• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 19
  • Tagged with
  • 158
  • 158
  • 75
  • 64
  • 64
  • 35
  • 33
  • 24
  • 24
  • 17
  • 15
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Facilitating Conceptual Learning in Quantitative Chemistry

Johnson, Sarah R 01 May 2016 (has links)
Traditional chemistry laboratory courses have a manual consisting of “step-by-step” experiments; instructions are given to complete experiments, requiring minimal information/concepts processing to be successful. This experience leaves students unprepared for the real-world, where critical thinking skills are needed to conduct research. This study focused on building analytical techniques, conceptual knowledge, and critical thinking skills used to solve research problems. A new quantitative chemistry laboratory manual was developed to transition students from traditional to inquiry-based experiments, requiring analytical method development. Data showed students having less difficulty using the new manual (0.8281 average difficulty) on method development exam questions and experiments, compared to the traditional manual (0.600 average difficulty). T-test showed significant difference between item difficulty, p = 0.029. Using null hypotheses, the new laboratory manual led to an increase in students’ conceptual knowledge and research skills. They were able to use their knowledge and skills to successfully solve real-world related problems.
122

Anthracroronene in Astrophysical Water-Ice Analogs

Korsmeyer, Julie 01 January 2019 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are the most abundant large organic molecules in space. They are thought to be the main contributor to the unidentified infrared (UIR) emission bands from the interstellar medium (ISM) for several reasons: UIR intensities correspond to carbon abundance, indicating the presence of a carbon-based molecule; UIRs are found in extremely harsh environments which means the source must be a stable molecule. The most important evidence is if the bands in mid-infrared (MIR) or 'fingerprint' region match those of PAHs. Through the infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbons a compound's unique neutral and ionized vibrational modes can be identified. In this work, the PAH anthracoronene (AntCor, C36H18) is suspended in a matrix of water-ice, irradiated with ultraviolet (UV) light, and then analyzed using Fourier Transform Infrared (FTIR) spectroscopy. AntCor has not been studied in water ice before, and therefore the vibrational transition data collected (i.e. band positions and intensities) has been compared to coronene and anthracene, the parent molecules, and with theoretical predictions made using density functional theory. The data from this work will be incorporated into the NASA Ames PAH IR Database, where it will be applied to astronomical observations of the unidentified infrared emissions of the ISM, as well as observations of infrared absorption features in dense molecular clouds.
123

Gas-Phase Studies of Nucleophilic Substitution Reactions: Halogenating and Dehalogenating Aromatic Heterocycles

Donham, Leah L 01 January 2018 (has links)
Halogenated heterocycles are common in pharmaceutical and natural products and there is a need to develop a better understanding of processes used to synthesize them. Although the halogenation of simple aromatic molecules is well understood, the mechanisms behind the halogenation of aromatic heterocycles have been more problematic to elucidate because multiple pathways are possible. Recently, new, radical-based mechanisms have been proposed for heterocycle halogenation. In this study, we examine and test the viability of possible nucleophilic substitution, SN2@X, mechanisms in the halogenation of anions derived from the deprotonation of aromatic heterocycles. All the experiments were done in a modified Thermo LCQ Plus equipped with ESI. The modifications allow a neutral reagent to be added to the helium buffer gas in the 3D ion trap. In this system, it is possible to monitor ion/molecule reactions over time periods up to 10 seconds. A variety of aromatic heterocyclic nucleophiles were chosen based on their inclusion of nitrogen and or sulfur as the heteroatoms. In addition to this, the halogenating molecules chosen included traditional halobenzenes and a new class of perfluorinated alkyl iodides. It was found that, experimentally, the SN2@X path is the likely mechanism in the halogenation of deprotonated heterocycles. With computational modeling, we have additional support for this substitution mechanism. From this original study, two more studies were developed to look at the competing nucleophilic aromatic substitution reaction, SNAr. In the first of these studies, the focus was to look at how electron withdrawing substituents about an aromatic ring affect the ratio of SN2@X verses SNAr. As nucleophiles, 2-thiophenide and 5-thiazolide were used. The neutral reagents focus on trifluorobromobenzene derivatives along with pentafluorobromo- and -iodobenzene, and a two trifluoroiodobenzenes. What was found was that the ratio of the reactions depends on where the fluorines, or electron withdrawing substituents are in relation to the bromine or iodine on the ring. If the fluorines are in a close location to stabilize the resulting ionic product, SN2@X proceeds easily. However, the fluorines directly adjacent to the bromine or iodine also provide steric hinderance in the SNAr reaction. In the final project, arylation and benzylation of bromopyridines was examined. The nucleophiles used were benzyl and phenyl anions as well as 5-thiazolide, and the neutral reagents were bromopyridines, with fluorines used as an electron withdrawing groups to help stabilize the transition state. In these experiments, steric hinderance highly affected the results between the phenyl and benzyl nucleophiles. With benzylic anions, the nucleophile is able to reach the aromatic ring with less steric interference and therefore can proceed with an SNAr reaction. In addition to this, with mono and difluorinated pyridine substrates, the nitrogen in the ring activated the ring yielding nucleophilic aromatic substitution losing fluoride rather than bromide in many cases.
124

Development of Photocatalysts Supported on Graphitic Carbon Nitride for the Degradation of Organic Water Pollutants

Giri, Atanu 01 January 2018 (has links)
Graphitic carbon nitride (g-C3N4) heterojunction composites with the semiconducting metal oxides, CeO2, ZnO and TiO2 are prepared in situ by co-calcination of the precursor materials or by a solvothermal method. The structural, morphological and the optical properties of the prepared materials are studied using various microscopy and spectroscopy techniques. The synthesized composite materials, CeO2/g-C3N4, ZnO/g-C3N4 and TiO2/g-C3N4 are more efficient in the photocatalytic degradation of the water pollutants indigo carmine (IC) and atrazine than the pure metal oxide, g-C3N4, or their physical mixtures. The CeO2/g-C3N4 and ZnO/g-C3N4 composites also exhibit improved degradation efficiencies of atrazine as compared to the individual metal oxide or g-C3N4 materials. The improved photocatalytic activity of the composites are attributed to the effective electron-hole charge separation within composite heterojunction, resulting from the well matched energy levels of the metal oxide and g-C3N4. This strategy could be helpful for the synthesis of other metal oxide and g-C3N4 composites for photocatalytic applications.
125

The Rôle of Side-Chains in Polymer Electrolytes for Batteries and Fuel Cells

Karo, Jaanus January 2009 (has links)
The subject of this thesis relates to the design of new polymer electrolytes for battery and fuel cell applications. Classical Molecular Dynamics (MD) modelling studies are reported of the nano-structure and the local structure and dynamics for two types of polymer electrolyte host: poly(ethylene oxide) (PEO) for lithium batteries and perfluorosulfonic acid (PFSA) for polymer-based fuel cells. Both polymers have been modified by side-chain substitution, and the effect of this on charge-carrier transport has been investigated. The PEO system contains a 89-343 EO-unit backbone with 3-15 EO-unit side-chains, separated by 5-50 EO backbone units, for LiPF6 salt concentrations corresponding to Li:EO ratios of 1:10 and 1:30; the PFSA systems correspond to commercial Nafion®, Hyflon® (Dow®) and Aciplex® fuel-cell membranes, where the major differences again lie in the side-chain lengths. The PEO mobility is clearly enhanced by the introduction of side-chains, but is decreased on insertion of Li salts; mobilities differ by a factor of 2-3. At the higher Li concentration, many short side-chains (3-5 EO-units) give the highest ion mobility, while the mobility was greatest for side-chain lengths of 7-9 EO units at the lower concentration. A picture emerges of optimal Li+-ion mobility correlating with an optimal number of Li+ ions in the vicinity of mobile polymer segments, yet not involved in significant cross-linkages within the polymer host. Mobility in the PFSA-systems is promoted by higher water content. The influence of different side-chain lengths on local structure was minor, with Hyflon® displaying a somewhat lower degree of phase separation than Nafion®. Furthermore, the velocities of the water molecules and hydronium ions increase steadily from the polymer backbone/water interface towards the centre of the proton-conducting water channels. Because of its shorter side-chain length, the number of hydronium ions in the water channels is ~50% higher in Hyflon® than in Nafion® beyond the sulphonate end-groups; their hydronium-ion velocities are also ~10% higher. MD simulation has thus been shown to be a valuable tool to achieve better understanding of how to promote charge-carrier transport in polymer electrolyte hosts. Side-chains are shown to play a fundamental rôle in promoting local dynamics and influencing the nano-structure of these materials.
126

Origin of organic compounds in fluids from ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge

Konn, Cécile January 2009 (has links)
Natural gas, primarily methane (CH4), is produced in substantial amounts in ultramafic-hosted hydrothermal systems. These systems could also generate oil (heavier hydrocarbons) and the first building blocks of life (prebiotic molecules). In the presence of iron bearing minerals, serpentinisation reactions generate H2. Subsequently, CH4 could be synthesised by Fischer-Tropsch Type (FTT) reaction (4H2 + CO2 → CH4 + 2H2O) which is an abiotic process. This has lead to the idea of abiotic formation of larger organic molecules. Both thermodynamics and laboratory work support this idea, yet field data have been lacking. This study focuses on determining the organic content of fluids from ultramafic-hosted hydrothermal systems from the Mid-Atlantic Ridge (MAR) and the origin of the compounds. Fluids were collected from the Lost City, Rainbow, Ashadze and Logatchev vent fields during the EXOMAR (2005), SERPENTINE (2007), MoMARDREAMnaut (2007) and MOMAR08-Leg2 (2008) cruises conducted by IFREMER, France. A SBSE-TD-GC-MS technique was developed and used to extract, concentrate, separate and identify compounds in the fluids. Hydrothermally derived compounds appeared to consist mainly of hydrocarbons and O-bearing molecules. In addition, some amino acids were detected in the fluids by ULPC-ESI-QToF-MS but their origin will need to be determined. The organic content of the Rainbow fluids did not show intra field variability unlike differences could be noted over the years. In order to address the question of the source of the molecules, compound specific carbon isotopic analyses were carried out and completed with a bacterial (Pyrococcus abyssi) hydrothermal degradation experiment. The δ13C data fall in the range of -40 to -30‰ (vs. V-PDB), but individual δ13C values preclude the identification of a biogenic or abiogenic origin of the compounds. The degradation experiment, however, suggests an abiogenic origin of a portion of saturated hydrocarbons whereas carboxylic acids would be biogenic, and aromatic compounds would be thermogenic. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: Submitted. Paper 4: Submitted. / MoMARnet
127

Synthesis of Rhenium and Manganese Pyridazoal Complexes

Evans, Jesse 01 May 2013 (has links)
Pyridazines are a heterocyclic aromatic compound containing a characteristic N-N bond that are utilized in many fields, including medicine and electronics. It is this latter field that Dr. Snyder's research group is focused upon. Organometallic compounds are a better conducting material than the current inorganic compounds used in electronics due to better conductance of electricity, lower production cost, and the ability to be formed into thin films. With this in mind, Dr. Snyder's research group has set out to synthesize organometallic compounds for this purpose. Following procedures set forth by Snyder etc, and altered to form an off-metal route, we have successfully synthesized a library of fulvenes, Thalium Cp salts, 5,6 fused pyridazines, and pyridazial complexes. Thalium Cp salts were converted to Rhenium and Magnenese complexes through transmetalation. We have had success with the off-metal route at both higher yields and greater purity than the previous published on-metal route. These compounds have been fully characterized by 1H NMR, 13C NMR, IR, and Elemental Analysis. In addition, progress has been initiated to form Bromo Thiophene complexes following procedures set forth in Snyder, etc and modified for the off-metal route. However only fulvenes, pyridazine, and Thalium Cp salts have been synthesized and characterized by 1H NMR and 13C NMR.
128

Hur får vi energi? : En kvalitativ semistruktuerad intervjustudie om barns uppfattningar kring kroppens energiprocesser. / How do we get energy? : A qualitative semi structured interview study of preschool children´s perceptions about acknowledging the field of energy process in the human body.

Rantamäki, Anja January 2018 (has links)
Denna studie har som syfte att studera vilka tankar förskolebarn i åldern mellan 5-6 år har om energiprocesser kopplat till människokroppen. Metoden var en kvalitativ semistrukturerad intervjustudie som genomfördes på en förskola samt i en förskoleklass. Teoretiska utgångspunkten var social konstruktivism. Intervjuerna kompletterades med en docka som blev ett kommunikativt redskap. Resultatet av studien visar att de flesta barn relatera mat som en viktig energikälla. Barnens tankar om vart de får sin energi ifrån ligger i vardagsspråket, där barnen använder energi begreppet som att känner sig utvilad och har ork för att kunna leka. Den skiljer sig till den naturvetenskapliga betydelsen av energi där vi får vår energi genom cellandningen. Barns tankar om hur de får sin energi skiljer sig och sammanfattas i fem olika kategorier. Kategorierna är: genom mat, genom rörelse, genom vila, genom vätska och genom syre. / The purpose of this study is to investigate how preschool children between the age of 5 and 6 years reflect about energy processes connected to the body. The study was conducted with semi structured interviews with a preschool class and a preschool. The theoretical framework for the study is social constructivism. The study was conducted with communicative tools (a doll). The result of the study is most children relate food as an important source of energy. Children ́s perceptions about where they got the energy from, lies in the form of informal language, where they use the word energy when they feel alert and have strength to play. It differs from the science ́s descriptions of energy, that we obtain energy through cellular respiration. Children ́s perceptions about where they got the energy from are divided into five categories. The categories are: through food, through motion, through rest, through fluid and through oxygen.
129

Formulation and characterization of W/O nano-dispersions for bioactive delivery applications

Chatzidaki, Maria D. January 2016 (has links)
The main objective of this study was the formulation of food-grade water-in-oil (W/O) nano-dispersions based mainly on medium or long-chain triglycerides. Two types of dispersions were formulated and structurally compared, namely emulsions and microemulsions. The systems were used as matrices for encapsulating targeted bioactive molecules with specific characteristics such as antioxidants or peptides. The structural characterization of the formulated systems was investigated using techniques such as Electron Paramagnetic Resonance (EPR) spectroscopy, Dynamic Light Scattering (DLS), Cryogenic Transmission Electron Microscopy (Cryo-TEM) and Small Angle Xray Scattering (SAXS). The existence of swollen inverse micelles was revealed for the case of microemulsions whereas larger droplets still at the nano-scale were observed for the case of emulsions. Structural differences in the presence of the bioactive molecules or induced by the alteration of components were also observed. In order to study the efficacy of the formulations, the proposed loaded systems were assessed either using EPR spectroscopy or Well Diffusion Assay (WDA) depending on the bioactive molecule. It was found that the encapsulated molecules retained their claimed characteristics when encapsulated to the proposed matrices. Finally, some of the formulated dispersions were investigated for their behavior under gastrointestinal (GI) conditions. A two-step digestion model using recombinant Dog Gastric Lipase (rDGL) and Porcine Pancreatic Lipase (PPL) was proposed to simulate lipid hydrolysis in humans. The studies revealed significant decrease of the rDGL specific activity in the presence of the microemulsion while in the presence of lower percent of surfactants (case of emulsion) no alterations were observed.
130

Gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry methods for the determination of environmental contaminants

Geng, Dawei January 2016 (has links)
The recent developments and improvements of instrumental methods for the analyses of the environmental contaminants, especially the persistent organic pollutants (POPs), have made it possible to detect and quantify these at very low concentrations in environmental and biotic matrices. The main objective of this thesis is to demonstrate the capability of the atmospheric pressure chemical ionization technique (APCI), using gas chromatography coupled to tandem mass spectrometry for the determination of a wide range of environmental contaminants, including the POPs regulated by Stockholm Convention, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), but also the derivates of PBDEs and novel brominated flame retardants (NBFRs). The APCI was operated in charge transfer condition, preferably producing molecular ions. Multiple reaction monitoring (MRM) experiments were optimized by adjusting cone voltage, collision energy and dwell time. Optimization of source parameters, such as gas flows and temperatures was also performed. Low concentration standards were analyzed, achieving a visible chromatographic peak for 2 fg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) demonstrating the excellent sensitivity of the system. Adequate linearity and repeatability were observed for all the studied compounds. The performance of APCI methods was validated against the conventional methods using gas chromatography coupled to high resolution mass spectrometry for chlorinated compounds in a wide range of matrices including environmental, air, human and food matrices. The GC-APCI-MS/MS method was successfully applied to a set of 75 human serum samples to study the circulating levels of POPs in epidemiologic studies. Moreover the method was utilized to establish temporal trends of POPs in osprey eggs samples collected during the past five decades.

Page generated in 0.0822 seconds