• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 31
  • 17
  • 1
  • Tagged with
  • 106
  • 106
  • 91
  • 73
  • 55
  • 55
  • 55
  • 39
  • 18
  • 18
  • 17
  • 17
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Simulation von gesteinsmechanischen Bohr- und Schneidprozessen mittels der Diskreten - Elemente - Methode

Lunow, Christian 13 November 2015 (has links) (PDF)
Mit dem zweidimensionalen numerischen Diskrete-Elemente-Programm UDEC wurde nach vorheriger Kalibrierung das Einstanzen einer keilförmigen Schneide in Gesteinsmaterial simuliert und mit Laborversuchen verglichen. Außerdem wurde ein Schneidprozess simuliert. Mittels einer selbst entwickelten Routine, welche die Gesteinselemente bei Überlastung zerteilt und ein ‚Re-meshing‘ erzeugt, konnten befriedigende Simulationsergebnisse erzielt werden. Mit der dreidimensionalen Simulationssoftware PFC3D auf Partikelbasis wurden Modelle mit Hilfe von Zug-, Druck-, Scher- und Stanzversuchen kalibriert und anschließend Schneid- und Bohrversuche simuliert. Die Schneidsimulationen erbrachten bezüglich der Kräfte bei verschiedenen Prozessparametern gute Übereinstimmung mit den Laborversuchen. Bei der Bohrsimulationen konnten Kräfte und Momente aus den Laborversuchen nur teilweise reproduziert werden.
32

Zeitlich modulierte Statistik der periodisch gestörten turbulenten Kanalströmung / Time modulated statistics of the periodical distributed turbulent channel flow

Hartmann, Michael 09 August 2001 (has links)
No description available.
33

Large Eddy Simulationen von isolierten Scheibengalaxien / Large Eddy Simulations of Isolated Disk Galaxies

Braun, Harald Udo 05 December 2014 (has links)
In dieser Arbeit stelle ich ein neu entwickeltes, dynamisches Modell für das turbulente sternbildende interstellare Medium auf Skalen von einigen zehn Parsecs vor, welches den Namen MIST (Multi-phase Interstellar medium model with Star formation and Turbulence) trägt. Das Verhalten von MIST wurde mittels seiner Ein-Zonen-Gleichgewichtslösungen aber auch im Rahmen von Large Eddy Simulationen untersucht, wobei verschiedenste Beobachtungsresultate gleichzeitig reproduziert werden konnten.
34

Large-Eddy Simulation Modelling for Urban Scale / Large-Eddy Simulation in der urbanen Skala

König, Marcel 15 May 2014 (has links) (PDF)
In this work the model ASAM is enriched with new eddy viscosity based dynamic Smagorinsky subgrid-scale models. Therefore the model is more physically based to study atmospheric flow configurations at several atmospheric scales with main focus to urban scale flow with building-resolved resolution. The implemented dynamic procedures work well and showed good agreement to literature data. In a convective atmospheric boundary layer (ABL) the dynamic Smagorinsky coefficient reaches maximum values of 0.15 and decreases towards the surface or in stable stratified flow regimes. Vertical profiles of the Smagorinsky coefficient in a diurnal cycle of ABL depict typical behaviour of the dynamic Smagorinsky coefficient in near surface flow, free-stream, or stable stratified flow. Furthermore a modified inflow generation approach is proposed to produce fully turbulent flow fields. To modify a mean flow turbulent fluctuations are generated by superposition of sinusoidal and cosinesoidal modes. Due to the implementation of this inflow method the model ASAM has the ability to reproduce a given wind field with information from its mean wind speed and their fluctuation energy spectrum. The model configuration developed in this work is able to reproduce flow structure in a complex urban geometry. The Mock Urban Setting Test (MUST) experiment represent an urban roughness geometry by placing 120 shipping containers ordinary arranged in an array. The used building-resolved resolution is able to capture dynamic flow structures like specific wake flow, recirculation regions or eddy detachment. The dynamic fluctuating behaviour of the wind velocity components is reproduced by the model with regard to peak magnitudes and their temporal occurrence. Satisfying agreement is found between tracer gas dispersion field measurements and the model results by capturing the fluctuating concentration magnitude and in some extend the mean values.
35

Shear behavior of plane joints under CNL and DNL conditions: Lab testing and numerical simulation

Dang, Wengang 17 August 2017 (has links) (PDF)
The aim of this research work is to deepen the understanding of joint shear behavior under different boundary conditions. For this purpose, joint closure tests under quasi-static and dynamic conditions, direct shear and cyclic shear tests under CNL and DNL boundary conditions of plane joints are performed using GS-1000 big shear box device. The dissertation also presents the procedure to simulate the shear box device and simulating the behavior of plane joints at the micro-scale using FLAC3D. Special attention has been given to understand the influencing factors of the normal stress level, direct shear rate, horizontal cyclic shear frequency, normal impact frequency, horizontal cyclic shear displacement amplitude and vertical impact force amplitude. Lab test and numerical simulation results show that the quasi-static joint stiffness increases with increasing normal force. Dynamic joint stiffness decreases with increasing superimposed normal force amplitudes. Normal impact frequencies have little influence on the joint stiffness. Rotations and stress changes at the plane joint during shearing are proven. Rotations and development of stress gradients can be decreased significantly by increasing the size of the bottom specimen and applying a shear velocity at the upper shear box and normal loading piston. Furthermore, peak shear force increases with increasing normal force. Friction angle of cyclic shear tests is smaller than that of direct shear tests. Moreover, significant time shifts between normal and shear force (shear force delay), normal force and friction coefficient (friction coefficient delay) during direct shear tests under DNL boundary conditions are observed and the reference quantity ‘shear-velocity-normal-impact-frequency’ (SV-NIF) to describe the behavior under DNL boundary conditions is defined. Peak shear force and minimum friction coefficient increase with increasing SV-NIF. Relative time shift between normal force and shear force decreases with increase of SV-NIF. The mechanical behavior of the GS-1000 big shear box device is simulated and the loss of normal force caused by the tilting of the loading plate is quantified. Finally, the novel direct and cyclic shear strength criterions under DNL conditions are put forward. The shear strength criterions are in close agreement with the measured values, which indicates that the novel shear strength criterions are able to predict the shear strength under DNL conditions.
36

Investigation of the thermal effects in dynamically driven dielectric elastomer actuators

Kleo, Mario, Mößinger, Holger, Förster-Zügel, Florentine, Schlaak, Helmut F., Wallmersperger, Thomas 13 August 2020 (has links)
Dielectric elastomer actuators (DEAs) are compliant capacitors, which are able to transduce electrical into mechanical energy and vice versa. As they may be applied in different surrounding conditions and in applications with alternating excitations, it is necessary to investigate both, the thermal behavior and the in fluence of the temperature change during operation. Due to mechanical and electrical loss mechanisms during the energy transfer, the DEA is subjected to an intrinsic heating. In detail, the dielectric material, which has viscoelastic properties, shows a mechanical hysteresis under varying mechanical loads. This behavior leads to a viscoelastic loss of energy in the polymer layer, resulting in a heating of the structure. The non-ideal conduction of the electrode provokes a resistive loss when charging and discharging the electrode layer. Operation with frequencies in the kilohertz-range leads to remarkable local heat dissipation. The viscoelastic material behavior and the resistivity are assumed to be dependent on the temperature and/or on the strain of the material. By this, a back-coupling from the thermal field to the mechanical field or the electrical field is observed. In order to provide a thermal equilibrium, also the convective cooling { the structure is subjected to { has to be considered. Depending on the frequency and the type of electrical driving signal and mechanical load, viscoelastic and resistive heating provide different contributions during the dynamic process. In the present study we capture the described effects within our modeling approach. For a given dielectric elastomer actuator, numerical investigations are performed for a given electrical load.
37

Time-dependent chemo-electromechanical behavior of hydrogelbased structures

Leichsenring, Peter, Wallmersperger, Thomas 13 August 2020 (has links)
Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.
38

Profillinie 1: Neue Materialien und neue Werkstoffe:

Hoyer, Walter, Richter, Frank, Goedel, Werner A., Köhler, Eberhard, Wielage, Bernhard, Spange, Stefan, Hietschold, Michael, Radehaus, Christian, von Borczyskowski, Christian, Schreiber, Michael, Magerle, Robert, Häussler, Peter, Solbrig, Heinrich, Lang, Heinrich, Cichos, Frank 11 November 2005 (has links)
Die Entwicklung neuer Materialien und neuer Werkstoffe wird heute international als Schlüsseltechnologie mit Querschnittscharakter und Schrittmacherfunktion für viele industrielle Bereiche eingestuft. Die Wirtschaftskraft der hoch entwickelten Industriegesellschaften hängt zunehmend von Erfolgen in der Materialwissenschaft und der Werkstofftechnologie ab. Die Forschungsaktivitäten in der Profillinie 1 sind gekennzeichnet durch Interdisziplinarität und Vernetzung von Forschungsvorhaben. Von besonderer Bedeutung ist darüber hinaus die zusätzliche Verzahnung mit der Profillinie 6 der TU Chemnitz “Modellierung, Simulation, Hochleistungsrechnen“, um die Material- und Werkstoffforschung durch den intelligenten Einsatz leistungsstarker Rechentechnik weniger kostenintensiv gestalten zu können.
39

Fatigue characteristics of concrete subjected to compressive cyclic loading: laboratory testing and numerical simulation

Song, Zhengyang 22 March 2020 (has links)
The fatigue characteristics of concrete are studied based on laboratory tests and numerical simulations. A series of compressive cyclic loading tests have been carried out on concrete samples. The effects of maximum and minimum load level on the evolution strain rate, energy dissipation, acoustic emissions (AE) and P-wave speed are analysed. Based on particle based numerical simulations, damage models corresponding to single-level and multi-level cyclic loading tests are proposed. The damage variable in the numerical model is time- and stress-dependent and is characterized by the progressive reduction of the bond diameter. The mechanical behaviour of concrete during cyclic loading tests is well reproduced in the numerical simulation. A real time fatigue failure prediction method is proposed based on the hysteresis occurrence ratio and hysteresis energy ratio. The AE characteristics during the laboratory tests are reproduced by the numerical simulations. AE counts and energy are characterized by broken bonds and released bond strain energy, respectively.
40

Thermal induced cracking of granite

Wang, Fei 11 March 2020 (has links)
The impact of temperatures (up to 1000 °C) with various heating rates of 5 °C/min, 200 °C/min, 300 °C/min, and according to ISO 834 standard fire curve on physical, mechanical, and thermal properties, as well as thermo-mechanical behaviors of granites were investigated. A new methodology was proposed for the heterogeneity characterization of rocks at the grain-size level in numerical simulation. The thermo-mechanical constitutive law is developed by combining the temperature-dependent relations of granite properties with classical Mohr-Coulomb model with strain-softening and tension cut-off. The proposed modelling strategy is able to replicate the thermal induced cracking which results in reduced peak strength, pronounced softening and transition from brittle to ductile behaviour. Research results help to understand the damage mechanisms of granite caused by fire or other high temperature conditions, and can be used to develop guidelines for repair and maintenance as well as assessment of risks of tunnels and historical buildings after fire accidents.

Page generated in 0.0948 seconds