Spelling suggestions: "subject:"oövervakad"" "subject:"övervakat""
1 |
EVALUATION OF UNSUPERVISED MACHINE LEARNING MODELS FOR ANOMALY DETECTION IN TIME SERIES SENSOR DATABracci, Lorenzo, Namazi, Amirhossein January 2021 (has links)
With the advancement of the internet of things and the digitization of societies sensor recording time series data can be found in an always increasing number of places including among other proximity sensors on cars, temperature sensors in manufacturing plants and motion sensors inside smart homes. This always increasing reliability of society on these devices lead to a need for detecting unusual behaviour which could be caused by malfunctioning of the sensor or by the detection of an uncommon event. The unusual behaviour mentioned is often referred to as an anomaly. In order to detect anomalous behaviours, advanced technologies combining mathematics and computer science, which are often referred to as under the umbrella of machine learning, are frequently used to solve these problems. In order to help machines to learn valuable patterns often human supervision is needed, which in this case would correspond to use recordings which a person has already classified as anomalies or normal points. It is unfortunately time consuming to label data, especially the large datasets that are created from sensor recordings. Therefore in this thesis techniques that require no supervision are evaluated to perform anomaly detection. Several different machine learning models are trained on different datasets in order to gain a better understanding concerning which techniques perform better when different requirements are important such as presence of a smaller dataset or stricter requirements on inference time. Out of the models evaluated, OCSVM resulted in the best overall performance, achieving an accuracy of 85% and K- means was the fastest model as it took 0.04 milliseconds to run inference on one sample. Furthermore LSTM based models showed most possible improvements with larger datasets. / Med utvecklingen av Sakernas internet och digitaliseringen av samhället kan man registrera tidsseriedata på allt fler platser, bland annat igenom närhetssensorer på bilar, temperatursensorer i tillverkningsanläggningar och rörelsesensorer i smarta hem. Detta ständigt ökande beroende i samhället av dessa enheter leder till ett behov av att upptäcka ovanligt beteende som kan orsakas av funktionsstörning i sensorn eller genom upptäckt av en ovanlig händelse. Det ovanliga beteendet som nämns kallas ofta för en anomali. För att upptäcka avvikande beteenden används avancerad teknik som kombinerar matematik och datavetenskap, som ofta kallas maskininlärning. För att hjälpa maskiner att lära sig värdefulla mönster behövs ofta mänsklig tillsyn, vilket i detta fall skulle motsvara användningsinspelningar som en person redan har klassificerat som avvikelser eller normala punkter. Tyvärr är det tidskrävande att märka data, särskilt de stora datamängder som skapas från sensorinspelningar. Därför utvärderas tekniker som inte kräver någon handledning i denna avhandling för att utföra anomalidetektering. Flera olika maskininlärningsmodeller utbildas på olika datamängder för att få en bättre förståelse för vilka tekniker som fungerar bättre när olika krav är viktiga, t.ex. närvaro av en mindre dataset eller strängare krav på inferens tid. Av de utvärderade modellerna resulterade OCSVM i bästa totala prestanda, uppnådde en noggrannhet på 85% och K- means var den snabbaste modellen eftersom det hade en inferens tid av 0,04 millisekunder. Dessutom visade LSTM- baserade modeller de bästa möjliga förbättringarna med större datamängder.
|
2 |
Unsupervised machine learning to detect patient subgroups in electronic health records / Identifiering av patientgrupper genom oövervakad maskininlärning av digitala patientjournalerLütz, Elin January 2019 (has links)
The use of Electronic Health Records (EHR) for reporting patient data has been widely adopted by healthcare providers. This data can encompass many forms of medical information such as disease symptoms, results from laboratory tests, ICD-10 classes and other information from patients. Structured EHR data is often high-dimensional and contain many missing values, which impose a complication to many computing problems. Detecting meaningful structures in EHR data could provide meaningful insights in diagnose detection and in development of medical decision support systems. In this work, a subset of EHR data from patient questionnaires is explored through two well-known clustering algorithms: K-Means and Agglomerative Hierarchical. The algorithms were tested on different types of data, primarily raw data and data where missing values have been imputed using different imputation techniques. The primary evaluation index for the clustering algorithms was the silhouette value using euclidean and cosine distance measures. The result showed that natural groupings most likely exist in the data set. Hierarchical clustering created higher quality clusters than k-means, and the cosine measure yielded a good interpretation of distance. The data imputation imposed large effects to the data and likewise to the clustering results, and other or more sophisticated techniques are needed for handling missing values in the data set. / Användandet av digitala journaler för att rapportera patientdata har ökat i takt med digitaliseringen av vården. Dessa data kan innehålla många typer av medicinsk information så som sjukdomssymptom, labbresultat, ICD-10 diagnoskoder och annan patientinformation. EHR data är vanligtvis högdimensionell och innehåller saknade värden, vilket kan leda till beräkningssvårigheter i ett digitalt format. Att upptäcka grupperingar i sådana patientdata kan ge värdefulla insikter inom diagnosprediktion och i utveckling av medicinska beslutsstöd. I detta arbete så undersöker vi en delmängd av digital patientdata som innehåller patientsvar på sjukdomsfrågor. Detta dataset undersöks genom att applicera två populära klustringsalgoritmer: k-means och agglomerativ hierarkisk klustring. Algoritmerna är ställda mot varandra och på olika typer av dataset, primärt rådata och två dataset där saknade värden har ersatts genom imputationstekniker. Det primära utvärderingsmåttet för klustringsalgoritmerna var silhuettvärdet tillsammans med beräknandet av ett euklidiskt distansmått och ett cosinusmått. Resultatet visar att naturliga grupperingar med stor sannolikhet finns att hitta i datasetet. Hierarkisk klustring visade på en högre klusterkvalitet än k-means, och cosinusmåttet var att föredra för detta dataset. Imputation av saknade data ledde till stora förändringar på datastrukturen och således på resultatet av klustringsexperimenten, vilket tyder på att andra och mer avancerade dataspecifika imputationstekniker är att föredra.
|
3 |
Text feature mining using pre-trained word embeddingsSjökvist, Henrik January 2018 (has links)
This thesis explores a machine learning task where the data contains not only numerical features but also free-text features. In order to employ a supervised classifier and make predictions, the free-text features must be converted into numerical features. In this thesis, an algorithm is developed to perform that conversion. The algorithm uses a pre-trained word embedding model which maps each word to a vector. The vectors for multiple word embeddings belonging to the same sentence are then combined to form a single sentence embedding. The sentence embeddings for the whole dataset are clustered to identify distinct groups of free-text strings. The cluster labels are output as the numerical features. The algorithm is applied on a specific case concerning operational risk control in banking. The data consists of modifications made to trades in financial instruments. Each such modification comes with a short text string which documents the modification, a trader comment. Converting these strings to numerical trader comment features is the objective of the case study. A classifier is trained and used as an evaluation tool for the trader comment features. The performance of the classifier is measured with and without the trader comment feature. Multiple models for generating the features are evaluated. All models lead to an improvement in classification rate over not using a trader comment feature. The best performance is achieved with a model where the sentence embeddings are generated using the SIF weighting scheme and then clustered using the DBSCAN algorithm. / Detta examensarbete behandlar ett maskininlärningsproblem där data innehåller fritext utöver numeriska attribut. För att kunna använda all data för övervakat lärande måste fritexten omvandlas till numeriska värden. En algoritm utvecklas i detta arbete för att utföra den omvandlingen. Algoritmen använder färdigtränade ordvektormodeller som omvandlar varje ord till en vektor. Vektorerna för flera ord i samma mening kan sedan kombineras till en meningsvektor. Meningsvektorerna i hela datamängden klustras sedan för att identifiera grupper av liknande textsträngar. Algoritmens utdata är varje datapunkts klustertillhörighet. Algoritmen appliceras på ett specifikt fall som berör operativ risk inom banksektorn. Data består av modifikationer av finansiella transaktioner. Varje sådan modifikation har en tillhörande textkommentar som beskriver modifikationen, en handlarkommentar. Att omvandla dessa kommentarer till numeriska värden är målet med fallstudien. En klassificeringsmodell tränas och används för att utvärdera de numeriska värdena från handlarkommentarerna. Klassificeringssäkerheten mäts med och utan de numeriska värdena. Olika modeller för att generera värdena från handlarkommentarerna utvärderas. Samtliga modeller leder till en förbättring i klassificering över att inte använda handlarkommentarerna. Den bästa klassificeringssäkerheten uppnås med en modell där meningsvektorerna genereras med hjälp av SIF-viktning och sedan klustras med hjälp av DBSCAN-algoritmen.
|
4 |
Deinterleaving of radar pulses with batch processing to utilize parallelism / Gruppering av radar pulser med batch-bearbetning för att utnyttja parallelismLind, Emma, Stahre, Mattias January 2020 (has links)
The threat level (specifically in this thesis, for aircraft) in an environment can be determined by analyzing radar signals. This task is critical and has to be solved fast and with high accuracy. The received electromagnetic pulses have to be identified in order to classify a radar emitter. Usually, there are several emitters transmitting radar pulses at the same time in an environment. These pulses need to be sorted into groups, where each group contains pulses from the same emitter. This thesis aims to find a fast and accurate solution to sort the pulses in parallel. The selected approach analyzes batches of pulses in parallel to exploit the advantages of a multi-threaded Central Processing Unit (CPU) or a Graphics Processing Unit (GPU). Firstly, a suitable clustering algorithm had to be selected. Secondly, an optimal batch size had to be determined to achieve high clustering performance and to rapidly process the batches of pulses in parallel. A quantitative method based on experiments was used to measure clustering performance, execution time, system response, and parallelism as a function of batch sizes when using the selected clustering algorithm. The algorithm selected for clustering the data was Density-based Spatial Clustering of Applications with Noise (DBSCAN) because of its advantages, such as not having to specify the number of clusters in advance, its ability to find arbitrary shapes of a cluster in a data set, and its low time complexity. The evaluation showed that implementing parallel batch processing is possible while still achieving high clustering performance, compared to a sequential implementation that used the maximum likelihood method.An optimal batch size in terms of data points and cutoff time is hard to determine since the batch size is very dependent on the input data. Therefore, one batch size might not be optimal in terms of clustering performance and system response for all streams of data. A solution could be to determine optimal batch sizes in advance for different streams of data, then adapt a batch size depending on the stream of data. However, with a high level of parallelism, an additional delay is introduced that depends on the difference between the time it takes to collect data points into a batch and the time it takes to process the batch, thus the system will be slower to output its result for a given batch compared to a sequential system. For a time-critical system, a high level of parallelism might be unsuitable since it leads to slower response times. / Genom analysering av radarsignaler i en miljö kan hotnivån bestämmas. Detta är en kritisk uppgift som måste lösas snabbt och med bra noggrannhet. För att kunna klassificera en specifik radar måste de elektromagnetiska pulserna identifieras. Vanligtvis sänder flera emittrar ut radarpulser samtidigt i en miljö. Dessa pulser måste sorteras i grupper, där varje grupp innehåller pulser från en och samma emitter. Målet med denna avhandling är att ta fram ett sätt att snabbt och korrekt sortera dessa pulser parallellt. Den valda metoden använder grupper av data som analyserades parallellt för att nyttja fördelar med en multitrådad Central Processing Unit (CPU) eller en Central Processing Unit (CPU) or a Graphics Processing Unit (GPU). Först behövde en klustringsalgoritm väljas och därefter en optimal gruppstorlek för den valda algoritmen. Gruppstorleken baserades på att grupperna kunde behandlas parallellt och snabbt, samt uppnå tillförlitlig klustring. En kvantitativ metod användes som baserades på experiment genom att mäta klustringens tillförlitlighet, exekveringstid, systemets svarstid och parallellitet som en funktion av gruppstorlek med avseende på den valda klustringsalgoritmen. Density-based Spatial Clustering of Applications with Noise (DBSCAN) valdes som algoritm på grund av dess förmåga att hitta kluster av olika former och storlekar utan att på förhand ange antalet kluster för en mängd datapunkter, samt dess låga tidskomplexitet. Resultaten från utvärderingen visade att det är möjligt att implementera ett system med grupper av pulser och uppnå bra och tillförlitlig klustring i jämförelse med en sekventiell implementation av maximum likelihood-metoden. En optimal gruppstorlek i antal datapunkter och cutoff tid är svårt att definiera då storleken är väldigt beroende på indata. Det vill säga, en gruppstorlek måste inte nödvändigtvis vara optimal för alla typer av indataströmmar i form av tillförlitlig klustring och svarstid för systemet. En lösning skulle vara att definiera optimala gruppstorlekar i förväg för olika indataströmmar, för att sedan kunna anpassa gruppstorleken efter indataströmmen. Det uppstår en fördröjning i systemet som är beroende av differensen mellan tiden det tar att skapa en grupp och exekveringstiden för att bearbeta en grupp. Denna fördröjning innebär att en parallell grupp-implementation aldrig kommer kunna vara lika snabb på att producera sin utdata som en sekventiell implementation. Detta betyder att det i ett tidskritiskt system förmodligen inte är optimalt att parallellisera mycket eftersom det leder till långsammare svarstid för systemet.
|
5 |
Unsupervised Anomaly Detection on Multi-Process Event Time SeriesVendramin, Nicoló January 2018 (has links)
Establishing whether the observed data are anomalous or not is an important task that has been widely investigated in literature, and it becomes an even more complex problem if combined with high dimensional representations and multiple sources independently generating the patterns to be analyzed. The work presented in this master thesis employs a data-driven pipeline for the definition of a recurrent auto-encoder architecture to analyze, in an unsupervised fashion, high-dimensional event time-series generated by multiple and variable processes interacting with a system. Facing the above mentioned problem the work investigates whether it is possible or not to use a single model to analyze patterns produced by different sources. The analysis of log files that record events of interaction between users and the radio network infrastructure is employed as realworld case-study for the given problem. The investigation aims to verify the performances of a single machine learning model applied to the learning of multiple patterns developed through time by distinct sources. The work proposes a pipeline, to deal with the complex representation of the data source and the definition and tuning of the anomaly detection model, that is based on no domain-specific knowledge and can thus be adapted to different problem settings. The model has been implemented in four different variants that have been evaluated over both normal and anomalous data, gathered partially from real network cells and partially from the simulation of anomalous behaviours. The empirical results show the applicability of the model for the detection of anomalous sequences and events in the described conditions, with scores reaching above 80% in terms of F1-score, and varying depending on the specific threshold setting. In addition, their deeper interpretation gives insights about the difference between the variants of the model and thus, their limitations and strong points. / Att fastställa huruvida observerade data är avvikande eller inte är en viktig uppgift som har studerats ingående i litteraturen och problemet blir ännu mer komplext, om detta kombineras med högdimensionella representationer och flera källor som oberoende genererar de mönster som ska analyseras. Arbetet som presenteras i denna uppsats använder en data-driven pipeline för definitionen av en återkommande auto-encoderarkitektur för att analysera, på ett oövervakat sätt, högdimensionella händelsetidsserier som genereras av flera och variabla processer som interagerar med ett system. Mot bakgrund av ovanstående problem undersöker arbetet om det är möjligt eller inte att använda en enda modell för att analysera mönster som producerats av olika källor. Analys av loggfiler som registrerar händelser av interaktion mellan användare och radionätverksinfrastruktur används som en fallstudie för det angivna problemet. Undersökningen syftar till att verifiera prestandan hos en enda maskininlärningsmodell som tillämpas för inlärning av flera mönster som utvecklats över tid från olika källor. Arbetet föreslår en pipeline för att hantera den komplexa representationen hos datakällorna och definitionen och avstämningen av anomalidetektionsmodellen, som inte är baserad på domänspecifik kunskap och därför kan anpassas till olika probleminställningar. Modellen har implementerats i fyra olika varianter som har utvärderats med avseende på både normala och avvikande data, som delvis har samlats in från verkliga nätverksceller och delvis från simulering av avvikande beteenden. De empiriska resultaten visar modellens tillämplighet för detektering av avvikande sekvenser och händelser i det föreslagna ramverket, med F1-score över 80%, varierande beroende på den specifika tröskelinställningen. Dessutom ger deras djupare tolkning insikter om skillnaden mellan olika varianter av modellen och därmed deras begränsningar och styrkor.
|
6 |
Discover patterns within train log data using unsupervised learning and network analysisGuo, Zehua January 2022 (has links)
With the development of information technology in recent years, log analysis has gradually become a hot research topic. However, manual log analysis requires specialized knowledge and is a time-consuming task. Therefore, more and more researchers are searching for ways to automate log analysis. In this project, we explore methods for train log analysis using natural language processing and unsupervised machine learning. Multiple language models are used in this project to extract word embeddings, one of which is the traditional language model TF-IDF, and the other three are the very popular transformer-based model, BERT, and its variants, the DistilBERT and the RoBERTa. In addition, we also compare two unsupervised clustering algorithms, the DBSCAN and the Mini-Batch k-means. The silhouette coefficient and Davies-Bouldin score are utilized for evaluating the clustering performance. Moreover, the metadata of the train logs is used to verify the effectiveness of the unsupervised methods. Apart from unsupervised learning, network analysis is applied to the train log data in order to explore the connections between the patterns, which are identified by train control system experts. Network visualization and centrality analysis are investigated to analyze the relationship and, in terms of graph theory, importance of the patterns. In general, this project provides a feasible direction to conduct log analysis and processing in the future. / I och med informationsteknologins utveckling de senaste åren har logganalys gradvis blivit ett hett forskningsämne. Manuell logganalys kräver dock specialistkunskap och är en tidskrävande uppgift. Därför söker fler och fler forskare efter sätt att automatisera logganalys. I detta projekt utforskar vi metoder för tåglogganalys med hjälp av naturlig språkbehandling och oövervakad maskininlärning. Flera språkmodeller används i detta projekt för att extrahera ordinbäddningar, varav en är den traditionella språkmodellen TF-IDF, och de andra tre är den mycket populära transformatorbaserade modellen, BERT, och dess varianter, DistilBERT och RoBERTa. Dessutom jämför vi två oövervakade klustringsalgoritmer, DBSCAN och Mini-Batch k-means. Siluettkoefficienten och Davies-Bouldin-poängen används för att utvärdera klustringsprestandan. Dessutom används tågloggarnas metadata för att verifiera effektiviteten hos de oövervakade metoderna. Förutom oövervakad inlärning tillämpas nätverksanalys på tågloggdata för att utforska sambanden mellan mönstren, som identifieras av experter på tågstyrsystem. Nätverksvisualisering och centralitetsanalys undersöks för att analysera sambandet och grafteoriskt betydelsen av mönstren mönstren. I allmänhet ger detta projekt en genomförbar riktning för att genomföra logganalys och bearbetning i framtiden.
|
7 |
Automatiskt bygge av FUS39A / Automated Build of FUS39AJansson, Chris January 2011 (has links)
This paper describes the design and implementation of an automated build system for the JAS39A simulator FUS39A at HiQ:s offices in Arboga. The assignment was to automate the process in which modules are built; the simulator is composed of a number of modules which are built manually at the end of each week, this process takes about a day of manual labor. The system can automatically build a module as either a scheduled service or by manual invocation. The system contains functionality for reporting the build results to any given recipient by e-mail. The purpose of the system is to free up the time put into manually building the modules for better suited tasks by automating the build of FUS39A. The assignment was split into two parts, an analysis part where information of the old system was gathered, tools and methods were chosen and the new system was designed. In the second part the system was implemented and tested. / Denna rapport beskriver designen och implementationen av ett system för automatiskt bygge av JAS39A simulatorn FUS39A vid HiQ:s kontor i Arboga. Målet var att automatisera bygget av modulerna som simulatorn består av då de i utgångsläget byggs manuellt mot en insats på en mandag i veckan. Systemet kan utan övervakning generera en modulutgåva genom en schemalagd tjänst eller en manuell invokering. Systemet innehåller även funktionalitet för att rapportera byggets resultat till avsedd mottagare via e-post. Syftet med systemet är att avlasta en persons arbetsbörda genom att automatisera bygget av mjukvaran i simulatorn FUS39A. Arbetet delades in i två delar, en analysfas där information om det nuvarande systemet samlas, verktyg väljs och designen av det nya systemet tas fram. I den andra delen implementeras och testas systemet.
|
8 |
Matching Sticky Notes Using Latent Representations / Matchning av klisterlappar med hjälp av latent representationGarcía San Vicent, Javier January 2022 (has links)
his project addresses the issue of accurately identifying repeated images of sticky notes. Due to environmental conditions and the 3D location of the camera, different pictures taken of sticky notes may look distinct enough to be hard to determine if they belong to the same note. More specifically, this thesis aims to create latent representations of these pictures of sticky notes to encode their content so that all the pictures of the same note have a similar representation that allows to identify them. Thus, those representations must be invariant to light conditions, blur and camera position. To that end, a Siamese neural architecture will be trained based on data augmentation methods. The method consists of learning to embed two augmented versions of the same image into similar representations. This architecture has been trained with unsupervised learning and fine-tuned with supervised learning to detect if two representations belong or not to the same note. The performance of ResNet, EfficientNet and Vision Transformers in encoding the images into their representations has been compared with different configurations. The results show that, while the most complex models overfit small amounts of data, the simplest encoders are capable of properly identifying more than 95% of the sticky notes in grey scale. Those models can create invariant representations that are close to each other in the latent space for pictures of the same sticky note. Gathering more data could result in an improvement of the performance of the model and the possibility of applying it to other fields such as handwritten documents. / Detta projekt tar upp frågan om att identifiera upprepade bilder av klisterlappar. På grund av miljöförhållanden och kamerans 3D-placering kan olika bilder som tagits till klisterlappar se tillräckligt distinkta ut för att det ska vara svårt att avgöra om de faktiskt tillhör samma klisterlappar. Mer specifikt är syftet med denna avhandling att skapa latenta representationer av bilder av klisterlappar som kodar deras innehåll, så att alla bilder av en klisterlapp har en liknande representation som gör det möjligt att identifiera dem. Sålunda måste representationerna vara oföränderliga för ljusförhållanden, oskärpa och kameraposition. För det ändamålet kommer en enkel siamesisk neural arkitektur att tränas baserad på dataförstärkningsmetoder. Metoden går ut på att lära sig att göra representationerna av två förstärkta versioner av en bild så lika som möjligt. Genomatt tillämpa vissa förbättringar av arkitekturen kan oövervakat lärande användas för att träna nätverket. Prestandan hos ResNet, EfficientNet och Vision Transformers när det gäller att koda bilderna till deras representationer har jämförts med olika konfigurationer. Resultaten visar att även om de mest komplexa modellerna överpassar små mängder data, kan de enklaste kodarna korrekt identifiera mer än 95% av klisterlapparna. Dessa modeller kan skapa oföränderliga representationer som är nära i det latenta utrymmet för bilder av samma klisterlapp. Att samla in mer data kan resultera i en förbättring av modellens prestanda och möjligheten att tillämpa den på andra områden som till exempel handskrivna dokument.
|
9 |
Identification of Fundamental Driving Scenarios Using Unsupervised Machine Learning / Identifiering av grundläggande körscenarier med icke-guidad maskininlärningAnantha Padmanaban, Deepika January 2020 (has links)
A challenge to release autonomous vehicles to public roads is safety verification of the developed features. Safety test driving of vehicles is not practically feasible as the acceptance criterion is driving at least 2.1 billion kilometers [1]. An alternative to this distance-based testing is the scenario-based approach, where the intelligent vehicles are exposed to known scenarios. Identification of such scenarios from the driving data is crucial for this validation. The aim of this thesis is to investigate the possibility of unsupervised identification of driving scenarios from the driving data. The task is performed in two major parts. The first is the segmentation of the time series driving data by detecting changepoints, followed by the clustering of the previously obtained segments. Time-series segmentation is approached using a Deep Learning method, while the second task is performed using time series clustering. The work also includes a visual approach for validating the time-series segmentation, followed by a quantitative measure of the performance. The approach is also qualitatively compared against a Bayesian Nonparametric approach to identify the usefulness of the proposed method. Based on the analysis of results, there is a discussion about the usefulness and drawbacks of the method, followed by the scope for future research. / En utmaning att släppa autonoma fordon på allmänna vägar är säkerhetsverifiering av de utvecklade funktionerna. Säkerhetstestning av fordon är inte praktiskt genomförbart eftersom acceptanskriteriet kör minst 2,1 miljarder kilometer [1]. Ett alternativ till denna distansbaserade testning är det scenaribaserade tillväga-gångssättet, där intelligenta fordon utsätts för kända scenarier. Identifiering av sådana scenarier från kördata är avgörande för denna validering. Syftet med denna avhandling är att undersöka möjligheten till oövervakad identifiering av körscenarier från kördata. Uppgiften utförs i två huvuddelar. Den första är segmenteringen av tidsseriedrivdata genom att detektera ändringspunkter, följt av klustring av de tidigare erhållna segmenten. Tidsseriesegmentering närmar sig med en Deep Learningmetod, medan den andra uppgiften utförs med hjälp av tidsseriekluster. Arbetet innehåller också ett visuellt tillvägagångssätt för att validera tidsserierna, följt av ett kvantitativt mått på prestanda. Tillvägagångssättet jämförs också med en Bayesian icke-parametrisk metod för att identifiera användbarheten av den föreslagna metoden. Baserat på analysen av resultaten diskuteras metodens användbarhet och nackdelar, följt av möjligheten för framtida forskning.
|
10 |
Towards topology-aware Variational Auto-Encoders : from InvMap-VAE to Witness Simplicial VAE / Mot topologimedvetna Variations Autokodare (VAE) : från InvMap-VAE till Witness Simplicial VAEMedbouhi, Aniss Aiman January 2022 (has links)
Variational Auto-Encoders (VAEs) are one of the most famous deep generative models. After showing that standard VAEs may not preserve the topology, that is the shape of the data, between the input and the latent space, we tried to modify them so that the topology is preserved. This would help in particular for performing interpolations in the latent space. Our main contribution is two folds. Firstly, we propose successfully the InvMap-VAE which is a simple way to turn any dimensionality reduction technique, given its embedding, into a generative model within a VAE framework providing an inverse mapping, with all the advantages that this implies. Secondly, we propose the Witness Simplicial VAE as an extension of the Simplicial Auto-Encoder to the variational setup using a Witness Complex for computing a simplicial regularization. The Witness Simplicial VAE is independent of any dimensionality reduction technique and seems to better preserve the persistent Betti numbers of a data set than a standard VAE, although it would still need some further improvements. Finally, the two first chapters of this master thesis can also be used as an introduction to Topological Data Analysis, General Topology and Computational Topology (or Algorithmic Topology), for any machine learning student, engineer or researcher interested in these areas with no background in topology. / Variations autokodare (VAE) är en av de mest kända djupa generativa modellerna. Efter att ha visat att standard VAE inte nödvändigtvis bevarar topologiska egenskaper, det vill säga formen på datan, mellan inmatningsdatan och det latenta rummet, försökte vi modifiera den så att topologin är bevarad. Det här skulle i synnerhet underlätta när man genomför interpolering i det latenta rummet. Denna avhandling består av två centrala bidrag. I första hand så utvecklar vi InvMap-VAE, som är en enkel metod att omvandla vilken metod inom dimensionalitetsreducering, givet dess inbäddning, till en generativ modell inom VAE ramverket, vilket ger en invers avbildning och dess tillhörande fördelar. För det andra så presenterar vi Witness Simplicial VAE som en förlängning av en Simplicial Auto-Encoder till dess variationella variant genom att använda ett vittneskomplex för att beräkna en simpliciel regularisering. Witness Simplicial VAE är oberoende av dimensionalitets reducerings teknik och verkar bättre bevara Betti-nummer av ett dataset än en vanlig VAE, även om det finns utrymme för förbättring. Slutligen så kan de första två kapitlena av detta examensarbete också användas som en introduktion till Topologisk Data Analys, Allmän Topologi och Beräkningstopologi (eller Algoritmisk Topologi) till vilken maskininlärnings student, ingenjör eller forskare som är intresserad av dessa ämnesområden men saknar bakgrund i topologi.
|
Page generated in 0.0294 seconds