlike previous studies that address either the inclusion of multiple explanatory variables or the modeling of the residuals from a simple linear regression, the use of DRMs allows to take into account both aspects. We apply this method for reconstructing the data of eight stations situated in the Durance watershed in the south-east of France, each containing daily streamflow measurements over a period of 107 years. By applying the proposed method, we manage to reconstruct the data without making use of additional variables, like other models require. We compare the results of our model with the ones obtained from a complex approach based on analogs coupled to a hydrological model and a nearest-neighbor approach, respectively. In the majority of cases, DRMs show an increased performance when reconstructing missing values blocks of various lengths, in some of the cases ranging up to 20 years.The second problem that we approach in this PhD thesis addresses the statistical modeling of precipitation amounts. The research area regarding this topic is currently very active as the distribution of precipitation is a heavy-tailed one, and at the moment, there is no general method for modeling the entire range of data with high performance. Recently, in order to propose a method that models the full-range precipitation amounts, a new class of distribution called extended generalized Pareto distribution (EGPD) was introduced, specifically with focus on the EGPD models based on parametric families. These models provide an improved performance when compared to previously proposed distributions, however, they lack flexibility in modeling the bulk of the distribution. We want to improve, through, this aspect by proposing in the second part of the thesis, two new models relying on semiparametric methods.The first method that we develop is the transformed kernel estimator based on the EGPD transformation. That is, we propose an estimator obtained by, first, transforming the data with the EGPD cdf, and then, estimating the density of the transformed data by applying a nonparametric kernel density estimator. We compare the results of the proposed method with the ones obtained by applying EGPD on several simulated scenarios, as well as on two precipitation datasets from south-east of France. The results show that the proposed method behaves better than parametric EGPD, the MIAE of the density being in all the cases almost twice as small.A second approach consists of a new model from the general EGPD class, i.e., we consider a semiparametric EGPD based on Bernstein polynomials, more specifically, we use a sparse mixture of beta densities. Once again, we compare our results with the ones obtained by EGPD on both simulated and real datasets. As before, the MIAE of the density is considerably reduced, this effect being even more obvious as the sample size increases.
|
567 |
Extrakce informací o pravděpodobnosti a riziku výnosů z cen opcí / Information Extraction of Probability and Risk of Returns using Options PricesCícha, Martin January 2004 (has links)
The issue of forecasting the future price of risky financial assets has attracted academia and business practice since the inception of the stock exchange. Also due to the just finished financial crisis, which was the worst crisis since the Great Depression, it is clear that research in this area has not been finished yet. On the contrary, new challenges have been raised. The main goal of the thesis is the demonstration of the significant information potential which is hidden in option market prices. These prices contain informations on probability distribution of the underlying asset returns and the risk connected with these returns. Other objectives of the thesis are the forecast of the underlying asset price distribution using parametric and nonparametric estimates, the improvement of this forecast using the utility function of the representative investor, the description of the current market sentiment and the determination of the risk premium, especially the risk premium on Czech market. The thesis deals with the forecast of the underlying asset price probability distribution implied by the current option market prices using parametric and nonparametric estimates. The resulting distribution is described by the moment characteristics which represent a valuable tool for analyzing the current market sentiment. According to the theory, the probability distribution of the underlying asset price implied by option prices is risk neutral, i.e. it applies only to risk neutral investors. The theory further implies that the distribution of real world can be derived from the risk neutral distribution using utility function of the representative investor. The inclusion of a utility function of representative investor improves the forecast of the underlying asset price distribution. Three different utility functions of traditional risk theory are used in the thesis. These functions range from the simple power function to the general function of hyperbolic absolute risk aversion (HARA). Further, Friedman-Savage utility function is used. This function allows both a risk averse investor and a risk loving investor. The thesis also answers the question: Are the current asset prices at so high level that the purchase of the asset means a gamble? The risk premium associated with investing in the risky asset is derived in the thesis. The risk premium can be understood as the premium demanded by investors for investment in a risky asset against the investment in a riskless asset. All the theoretical methods introduced in the thesis are demonstrated on real data coming from two different markets. Developing market is represented by shares of CEZ and developed market is represented by S&P 500 futures. The thesis deals with demonstrations in single point in time as well as in available history of the data. The forecasts of the underlying asset price distribution and the relating risk premium are constructed in the available data history. The goals and the objectives of the thesis have been achieved. The contribution of the thesis is the development of parametric and nonparametric methodology for estimating the underlying asset price probability distribution implied by the option market prices so that the nature of the particular market and instrument is captured. The further contribution of the thesis is the construction of the forecasts of the underlying asset price distribution and the construction of the market sentiment in the available history of data. The contribution of the thesis is also the construction of the market risk premium in the available history and the establishment of the hypothesis that the markets gamble before the crisis.
|
568 |
Hodnocení vlivu větrných elektráren na krajinný ráz / Evaluation of the Impact of Wind Turbines on a LandscapeUrbášková, Martina January 2011 (has links)
The goal of the work is to provide monetary valuation of changes in visual aspects of the landscape as a result of construction of an additional wind turbine in the village Maletín. For a suitable method for achieving the goal is being selected the contingent valuation method. A key element of this method is being considered the carefully compiled questionnaire, on which basis is made the quantification and evaluation of collected data. The representative sample consists of 112 households and the selected payment method is the increase of the monthly bill for electricity. The questionnaire reports that 54.3% of households consider the impact of wind turbines on the landscape Maletín to be positive. With the construction of additional wind turbine agree less than 74.3% of households and the most common reason is to obtain grants for the village and to produce cleaner energy from wind turbines. With the construction of new wind turbine while increasing monthly bill agrees 28.6% of all households living in the village Maletín. Estimation of changes in a welfare, thus improving the quality of the environment, is based on estimated central values, that has been calculated from selected characteristics and nonparametric estimation. The average household's willingness to pay for construction of wind turbine is estimated to be between 77 CZK - 200 CZK per month.
|
569 |
Classificação de dados estacionários e não estacionários baseada em grafos / Graph-based classification for stationary and non-stationary dataBertini Júnior, João Roberto 24 January 2011 (has links)
Métodos baseados em grafos consistem em uma poderosa forma de representação e abstração de dados que proporcionam, dentre outras vantagens, representar relações topológicas, visualizar estruturas, representar grupos de dados com formatos distintos, bem como, fornecer medidas alternativas para caracterizar os dados. Esse tipo de abordagem tem sido cada vez mais considerada para solucionar problemas de aprendizado de máquina, principalmente no aprendizado não supervisionado, como agrupamento de dados, e mais recentemente, no aprendizado semissupervisionado. No aprendizado supervisionado, por outro lado, o uso de algoritmos baseados em grafos ainda tem sido pouco explorado na literatura. Este trabalho apresenta um algoritmo não paramétrico baseado em grafos para problemas de classificação com distribuição estacionária, bem como sua extensão para problemas que apresentam distribuição não estacionária. O algoritmo desenvolvido baseia-se em dois conceitos, a saber, 1) em uma estrutura chamada grafo K-associado ótimo, que representa o conjunto de treinamento como um grafo esparso e dividido em componentes; e 2) na medida de pureza de cada componente, que utiliza a estrutura do grafo para determinar o nível de mistura local dos dados em relação às suas classes. O trabalho também considera problemas de classificação que apresentam alteração na distribuição de novos dados. Este problema caracteriza a mudança de conceito e degrada o desempenho do classificador. De modo que, para manter bom desempenho, é necessário que o classificador continue aprendendo durante a fase de aplicação, por exemplo, por meio de aprendizado incremental. Resultados experimentais sugerem que ambas as abordagens apresentam vantagens na classificação de dados em relação aos algoritmos testados / Graph-based methods consist in a powerful form for data representation and abstraction which provides, among others advantages, representing topological relations, visualizing structures, representing groups of data with distinct formats, as well as, supplying alternative measures to characterize data. Such approach has been each time more considered to solve machine learning related problems, mainly concerning unsupervised learning, like clustering, and recently, semi-supervised learning. However, graph-based solutions for supervised learning tasks still remain underexplored in literature. This work presents a non-parametric graph-based algorithm suitable for classification problems with stationary distribution, as well as its extension to cope with problems of non-stationary distributed data. The developed algorithm relies on the following concepts, 1) a graph structure called optimal K-associated graph, which represents the training set as a sparse graph separated into components; and 2) the purity measure for each component, which uses the graph structure to determine local data mixture level in relation to their classes. This work also considers classification problems that exhibit modification on distribution of data flow. This problem qualifies concept drift and worsens any static classifier performance. Hence, in order to maintain accuracy performance, it is necessary for the classifier to keep learning during application phase, for example, by implementing incremental learning. Experimental results, concerning both algorithms, suggest that they had presented advantages over the tested algorithms on data classification tasks
|
570 |
Sur l’utilisation des modèles multi-états pour la mesure et la gestion des risques d’un contrat d’assurance / On the use of multi-state models to measure and manage the risks of an insurance contractGuibert, Quentin 07 December 2015 (has links)
La mise en place de Solvabilité II conduit les actuaires à s'interroger sur la bonne adéquation entre modèles et données. Aussi, cette thèse a pour objectif d'étudier plusieurs approches statistiques, souvent méconnues des praticiens, permettant l'utilisation de méthodes multi états pour modéliser et gérer les risques individuels en assurance. Le Chapitre 1 présente le contexte général de cette thèse et permet de faire positionner ses principales contributions. Nous abordons les concepts de base liés à l'utilisation de modèles multi-états en assurance et décrivons les techniques d'inférence classiques adaptées aux données rencontrées, qu'ils soient markoviens ou non-markoviens. Pour finir, nous présentons comment il est possible d'utiliser ces modèles pour la gestion des risques de crédit. Le Chapitre 2 se concentre sur l'utilisation de méthodes d'inférence non-paramétriques pour la construction de lois d'incidence en assurance dépendance. Puisque plusieurs causes d'entrée sont susceptibles d'intervenir et d'intéresser les actuaires, nous nous concentrons sur une méthode utilisée pour l'estimation de modèles multi-états markoviens en temps continu. Nous comparons, dans un second temps, ces estimateurs à ceux utilisés classiquement par les praticiens tires de l'analyse de survie. Cette seconde approche peut comporter des biais non négligeables car ne permettant pas d'appréhender correctement l'interaction possible entre les causes. En particulier, elle comprend une hypothèse d'indépendance ne pouvant être testée dans le cadre de modèles à risques concurrents. Notre approche consiste alors à mesurer l'erreur commise par les praticiens lors de la construction de lois d'incidence. Une application numérique est alors considérée sur la base des données d'un assureur dépendance / With the implementation of the Solvency II framework, actuaries should examine the good adequacy between models and data. This thesis aims to study several statistical approaches, often ignored by practitioners, enabling the use of multi-state methods to model and manage individual risks in insurance. Chapter 1 presents the general context of this thesis and positions its main contributions. The basic tools to use multi-state models in insurance are introduced and classical inference techniques, adapted to insurance data with and without the Markov assumption, are presented. Finally, a development of these models for credit risk is outlined. Chapter 2 focuses on using nonparametric inference methods to build incidence tables for long term care insurance contracts. Since there are several entry-causes in disability states which are useful for actuaries, an inference method for competing risks data, seen as a Markov multi-state model in continuous time, is used. In a second step, I compare these estimators to those conventionally used by practitioners, based on survival analysis methods. This second approach may involve significant bias because the interaction between entry-causes cannot be appropriately captured. In particular, these approaches assume that latent failure times are independent, while this hypothesis cannot be tested for competing risks data. Our approach allows to measure the error done by practitioners when they build incidence tables. Finally, a numerical application is considered on a long term care insurance dataset
|
Page generated in 0.0772 seconds