Spelling suggestions: "subject:"organischen photovoltaik"" "subject:"organischen fotovoltaik""
1 |
Influence of processing conditions on morphology and performance of vacuum deposited organic solar cellsHolzmüller, Felix 11 September 2017 (has links) (PDF)
This thesis discusses vacuum deposited organic solar cells. It focuses on the investigation of new donor molecules blended with the standard electron acceptor C60. These donor-acceptor heterojunctions form the photoactive system of organic solar cells. In addition, the influence of the processing conditions on the morphology of the blend layers is investigated, as the morphology is crucial for an efficient generation of free charge carriers upon photon absorption.
Bulk heterojunction solar cells with the donor DTDCTB are deposited at different substrate temperatures. We identify three substrate temperature regimes, discriminated by the behavior of the fill factor (FF ) as a function of the blend layer thickness. Devices deposited at RT have a maximum FF between 50 and 70 nm blend thickness, while devices deposited at 110 °C have a monotonically decreasing FF. At Tsub=85 °C, the devices have an S-kinked current-voltage curve. Grazing incidence wide angle X-ray scattering measurements show that this peculiar behavior of the FF is not correlated with a change in the crystallinity of the DTDCTB, which stays amorphous. Absorption measurements show that the average alignment of the molecules inside the blend also remains unchanged. Charge extraction measurements (OTRACE) reveal a mobility for the 110 °C device that is an order of magnitude higher than for the RT device. The difference in mobility can be explained by a higher trap density for the RT samples as measured by impedance spectroscopy. Despite slightly higher carrier lifetimes for the RT device obtained by transient photovoltage measurements, its mobility-lifetime product is still lower than for the 110 °C devices.
Based on DTDCTB, three new donor materials are designed to have a higher thermal stability in order to achieve higher yields upon material purification using gradient sublimation. For PRTF, the thermal stability is increased demonstrated by a higher yield upon sublimation. However, all new materials have a reduced absorption as compared to DTDCTB, which limits the short current density, and the FF is more sensitive to an increase of the blend layer thickness. The highest power conversion efficiency is achieved for a PRTF:C60 solar cell with 3.8%. Interestingly, PRTF:C60 solar cells show exceptionally low nonradiative voltage losses of only 0.26 V.
Another absorber molecule is the push-pull chromophore QM1. Scanning electron microscope (SEM) measurements show a growth of the molecule in nanowires on several substrates. The nanowires have lengths up to several micrometers and are several tens of nanometers wide. The formation of the nanowires is accompanied by a strong blue shift (650 meV) of the thin film absorption spectrum in comparison to the absorption in solution, which is attributed to H-aggregation of the molecules. Furthermore, the thin film absorption onset reaches up to 1100 nm, making the material a suitable candidate for a near infrared absorber in organic solar cells. For a solar cell in combination with C60, a power conversion efficiency of 1.9% was achieved with an external quantum efficiency of over 19% for the spectral range between 600 and 1000 nm.
The method of “co-evaporant induced crystallization” as a means to increase the crystallinity of blend layers without increasing the substrate temperature during the deposition is investigated. Mass spectrometry (LDI-ToF-MS) measurements show that polydimethylsiloxane (PDMS), which is used as a co-evaporant, decomposes during the evaporation and only lighter oligomers evaporate. Quartz crystal microbalance (QCM) measurements prove that the detection of PDMS saturates at higher amounts of evaporated material. LDI-ToF-MS measurements show further that the determination of the volatilization temperature by QCM measurements is highly error prone. The method was applied to zinc phthalocyanine (ZnPc) :C60 solar cells, accepting the insertion of PDMS into the blend layer. Diffraction (GIXRD) measurements show a large increase in crystallinity. ZnPc:C60 solar cells produced by applying the method reveal a similar behavior as solar cells processed at a higher substrate temperature.
|
2 |
Influence of processing conditions on morphology and performance of vacuum deposited organic solar cellsHolzmüller, Felix 30 March 2017 (has links)
This thesis discusses vacuum deposited organic solar cells. It focuses on the investigation of new donor molecules blended with the standard electron acceptor C60. These donor-acceptor heterojunctions form the photoactive system of organic solar cells. In addition, the influence of the processing conditions on the morphology of the blend layers is investigated, as the morphology is crucial for an efficient generation of free charge carriers upon photon absorption.
Bulk heterojunction solar cells with the donor DTDCTB are deposited at different substrate temperatures. We identify three substrate temperature regimes, discriminated by the behavior of the fill factor (FF ) as a function of the blend layer thickness. Devices deposited at RT have a maximum FF between 50 and 70 nm blend thickness, while devices deposited at 110 °C have a monotonically decreasing FF. At Tsub=85 °C, the devices have an S-kinked current-voltage curve. Grazing incidence wide angle X-ray scattering measurements show that this peculiar behavior of the FF is not correlated with a change in the crystallinity of the DTDCTB, which stays amorphous. Absorption measurements show that the average alignment of the molecules inside the blend also remains unchanged. Charge extraction measurements (OTRACE) reveal a mobility for the 110 °C device that is an order of magnitude higher than for the RT device. The difference in mobility can be explained by a higher trap density for the RT samples as measured by impedance spectroscopy. Despite slightly higher carrier lifetimes for the RT device obtained by transient photovoltage measurements, its mobility-lifetime product is still lower than for the 110 °C devices.
Based on DTDCTB, three new donor materials are designed to have a higher thermal stability in order to achieve higher yields upon material purification using gradient sublimation. For PRTF, the thermal stability is increased demonstrated by a higher yield upon sublimation. However, all new materials have a reduced absorption as compared to DTDCTB, which limits the short current density, and the FF is more sensitive to an increase of the blend layer thickness. The highest power conversion efficiency is achieved for a PRTF:C60 solar cell with 3.8%. Interestingly, PRTF:C60 solar cells show exceptionally low nonradiative voltage losses of only 0.26 V.
Another absorber molecule is the push-pull chromophore QM1. Scanning electron microscope (SEM) measurements show a growth of the molecule in nanowires on several substrates. The nanowires have lengths up to several micrometers and are several tens of nanometers wide. The formation of the nanowires is accompanied by a strong blue shift (650 meV) of the thin film absorption spectrum in comparison to the absorption in solution, which is attributed to H-aggregation of the molecules. Furthermore, the thin film absorption onset reaches up to 1100 nm, making the material a suitable candidate for a near infrared absorber in organic solar cells. For a solar cell in combination with C60, a power conversion efficiency of 1.9% was achieved with an external quantum efficiency of over 19% for the spectral range between 600 and 1000 nm.
The method of “co-evaporant induced crystallization” as a means to increase the crystallinity of blend layers without increasing the substrate temperature during the deposition is investigated. Mass spectrometry (LDI-ToF-MS) measurements show that polydimethylsiloxane (PDMS), which is used as a co-evaporant, decomposes during the evaporation and only lighter oligomers evaporate. Quartz crystal microbalance (QCM) measurements prove that the detection of PDMS saturates at higher amounts of evaporated material. LDI-ToF-MS measurements show further that the determination of the volatilization temperature by QCM measurements is highly error prone. The method was applied to zinc phthalocyanine (ZnPc) :C60 solar cells, accepting the insertion of PDMS into the blend layer. Diffraction (GIXRD) measurements show a large increase in crystallinity. ZnPc:C60 solar cells produced by applying the method reveal a similar behavior as solar cells processed at a higher substrate temperature.
|
3 |
Oligothiophene Materials for Organic Solar Cells - Photophysics and Device Properties / Oligothiophenmoleküle für Organische Solarzellen - Photophysik und SolarzelleigenschaftenKörner, Christian 25 September 2013 (has links) (PDF)
The rapidly increasing power conversion efficiencies (PCEs) of organic solar cells (OSCs) above 10% were made possible by concerted international research activities in the last few years, aiming to understand the processes that lead to the generation of free charge carriers following photon absorption. Despite these efforts, many details are still unknown, especially how these processes can be improved already at the drawing board of molecular design. To unveil this information, dicyanovinyl end-capped oligothiophene derivatives (DCVnTs) are used as a model system in this thesis, allowing to investigate the impact of small structural changes on the molecular properties and the final solar cells.
On thin films of a methylated DCV4T derivative, the influence of the measurement temperature on the charge carrier generation process is investigated. The observed temperature activation in photoinduced absorption (PIA) measurements is attributed to an increased charge carrier mobility, increasing the distance between the charges at the donor/acceptor (D/A) interface and, thus, facilitating their final dissociation. The correlation between the activation energy and the mobility is confirmed using a DCV6T derivative with lower mobility , exhibiting a higher activation energy for charge carrier generation.
Another parameter to influence the charge carrier generation process is the molecular structure. Here, alkyl side chains with varying length are introduced and their influence on the intramolecular energy levels as well as the absorption and emission properties in pristine and blend films with the acceptor C60 are examined. The observed differences in intermolecular order (higher order for shorter side chains) and phase separation in blend layers (larger phase separation for shorter side chains) are confirmed in PIA measurements upon comparing the temperature dependence of the triplet exciton lifetimes. A proposed correlation between the side chain length and the coupling between D and A, which is crucial for efficient charge transfer, is not confirmed. The presented flat heterojunction solar cells underline this conclusion, giving similar photocurrent densities for all compounds. Differences in PCE are related to shifts of the energy levels and the morphology of the blend layer in bulk heterojunction devices.
Furthermore, the impact of the electric field on the charge carrier generation yield is investigated in a proof-of-principle study, introducing PIA measurements in transmission geometry realized using semitransparent solar cells. The recombination analysis of the photogenerated charge carriers reveals two recombination components. Trapped charge carriers or bound charge pairs at the D/A interface are proposed as an explanation for this result. The miscibility of D and A, which can be influenced by heating the substrate during layer deposition, is of crucial importance to obtain high PCEs. In this work, the unusual negative influence of the substrate temperature on DCV4T:C60 blend layers in solar cells is investigated. By using optical measurements and structure determination tools, a rearrangement of the DCV4T crystallites is found to be responsible for the reduced absorption and, therefore, photocurrent at higher substrate temperature. The proposed blend morphology at a substrate temperature of 90° C is characterized by a nearly complete demixing of the D and A phases. This investigation is of particular relevance, because it shows the microscopic origins of a behavior that is contrary to the increase of the PCE upon substrate heating usually reported in literature.
Finally, the optimization steps to achieve a record PCE of 7.7% using a DCV5T derivative as donor material are presented, including the optimization of the substrate temperature, the active layer thickness, and the transport layers. / Der rasante Anstieg des Wirkungsgrads von organischen Solarzellen über die Marke von 10% war nur durch länderübergreifende Forschungsaktivitäten während der letzten Jahre möglich. Trotz der gemeinsamen Anstrengungen, die Prozesse, die zwischen der Absorption der Photonen und der Ladungsträgererzeugung liegen, genauer zu verstehen, sind einige Fragen jedoch immer noch ungelöst, z.B. wie diese Prozesse schon auf dem Reißbrett durch die gezielte Änderung bestimmter Molekülstrukturen optimiert werden können. Um dieses Ziel zu erreichen, werden in dieser Arbeit Dicyanovinyl-substituierte Oligothiophene (DCVnTs) verwendet. Diese Materialien bieten die Möglichkeit, kleine strukturelle Änderungen vorzunehmen, deren Einfluss auf die molekularen und auf die Solarzelleneigenschaften untersucht werden soll.
Der Einfluss der Messtemperatur auf den Prozess der Ladungsträgertrennung wird hier an einer methylierten DCV4T-Verbindung in einer dünnen Schicht untersucht. Die bei photoinduzierter Absorptionsspektroskopie (PIA) beobachtete Aktivierung dieses Prozesses mit zunehmender Temperatur wird auf eine erhöhte Ladungsträgerbeweglichkeit zurückgeführt. Der dadurch erhöhte effektive Abstand der Ladungen an der Grenzfläche zwischen Donator (D) und Akzeptor (A) erleichtert die endgültige Trennung der Ladungsträger. Durch den Vergleich mit einer DCV6T-Verbindung wird der Zusammenhang zwischen der Aktivierungsenergie und der Beweglichkeit bekräftigt. Die kleinere Beweglichkeit äußert sich dabei in einer größeren Aktivierungsenergie.
Darüber hinaus kann der Ladungsträgergenerationsprozess auch von der Molekülstruktur abhängen. In dieser Arbeit wird untersucht, wie sich die Länge von Alkylseitenketten auf die Energieniveaus der Moleküle, aber auch auf die Absorptions- und Lumineszenzeigenschaften der Materialien in reinen und in Mischschichten mit dem Akzeptor C60 äußert. Die ermittelten Unterschiede bezüglich der Molekülordnung (geordneter für kürzere Seitenketten) und der Phasengrößen in Mischschichten (größere Phasen bei kürzerer Kettenlänge) werden in der Untersuchung der Temperaturabhängigkeit der Lebensdauer von Triplettexzitonen mittels PIA-Messungen bestätigt. Für Solarzellen ist von Bedeutung, ob sich die Seitenkettenlänge auf die Wechselwirkung zwischen D und A auswirkt. Der vermutete Zusammenhang wird hier nicht bestätigt. Ein ähnlicher Photostrom für alle untersuchten Verbindungen in Solarzellen mit planaren Heteroübergängen unterstreicht diese Schlussfolgerung. Unterschiede im Wirkungsgrad werden auf Änderungen der Energieniveaus und die Morphologie in Mischschichtsolarzellen zurückgeführt.
Des Weiteren wird in einer Machbarkeitsstudie der Einfluss des elektrischen Felds auf die Generationsausbeute freier Ladungsträger untersucht. Dafür werden halbtransparente Solarzellen verwendet, die es ermöglichen, PIA-Messungen in Transmissionsgeometrie durchzuführen. Als mögliche Erklärung für das Auftreten zweier Rekombinationskomponenten in der Analyse des Rekombinationsverhaltens der durch Licht erzeugten Ladungsträger werden eingefangene Ladungsträger und gebundene Ladungsträgerpaare an der D/A-Grenzfläche genannt. Das Mischverhalten von D und A kann durch ein Heizen des Substrates während des Verdampfungsprozesses eingestellt werden, was von entscheidender Bedeutung für eine weitere Steigerung des Wirkungsgrades ist. Für DCV4T:C60-Mischschichtsolarzellen wird jedoch eine Verschlechterung des Wirkungsgrads zu höheren Substrattemperaturen beobachtet. Durch optische Messungen und Methoden zur Schichtstrukturbestimmung wird dieser Effekt auf eine Umordnung der DCV4T-Kristallite für hohe Substrattemperaturen und die damit verbundene Verringerung der Absorption und damit auch des Photostroms zurückgeführt. Bei einer Substrattemperatur von 90° C sind die D- und A-Komponenten fast vollständig entmischt. Dieses Beispiel ist von besonderer Bedeutung, weil hier die Ursachen für ein Verhalten aufgezeigt werden, das entgegen den Beispielen aus der Literatur eine Abnahme des Wirkungsgrads beim Aufdampfen der aktiven Schicht auf ein geheiztes Substrat zeigt.
Schließlich werden die Optimierungsschritte dargelegt, mit denen Solarzellen mit einer DCV5T-Verbindung als Donatormaterial auf einen Rekordwirkungsgrad von 7,7% gebracht werden. Dabei wird die Substrattemperatur, die Dicke der aktiven Schicht und die Transportschichten angepasst.
|
4 |
Oligothiophene Materials for Organic Solar Cells - Photophysics and Device PropertiesKörner, Christian 18 July 2013 (has links)
The rapidly increasing power conversion efficiencies (PCEs) of organic solar cells (OSCs) above 10% were made possible by concerted international research activities in the last few years, aiming to understand the processes that lead to the generation of free charge carriers following photon absorption. Despite these efforts, many details are still unknown, especially how these processes can be improved already at the drawing board of molecular design. To unveil this information, dicyanovinyl end-capped oligothiophene derivatives (DCVnTs) are used as a model system in this thesis, allowing to investigate the impact of small structural changes on the molecular properties and the final solar cells.
On thin films of a methylated DCV4T derivative, the influence of the measurement temperature on the charge carrier generation process is investigated. The observed temperature activation in photoinduced absorption (PIA) measurements is attributed to an increased charge carrier mobility, increasing the distance between the charges at the donor/acceptor (D/A) interface and, thus, facilitating their final dissociation. The correlation between the activation energy and the mobility is confirmed using a DCV6T derivative with lower mobility , exhibiting a higher activation energy for charge carrier generation.
Another parameter to influence the charge carrier generation process is the molecular structure. Here, alkyl side chains with varying length are introduced and their influence on the intramolecular energy levels as well as the absorption and emission properties in pristine and blend films with the acceptor C60 are examined. The observed differences in intermolecular order (higher order for shorter side chains) and phase separation in blend layers (larger phase separation for shorter side chains) are confirmed in PIA measurements upon comparing the temperature dependence of the triplet exciton lifetimes. A proposed correlation between the side chain length and the coupling between D and A, which is crucial for efficient charge transfer, is not confirmed. The presented flat heterojunction solar cells underline this conclusion, giving similar photocurrent densities for all compounds. Differences in PCE are related to shifts of the energy levels and the morphology of the blend layer in bulk heterojunction devices.
Furthermore, the impact of the electric field on the charge carrier generation yield is investigated in a proof-of-principle study, introducing PIA measurements in transmission geometry realized using semitransparent solar cells. The recombination analysis of the photogenerated charge carriers reveals two recombination components. Trapped charge carriers or bound charge pairs at the D/A interface are proposed as an explanation for this result. The miscibility of D and A, which can be influenced by heating the substrate during layer deposition, is of crucial importance to obtain high PCEs. In this work, the unusual negative influence of the substrate temperature on DCV4T:C60 blend layers in solar cells is investigated. By using optical measurements and structure determination tools, a rearrangement of the DCV4T crystallites is found to be responsible for the reduced absorption and, therefore, photocurrent at higher substrate temperature. The proposed blend morphology at a substrate temperature of 90° C is characterized by a nearly complete demixing of the D and A phases. This investigation is of particular relevance, because it shows the microscopic origins of a behavior that is contrary to the increase of the PCE upon substrate heating usually reported in literature.
Finally, the optimization steps to achieve a record PCE of 7.7% using a DCV5T derivative as donor material are presented, including the optimization of the substrate temperature, the active layer thickness, and the transport layers.:Abstract - Kurzfassung
Publications
Contents
1 Introduction
2 Elementary Processes in Organic Semiconductors
2.1 Introduction
2.2 Optical Excitations in Organic Materials
2.2.1 Introduction
2.2.2 Radiative Processes: Absorption and Emission
2.2.3 Non-radiative Relaxation Processes
2.2.4 Triplet Excitons and Intersystem Crossing
2.3 Polarization Effects and Disorder
2.4 Transport Processes in Disordered Organic Materials
2.4.1 Charge Transport
2.4.1.1 The Bässler Model
2.4.1.2 Marcus Theory for Electron Transfer
2.4.1.3 Small Polaron Model
2.4.1.4 Functional Dependencies of the Charge Carrier Mobility
2.4.2 Diffusive Motion
2.4.3 Exciton Transfer Mechanisms
2.4.4 Characteristics of Exciton Diffusion
2.5 Charge Photogeneration in Pristine Materials
3 Organic Photovoltaics
3.1 General Introduction to Solar Cell Physics
3.2 Introduction to the Donor/Acceptor Heterojunction Concept
3.3 The Open-Circuit Voltage in Organic Solar Cells
3.4 Doping of Organic Semiconductors
3.5 Introduction to the p-i-n Concept
3.6 Charge Transfer Excitons in Donor/Acceptor Heterojunction Systems
3.6.1 Introduction
3.6.2 Verification of Charge Transfer Excitons in Donor/Acceptor Systems
3.7 The Process Cascade for Free Charge Carrier Generation in Donor/Acceptor
Heterojunction Systems
3.7.1 The Initial Charge Transfer Step
3.7.2 The Binding Energy of the Charge Transfer Exciton
3.7.3 \"Hot\" Charge Transfer Exciton Dissociation
3.7.4 \"Cold\" Charge Transfer Exciton Dissociation
3.7.5 Supposed Influence Factors on Charge Transfer Exciton Dissociation
3.7.6 Recombination Pathways for Charge Transfer Excitons
3.7.7 Free Charge Carrier Formation and Recombination
4 Experimental Methods
4.1 Sample Preparation
4.2 Material Characterization Methods
4.2.1 Optical Characterization
4.2.2 Cyclic Voltammetry
4.2.3 Ultraviolet Photoelectron Spectroscopy
4.2.4 Atomic Force Microscopy
4.2.5 Grazing Incidence X-Ray Diffraction
4.2.6 Organic Field-Effect Transistor
4.3 Photoinduced Absorption Spectroscopy
4.3.1 Introduction
4.3.2 Derivation of the PIA Signal
4.3.3 Recombination Dynamics
4.3.4 Intensity Dependence of the PIA Signal
4.4 Solar Cell Characterization
4.4.1 External Quantum Efficiency
4.4.2 Spectral Mismatch Correction
4.4.3 Current-Voltage Characteristics
4.4.4 Optical Device Simulations
4.4.5 Optical Device Transmission Measurements
5 The Oligothiophene Material System
5.1 Introduction
5.2 Thermal Stability
5.3 Energy Levels
5.4 Optical Properties of the Pristine Materials
5.5 The Donor/Acceptor Couple: DCVnT and C60
5.6 Solar Cell Devices
5.7 Summary
6 Temperature Dependence of Charge Carrier Generation
6.1 Introduction
6.2 Principal Introduction to the PIA Measurements
6.2.1 Interpretation of the Spectra
6.2.2 Interpretation of the Frequency Scans
6.3 Temperature Dependence of the Spectra
6.4 Discussion of the Temperature Dependent Processes in the Blend Layer
6.5 Temperature Activated Free Charge Carrier Generation
6.5.1 Evaluation of the Activation Energy for the DCV4T-Me:C60 Blend
6.5.2 Comparison to a Sexithiophene Derivative (DCV6T-Me)
6.6 Summary
7 Side Chain Investigation on Quaterthiophene Derivatives
7.1 Energy Levels
7.2 Optical Properties
7.2.1 Solution and Pristine Films
7.2.2 Mixed Films with C60
7.3 Influence of the Side Chain Length on the Intermolecular Coupling
7.3.1 PIA Spectra of Pristine and Blend Layers at 10K
7.3.2 Recombination Analysis for Pristine and Blend Films at 10K
7.4 The Influence of the Side Chain Length on the Offset Charge Carrier Generation
Rate at Low Temperature
7.5 In the High-Temperature Limit: Implications for Solar Cell Devices
7.5.1 PIA Spectra in Pristine and Blend Films at 200K
7.5.2 Recombination Analysis: Triplet Excitons and Free Charge Carriers
7.6 Solar Cells
7.6.1 Flat Heterojunction Devices
7.6.2 Bulk Heterojunction Devices
7.7 Summary
8 Electric-Field Dependent PIA Measurements on Complete Solar Cell Devices
8.1 Introduction
8.2 Semitransparent Organic Solar Cells
8.3 Photoinduced Absorption Measurements
8.4 Summary and Outlook
9 The Effect of Substrate Heating During Layer Deposition on the Performance of
DCV4T:C60 BHJ Solar Cells
9.1 Introduction
9.2 The Importance of Morphology Control for BHJ Solar Cells
9.3 The Impact of Substrate Heating on DCV4T:C60 BHJ Solar Cells
9.4 Absorption and Photoluminescence
9.5 Topographical Investigations (AFM)
9.6 X-ray Investigations
9.6.1 1D GIXRD Measurements
9.6.2 2D GIXRD Measurements
9.7 Proposed Morphological Picture and Confirmation Measurements
9.7.1 Morphology Sketch of the DCV4T:C60 Blend Layer
9.7.2 Confirmation Measurements
9.8 The Equivalence of Temperature and Time
9.9 Summary
10 Record Solar Cells Using DCV5T-Me33 as Donor Material
10.1 Introduction
10.2 The Influence of the Substrate Temperature
10.3 Determination of the Optical Constants
10.4 Stack Optimization
10.5 Summary and Outlook
11 Conclusions and Outlook
11.1 Summary of the Photophysical Investigations
11.2 Summary of Device Investigations
11.3 Future Challenges
Appendix A Detailed Description of the Experimental Setup for PIA Spectroscopy
Appendix B Determination of the Triplet Level by Differential PL Measurements
Appendix C Additional Tables and Figures
Appendix D Reproducibility of the Solar Cell Results (Statistics)
Appendix E Lists
Bibliography
Acknowledgments / Der rasante Anstieg des Wirkungsgrads von organischen Solarzellen über die Marke von 10% war nur durch länderübergreifende Forschungsaktivitäten während der letzten Jahre möglich. Trotz der gemeinsamen Anstrengungen, die Prozesse, die zwischen der Absorption der Photonen und der Ladungsträgererzeugung liegen, genauer zu verstehen, sind einige Fragen jedoch immer noch ungelöst, z.B. wie diese Prozesse schon auf dem Reißbrett durch die gezielte Änderung bestimmter Molekülstrukturen optimiert werden können. Um dieses Ziel zu erreichen, werden in dieser Arbeit Dicyanovinyl-substituierte Oligothiophene (DCVnTs) verwendet. Diese Materialien bieten die Möglichkeit, kleine strukturelle Änderungen vorzunehmen, deren Einfluss auf die molekularen und auf die Solarzelleneigenschaften untersucht werden soll.
Der Einfluss der Messtemperatur auf den Prozess der Ladungsträgertrennung wird hier an einer methylierten DCV4T-Verbindung in einer dünnen Schicht untersucht. Die bei photoinduzierter Absorptionsspektroskopie (PIA) beobachtete Aktivierung dieses Prozesses mit zunehmender Temperatur wird auf eine erhöhte Ladungsträgerbeweglichkeit zurückgeführt. Der dadurch erhöhte effektive Abstand der Ladungen an der Grenzfläche zwischen Donator (D) und Akzeptor (A) erleichtert die endgültige Trennung der Ladungsträger. Durch den Vergleich mit einer DCV6T-Verbindung wird der Zusammenhang zwischen der Aktivierungsenergie und der Beweglichkeit bekräftigt. Die kleinere Beweglichkeit äußert sich dabei in einer größeren Aktivierungsenergie.
Darüber hinaus kann der Ladungsträgergenerationsprozess auch von der Molekülstruktur abhängen. In dieser Arbeit wird untersucht, wie sich die Länge von Alkylseitenketten auf die Energieniveaus der Moleküle, aber auch auf die Absorptions- und Lumineszenzeigenschaften der Materialien in reinen und in Mischschichten mit dem Akzeptor C60 äußert. Die ermittelten Unterschiede bezüglich der Molekülordnung (geordneter für kürzere Seitenketten) und der Phasengrößen in Mischschichten (größere Phasen bei kürzerer Kettenlänge) werden in der Untersuchung der Temperaturabhängigkeit der Lebensdauer von Triplettexzitonen mittels PIA-Messungen bestätigt. Für Solarzellen ist von Bedeutung, ob sich die Seitenkettenlänge auf die Wechselwirkung zwischen D und A auswirkt. Der vermutete Zusammenhang wird hier nicht bestätigt. Ein ähnlicher Photostrom für alle untersuchten Verbindungen in Solarzellen mit planaren Heteroübergängen unterstreicht diese Schlussfolgerung. Unterschiede im Wirkungsgrad werden auf Änderungen der Energieniveaus und die Morphologie in Mischschichtsolarzellen zurückgeführt.
Des Weiteren wird in einer Machbarkeitsstudie der Einfluss des elektrischen Felds auf die Generationsausbeute freier Ladungsträger untersucht. Dafür werden halbtransparente Solarzellen verwendet, die es ermöglichen, PIA-Messungen in Transmissionsgeometrie durchzuführen. Als mögliche Erklärung für das Auftreten zweier Rekombinationskomponenten in der Analyse des Rekombinationsverhaltens der durch Licht erzeugten Ladungsträger werden eingefangene Ladungsträger und gebundene Ladungsträgerpaare an der D/A-Grenzfläche genannt. Das Mischverhalten von D und A kann durch ein Heizen des Substrates während des Verdampfungsprozesses eingestellt werden, was von entscheidender Bedeutung für eine weitere Steigerung des Wirkungsgrades ist. Für DCV4T:C60-Mischschichtsolarzellen wird jedoch eine Verschlechterung des Wirkungsgrads zu höheren Substrattemperaturen beobachtet. Durch optische Messungen und Methoden zur Schichtstrukturbestimmung wird dieser Effekt auf eine Umordnung der DCV4T-Kristallite für hohe Substrattemperaturen und die damit verbundene Verringerung der Absorption und damit auch des Photostroms zurückgeführt. Bei einer Substrattemperatur von 90° C sind die D- und A-Komponenten fast vollständig entmischt. Dieses Beispiel ist von besonderer Bedeutung, weil hier die Ursachen für ein Verhalten aufgezeigt werden, das entgegen den Beispielen aus der Literatur eine Abnahme des Wirkungsgrads beim Aufdampfen der aktiven Schicht auf ein geheiztes Substrat zeigt.
Schließlich werden die Optimierungsschritte dargelegt, mit denen Solarzellen mit einer DCV5T-Verbindung als Donatormaterial auf einen Rekordwirkungsgrad von 7,7% gebracht werden. Dabei wird die Substrattemperatur, die Dicke der aktiven Schicht und die Transportschichten angepasst.:Abstract - Kurzfassung
Publications
Contents
1 Introduction
2 Elementary Processes in Organic Semiconductors
2.1 Introduction
2.2 Optical Excitations in Organic Materials
2.2.1 Introduction
2.2.2 Radiative Processes: Absorption and Emission
2.2.3 Non-radiative Relaxation Processes
2.2.4 Triplet Excitons and Intersystem Crossing
2.3 Polarization Effects and Disorder
2.4 Transport Processes in Disordered Organic Materials
2.4.1 Charge Transport
2.4.1.1 The Bässler Model
2.4.1.2 Marcus Theory for Electron Transfer
2.4.1.3 Small Polaron Model
2.4.1.4 Functional Dependencies of the Charge Carrier Mobility
2.4.2 Diffusive Motion
2.4.3 Exciton Transfer Mechanisms
2.4.4 Characteristics of Exciton Diffusion
2.5 Charge Photogeneration in Pristine Materials
3 Organic Photovoltaics
3.1 General Introduction to Solar Cell Physics
3.2 Introduction to the Donor/Acceptor Heterojunction Concept
3.3 The Open-Circuit Voltage in Organic Solar Cells
3.4 Doping of Organic Semiconductors
3.5 Introduction to the p-i-n Concept
3.6 Charge Transfer Excitons in Donor/Acceptor Heterojunction Systems
3.6.1 Introduction
3.6.2 Verification of Charge Transfer Excitons in Donor/Acceptor Systems
3.7 The Process Cascade for Free Charge Carrier Generation in Donor/Acceptor
Heterojunction Systems
3.7.1 The Initial Charge Transfer Step
3.7.2 The Binding Energy of the Charge Transfer Exciton
3.7.3 \"Hot\" Charge Transfer Exciton Dissociation
3.7.4 \"Cold\" Charge Transfer Exciton Dissociation
3.7.5 Supposed Influence Factors on Charge Transfer Exciton Dissociation
3.7.6 Recombination Pathways for Charge Transfer Excitons
3.7.7 Free Charge Carrier Formation and Recombination
4 Experimental Methods
4.1 Sample Preparation
4.2 Material Characterization Methods
4.2.1 Optical Characterization
4.2.2 Cyclic Voltammetry
4.2.3 Ultraviolet Photoelectron Spectroscopy
4.2.4 Atomic Force Microscopy
4.2.5 Grazing Incidence X-Ray Diffraction
4.2.6 Organic Field-Effect Transistor
4.3 Photoinduced Absorption Spectroscopy
4.3.1 Introduction
4.3.2 Derivation of the PIA Signal
4.3.3 Recombination Dynamics
4.3.4 Intensity Dependence of the PIA Signal
4.4 Solar Cell Characterization
4.4.1 External Quantum Efficiency
4.4.2 Spectral Mismatch Correction
4.4.3 Current-Voltage Characteristics
4.4.4 Optical Device Simulations
4.4.5 Optical Device Transmission Measurements
5 The Oligothiophene Material System
5.1 Introduction
5.2 Thermal Stability
5.3 Energy Levels
5.4 Optical Properties of the Pristine Materials
5.5 The Donor/Acceptor Couple: DCVnT and C60
5.6 Solar Cell Devices
5.7 Summary
6 Temperature Dependence of Charge Carrier Generation
6.1 Introduction
6.2 Principal Introduction to the PIA Measurements
6.2.1 Interpretation of the Spectra
6.2.2 Interpretation of the Frequency Scans
6.3 Temperature Dependence of the Spectra
6.4 Discussion of the Temperature Dependent Processes in the Blend Layer
6.5 Temperature Activated Free Charge Carrier Generation
6.5.1 Evaluation of the Activation Energy for the DCV4T-Me:C60 Blend
6.5.2 Comparison to a Sexithiophene Derivative (DCV6T-Me)
6.6 Summary
7 Side Chain Investigation on Quaterthiophene Derivatives
7.1 Energy Levels
7.2 Optical Properties
7.2.1 Solution and Pristine Films
7.2.2 Mixed Films with C60
7.3 Influence of the Side Chain Length on the Intermolecular Coupling
7.3.1 PIA Spectra of Pristine and Blend Layers at 10K
7.3.2 Recombination Analysis for Pristine and Blend Films at 10K
7.4 The Influence of the Side Chain Length on the Offset Charge Carrier Generation
Rate at Low Temperature
7.5 In the High-Temperature Limit: Implications for Solar Cell Devices
7.5.1 PIA Spectra in Pristine and Blend Films at 200K
7.5.2 Recombination Analysis: Triplet Excitons and Free Charge Carriers
7.6 Solar Cells
7.6.1 Flat Heterojunction Devices
7.6.2 Bulk Heterojunction Devices
7.7 Summary
8 Electric-Field Dependent PIA Measurements on Complete Solar Cell Devices
8.1 Introduction
8.2 Semitransparent Organic Solar Cells
8.3 Photoinduced Absorption Measurements
8.4 Summary and Outlook
9 The Effect of Substrate Heating During Layer Deposition on the Performance of
DCV4T:C60 BHJ Solar Cells
9.1 Introduction
9.2 The Importance of Morphology Control for BHJ Solar Cells
9.3 The Impact of Substrate Heating on DCV4T:C60 BHJ Solar Cells
9.4 Absorption and Photoluminescence
9.5 Topographical Investigations (AFM)
9.6 X-ray Investigations
9.6.1 1D GIXRD Measurements
9.6.2 2D GIXRD Measurements
9.7 Proposed Morphological Picture and Confirmation Measurements
9.7.1 Morphology Sketch of the DCV4T:C60 Blend Layer
9.7.2 Confirmation Measurements
9.8 The Equivalence of Temperature and Time
9.9 Summary
10 Record Solar Cells Using DCV5T-Me33 as Donor Material
10.1 Introduction
10.2 The Influence of the Substrate Temperature
10.3 Determination of the Optical Constants
10.4 Stack Optimization
10.5 Summary and Outlook
11 Conclusions and Outlook
11.1 Summary of the Photophysical Investigations
11.2 Summary of Device Investigations
11.3 Future Challenges
Appendix A Detailed Description of the Experimental Setup for PIA Spectroscopy
Appendix B Determination of the Triplet Level by Differential PL Measurements
Appendix C Additional Tables and Figures
Appendix D Reproducibility of the Solar Cell Results (Statistics)
Appendix E Lists
Bibliography
Acknowledgments
|
5 |
Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen HalbleiternWidmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
|
6 |
Charge transport and energy levels in organic semiconductorsWidmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers
|
Page generated in 0.2504 seconds