• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 30
  • 18
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stochastic Modeling of Hydrological Events for Better Water Management / よりよい水管理に資する水文事象の確率論的モデル化

Erfaneh, Sharifi 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20006号 / 農博第2190号 / 新制||農||1045(附属図書館) / 学位論文||H28||N5015(農学部図書室) / 33102 / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 藤原 正幸, 教授 村上 章, 准教授 宇波 耕一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
12

Stochastické modely ve finanční matematice / Stochastic Models in Financial Mathematics

Waczulík, Oliver January 2016 (has links)
Title: Stochastic Models in Financial Mathematics Author: Bc. Oliver Waczulík Department: Department of Probability and Mathematical Statistics Supervisor: doc. RNDr. Jan Hurt, CSc., Department of Probability and Mathe- matical Statistics Abstract: This thesis looks into the problems of ordinary stochastic models used in financial mathematics, which are often influenced by unrealistic assumptions of Brownian motion. The thesis deals with and suggests more sophisticated alternatives to Brownian motion models. By applying the fractional Brownian motion we derive a modification of the Black-Scholes pricing formula for a mixed fractional Bro- wnian motion. We use Lévy processes to introduce subordinated stable process of Ornstein-Uhlenbeck type serving for modeling interest rates. We present the calibration procedures for these models along with a simulation study for estima- tion of Hurst parameter. To illustrate the practical use of the models introduced in the paper we have used real financial data and custom procedures program- med in the system Wolfram Mathematica. We have achieved almost 90% decline in the value of Kolmogorov-Smirnov statistics by the application of subordinated stable process of Ornstein-Uhlenbeck type for the historical values of the monthly PRIBOR (Prague Interbank Offered Rate) rates in...
13

Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi du premier et second ordre, locales et non-locales, dans des cas non-périodiques / Long time behavior of solutions of some first and second order, local and nonlocal Hamilton-Jacobi equations in non-periodic settings

Nguyen, Thi Tuyen 01 December 2016 (has links)
La motivation principale de cette thèse est l'étude du comportement en temps grand des solutions non-bornées d'équations de Hamilton-Jacobi visqueuses dans RN en présence d'un terme d'Ornstein-Uhlenbeck. Nous considérons la même question dans le cas d'une équation de Hamilton-Jacobi du premier ordre. Dans le premier cas, qui constitue le cœur de la thèse, nous généralisons les résultats de Fujita, Ishii et Loreti (2006) dans plusieurs directions. La première est de considérer des opérateurs de diffusion plus généraux en remplaçant le Laplacien par une matrice de diffusion quelconque. Nous considérons ensuite des opérateurs non-locaux intégro-différentiels de type Laplacien fractionnaire. Le second type d'extension concerne le Hamiltonien qui peut dépendre de x et est seulement supposé sous-linéaire par rapport au gradient. / The main aim of this thesis is to study large time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN in presence of an Ornstein-Uhlenbeck drift. We also consider the same issue for a first order Hamilton-Jacobi equation. In the first case, which is the core of the thesis, we generalize the results obtained by Fujita, Ishii and Loreti (2006) in several directions. The first one is to consider more general operators. We first replace the Laplacian by a general diffusion matrix and then consider a non-local integro-differential operator of fractional Laplacian type. The second kind of extension is to deal with more general Hamiltonians which are merely sublinear.
14

Long Time Integration of Molecular Dynamics at Constant Temperature with the Symplectic Euler Method / Integration över lång tid i molekyldynamik med symplektisk Euler-metoden vid konstant temperatur

Böjeryd, Jesper January 2015 (has links)
Simulations of particle systems at constant temperature may be used to estimate several of the system’s physical properties, and some require integration over very long time to be accurate. To achieve sufficient accuracy in finite time the choice of numerical scheme is important and we suggest to use the symplectic Euler method combined with a step in an Ornstein-Uhlenbeck process. This scheme is computationally very cheap and is often used in applications of molecular dynamics. This thesis strives to motivate the usage of the scheme due to the lack of theoretical results and comparisons to alternative methods. We conduct three numerical experiments to evaluate the scheme. The design of each experiment aims to expose weaknesses or strengths of the method. For both model problems and more realistic experiments are the results positive in favor of the method; the symplectic Euler method combined with an Ornstein- Uhlenbeck step does perform well over long times. / Simuleringar av partikelsystem vid konstant temperatur kan användas för att uppskatta flera av systemets fysiska egenskaper. Vissa klasser av egenskaper kräver integration över väldigt lång tid för att uppnå hög noggrannhet och för att uppnå detta i ändlig tid är valet av numerisk metod viktigt. Vi föreslår att använda den symplektiska Euler-metoden i kombination med ett implicit steg i en Ornstein-Uhlenbeck-process. Detta stegschema kräver låg beräkning jämfört med andra scheman och används redan i olika applikationer av molekyldynamik. Detta examensarbete eftersträvar att än mer motivera användandet av schemat, eftersom teoretiska resultat som stödjer metoder är få, och avsaknaden av tidigare liknande studier är betydlig. Vi genomför tre numeriska experiment för att pröva schemat. Under utformningen av experimenten har vi försökt att inkorporera olika fenomen som kan orsaka svårigheter för metoden för att exponera svagheter eller styrkor hos den. För båda modellproblem och för ett mer realistiskt experiment är resultaten positiva till schemats fördel; metoden att kombinera ett symplektisk Euler-steg med ett steg i Ornstein-Uhlenbeck-processen presterar bra över lång tid.
15

Modeling the Relation Between Implied and Realized Volatility / Modellering av relationen mellan implicit och realiserad volatilitet

Brodd, Tobias January 2020 (has links)
Options are an important part in today's financial market. It's therefore of high importance to be able to understand when options are overvalued and undervalued to get a lead on the market. To determine this, the relation between the volatility of the underlying asset, called realized volatility, and the market's expected volatility, called implied volatility, can be analyzed. In this thesis five models were investigated for modeling the relation between implied and realized volatility. The five models consisted of one Ornstein–Uhlenbeck model, two autoregressive models and two artificial neural networks. To analyze the performance of the models, different accuracy measures were calculated for out-of-sample forecasts. Signals from the models were also calculated and used in a simulated options trading environment to get a better understanding of how well they perform in trading applications. The results suggest that artificial neural networks are able to model the relation more accurately compared to more traditional time series models. It was also shown that a trading strategy based on forecasting the relation was able to generate significant profits. Furthermore, it was shown that profits could be increased by combining a forecasting model with a signal classification model. / Optioner är en viktig del i dagens finansiella marknad. Det är därför viktigt att kunna förstå när optioner är över- och undervärderade för att vara i framkant av marknaden. För att bestämma detta kan relationen mellan den underliggande tillgångens volatilitet, kallad realiserad volatilitet, och marknadens förväntade volatilitet, kallad implicit volatilitet, analyseras. I den här avhandlingen undersöktes fem modeller för att modellera relationen mellan implicit och realiserad volatilitet. De fem modellerna var en Ornstein–Uhlenbeck modell, två autoregressiva modeller samt två artificiella neurala nätverk. För att analysera modellernas prestanda undersöktes olika nogrannhetsmått för prognoser från modellerna. Signaler från modellerna beräknades även och användes i en simulerad optionshandelsmiljö för att få en bättre förståelse för hur väl de presterar i en handelstillämpning. Resultaten tyder på att artificiella neurala nätverk kan modellera relationen bättre än mer traditionella tidsseriemodellerna. Det visades även att en handelsstrategi baserad på prognoser av relationen kunde generera en signifikant vinst. Det visades dessutom att vinster kunde ökas genom att kombinera en prognosmodell med en modell som klassificerar signaler.
16

Debt Portfolio Optimization at the Swedish National Debt Office: : A Monte Carlo Simulation Model / Skuldportföljsoptimering på Riksgälden: : En Monte Carlo-simuleringsmodell

Greberg, Felix January 2020 (has links)
It can be difficult for a sovereign debt manager to see the implications on expected costs and risk of a specific debt management strategy, a simulation model can therefore be a valuable tool. This study investigates how future economic data such as yield curves, foreign exchange rates and CPI can be simulated and how a portfolio optimization model can be used for a sovereign debt office that mainly uses financial derivatives to alter its strategy. The programming language R is used to develop a bespoke software for the Swedish National Debt Office, however, the method that is used can be useful for any debt manager. The model performs well when calculating risk implications of different strategies but debt managers that use this software to find optimal strategies must understand the model's limitations in calculating expected costs. The part of the code that simulates economic data is developed as a separate module and can thus be used for other studies, key parts of the code are available in the appendix of this paper. Foreign currency exposure is the factor that had the largest effect on both expected cost and risk, moreover, the model does not find any cost advantage of issuing inflation-protected debt. The opinions expressed in this thesis are the sole responsibility of the author and should not be interpreted as reflecting the views of the Swedish National Debt Office. / Det kan vara svårt för en statsskuldsförvaltare att se påverkan på förväntade kostnader och risk när en skuldförvaltningsstrategi väljs, en simuleringsmodell kan därför vara ett värdefullt verktyg. Den här studien undersöker hur framtida ekonomiska data som räntekurvor, växelkurser ock KPI kan simuleras och hur en portföljoptimeringsmodell kan användas av ett skuldkontor som främst använder finansiella derivat för att ändra sin strategi. Programmeringsspråket R används för att utveckla en specifik mjukvara åt Riksgälden, men metoden som används kan vara användbar för andra skuldförvaltare. Modellen fungerar väl när den beräknar risk i olika portföljer men skuldförvaltare som använder modellen för att hitta optimala strategier måste förstå modellens begränsningar i att beräkna förväntade kostnader. Delen av koden som simulerar ekonomiska data utvecklas som en separat modul och kan därför användas för andra studier, de viktigaste delarna av koden finns som en bilaga till den här rapporten. Valutaexponering är den faktor som hade störst påverkan på både förväntade kostnader och risk och modellen hittar ingen kostnadsfördel med att ge ut inflationsskyddade lån. Åsikterna som uttrycks i den här uppsatsen är författarens egna ansvar och ska inte tolkas som att de reflekterar Riksgäldens syn.
17

Sur certains problemes de premier temps de passage motives par des applications financieres

Patie, Pierre 03 December 2004 (has links) (PDF)
From both theoretical and applied perspectives, first passage<br />time problems for random processes are challenging and of great<br />interest. In this thesis, our contribution consists on providing<br />explicit or quasi-explicit solutions for these problems in two<br />different settings.<br /><br />In the first one, we deal with problems related to the<br />distribution of the first passage time (FPT) of a Brownian motion<br />over a continuous curve. We provide several representations for<br />the density of the FPT of a fixed level by an Ornstein-Uhlenbeck<br />process. This problem is known to be closely connected to the one<br />of the FPT of a Brownian motion over the square root boundary.<br />Then, we compute the joint Laplace transform of the $L^1$ and<br />$L^2$ norms of the $3$-dimensional Bessel bridges. This result is<br />used to illustrate a relationship which we establish between the<br />laws of the FPT of a Brownian motion over a twice continuously<br />differentiable curve and the quadratic and linear ones. Finally,<br />we introduce a transformation which maps a continuous function<br />into a family of continuous functions and we establish its<br />analytical and algebraic properties. We deduce a simple and<br />explicit relationship between the densities of the FPT over each<br />element of this family by a selfsimilar diffusion.<br /><br /> In the second setting, we are concerned with the study of<br />exit problems associated to Generalized Ornstein-Uhlenbeck<br />processes. These are constructed from the classical<br />Ornstein-Uhlenbeck process by simply replacing the driving<br />Brownian motion by a Lévy process. They are diffusions with<br />possible jumps. We consider two cases: The spectrally negative<br />case, that is when the process has only downward jumps and the<br />case when the Lévy process is a compound Poisson process with<br />exponentially distributed jumps. We derive an expression, in terms<br />of new special functions, for the joint Laplace transform of the<br />FPT of a fixed level and the primitives of theses processes taken<br />at this stopping time. This result allows to compute the Laplace<br />transform of the price of a European call option on the maximum on<br />the yield in the generalized Vasicek model. Finally, we study the<br />resolvent density of these processes when the Lévy process is<br />$\alpha$-stable ($1 < \alpha \leq 2$). In particular, we<br />construct their $q$-scale function which generalizes the<br />Mittag-Leffler function.
18

Copules dynamiques : applications en finance et en économie

Totouom Tangho, Daniel 06 November 2007 (has links) (PDF)
Les dérivés de crédit ont connu en quelques années un développement fulgurant en finance : les volumes de transactions ont augmenté exponentiellement, de nouveaux produits ont été créés. La récente crise du sub-prime a mis en évidence l'insuffisance des modèles actuels. Le but de cette thèse est de créer de nouveaux modèles mathématiques qui prennent en compte la dynamique de dépendance (« tail dependence ») des marchés. Après une revue de la littérature et des modèles existants, nous nous focalisons sur la modélisation de la « corrélation » (ou plus exactement la dynamique de la structure de dépendance) entre différentes entités dans un portefeuille de crédit (CDO). Dans une première phase, une formulation simple des copules dynamiques est proposée. Ensuite, nous présentons une seconde formulation en utilisant des processus de Lévy à spectre positif (i.e. gamma Ornstein-Uhlenbeck). L'écriture de cette nouvelle famille de copules archimédiennes nous permet d'obtenir une formule asymptotique simple pour la distribution des pertes d'un portefeuille de crédit granulaire. L'une des particularités du modèle proposé est sa capacité de reproduire des dépendances extrêmes comparables aux phénomènes récents de contagion sur les marchés comme la crise du « subprime » aux Etats-Unis. Une application sur l'estimation des prix des tranches de CDOs est aussi présentée. Dans cette thèse, nous proposons également d'utiliser des copules dynamiques pour modéliser des migrations jointes des qualités de crédit afin de prendre en compte les co-migrations extrêmes. En effet, les copules nous permettent d'étendre notre connaissance des processus de migration mono-variable à un cadre multi-variables. Afin de tenir compte de multiples sources de risques systémiques, nous développons des copules dynamiques à plusieurs facteurs. Enfin, nous montrons que la brique élémentaire de structure de dépendance induite par une mesure du temps aléatoire « Time Changed Process » rentre dans le cadre des copules dynamiques.
19

Etude de certains problèmes de décision dans les structures statistiques Gaussiennes infinidimensionnelles

Antoniadis, Anestis 16 June 1983 (has links) (PDF)
Ce travail se place dans le cadre de la statistique infinidimensionnelle . Par généralisation en dimension quelconque de certaines méthodes d'analyse multidimensionnelle classique il fournit des solutions satisfaisantes pour des problèmes de décision concernant la moyenne de certains processus gaussiens.<br /><br />La première partie est consacrée à l'étude de tests<br />quadratiques d' hypothèses linéaires et à l'extension en dimension infinie du modèle I d' analyse de la variance.<br /><br />Dans la deuxième partie - les aspects probabilistes d'un modèle mathématique pour la réponse en potentiel d'un neurone sont étudiés et une application de l'analyse de la variance est développée.<br /><br />Enfin le dernier chapitre aborde les problèmes de calcul effectif des régions critiques des tests utilisés .
20

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

Krämer, Romy, Richter, Matthias 19 May 2008 (has links) (PDF)
In this paper, we study mathematical properties of a generalized bivariate Ornstein-Uhlenbeck model for financial assets. Originally introduced by Lo and Wang, this model possesses a stochastic drift term which influences the statistical properties of the asset in the real (observable) world. Furthermore, we generali- ze the model with respect to a time-dependent (but still non-random) volatility function. Although it is well-known, that drift terms - under weak regularity conditions - do not affect the behaviour of the asset in the risk-neutral world and consequently the Black-Scholes option pricing formula holds true, it makes sense to point out that these regularity conditions are fulfilled in the present model and that option pricing can be treated in analogy to the Black-Scholes case.

Page generated in 0.0645 seconds