• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 157
  • 30
  • 28
  • 20
  • 17
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 555
  • 555
  • 221
  • 197
  • 195
  • 185
  • 96
  • 93
  • 84
  • 70
  • 58
  • 55
  • 54
  • 47
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Predictive Modeling of Lake Eutrophication

Malmaeus, Jan Mikael January 2004 (has links)
<p>This thesis presents predictive models for important variables concerning eutrophication effects in lakes. The keystone is a dynamic phosphorus model based on ordinary differential equations. By calculating mass fluxes of phosphorus into, within and out from a lake, the concentrations of different forms of phosphorus in different compartments of the lake are estimated.</p><p>The dynamic phosphorus model is critically tested and several improvements are presented, including two new compartments for colloidal phosphorus, a sub-model for suspended particulate matter (SPM) and new algorithms for lake outflow, water mixing, diffusion, water content and organic content of accumulation sediments are implemented. Predictions with the new version show good agreement against empirical data in five tested lakes.</p><p>The sub-model for SPM uses the same driving variables as the basic phosphorus model, so the inclusion of this model as a sub-model does not require any additional variables. The model for SPM may also be used as a separate model giving monthly predictions of suspended particulate matter in two water compartments and one compartment with SPM available for resuspension in ET-sediments.</p><p>Empirical data from Lake Erken (Sweden) and Lake Balaton (Hungary) are used to evaluate the variability in settling velocity of SPM. It is found that the variability is substantial and may be accounted for by using a dimensionless moderator for SPM concentration. Empirical data from accumulation area sediments in Lake Erken are used to develop a model for the dynamics of phosphorus sedimentation, burial and diffusion in the sediments. The model is shown to provide reasonable monthly predictions of four functional forms of phosphorus at different sediment depths.</p><p>Simulations with the lake phosphorus model using two different climate scenarios indicate that lakes may respond very differently to climate change depending on their physical character. Lake Erken, with a water retention time of 7 years, appears to be much more sensitive than two basins of Lake Mälaren (Sweden) with substantially shorter retention times. The implication would be that in eutrophic lakes with long water retention times, eutrophication problems may become serious if the future becomes warmer. This will be important in contexts of lake management when remedial measures against lake eutrophication have to be taken.</p>
502

Nouveaux outils en sciences de l’environnement : géochimie isotopique du Cu‐Zn et spéciation des Eléments en Trace Métalliques par titrage acidimétrique. Développement et applications aux phases particulaires de l’estuaire de l’Escaut, aux émissions atmosphériques et aux sols contaminés d’Angleur/Prayon.

Petit, Jérôme C. J. 13 November 2009 (has links)
Les potentiels de nouveaux moyens d’investigation en sciences de l’environnement, tel que la géochimie des isotopes stables du Cu et du Zn et l’étude de la spéciation des éléments en trace métalliques (ETM) par titrage acidimétrique sont évalués dans le cadre de trois cas d’études, faisant intervenir des matériaux de matrices et de concentrations en ETM variables. Afin de mettre en évidence de très subtiles variations des compositions isotopiques du Cu et du Zn dans les matériaux particulaires variablement pollués, une attention particulière à été voué à la mise au point des méthodes de séparation chimique et d’analyse par MC-ICP-MS. La méthodologie analytique a été développée afin d’exploiter tout les avantages techniques offerts par le spectromètre de masse à l’ULB. Différents modes d’introduction (plasma humide vs plasma sec (Aridus/DSN), d’acquisition des mesures (mode statique ou dynamique) de correction du biais de masse (dopage au Cu, au Zn et au Ga; correction SSBM, SSBC et EEN)ont été évaluées, pour leurs effets sur la précision et la reproductibilité des mesures. D’autres travaux ont permis de quantifier les effets des interférences spectrales et non spectrales par les éléments de la matrice (Ti, Cr, Co,Fe, Ba, Si, Na, Mg et Ca) et par le rapport dopant/analyte en vue de comprendre les sources d’inexactitudes des mesures isotopiques et d’y remédier. Les données isotopiques acquises sur des minerais, sur des (plaques de) dépôts atmosphériques (usine Pb-Zn Metaleurop de Noyelles-Godault), sur des sédiments et des matières en suspension (estuaire de l’Escaut et mer du Nord), révèlent des variations significatives des compositions isotopiques du cuivre et du zinc. Dans l’estuaire de l’Escaut, les variations temporelles (carotte non perturbée, enregistrant la sédimentation sur 30 ans) et spatiales (matières en suspension échantillonnées sur 100 km, selon le profil de salinité) sont caractérisées par des signatures isotopiques en Zn anticorrélées à celle du Cu. Les données peuvent permettre de distinguer le fond géochimique naturel (le « réservoir naturel »), les pollutions diffuses (le « réservoir anthropique commun »- intégrant de multiples sources de contamination en provenance du bassin versant) et certaines pollutions ponctuelles associées à la métallurgie du Zn. Alors que les procédés utilisés en métallurgie sont eux,capable de produire des signatures isotopiques très fractionnées en Zn, ni la diagenèse précoce dans les sédiments, ni les gradients physicochimiques développés lors du mélange des eaux continentales et marines ne sont capables d’affecter significativement la signature isotopique du Cu et du Zn en phase particulaire. Dans de tels milieux, les signatures isotopiques en Cu et Zn (ainsi que celles en Pb) semblent n’être contrôlées que par le mélange conservatif entre le « réservoir naturel » et le « réservoir anthropique commun ». Les données en elles-mêmes constituent la seule base de données isotopiques en Cu, Zn, Pb dans des matériaux particulaires anthropisés estuariens et marins jamais produite à ce jour. Elles permettent de prédire que la signature isotopique en Cu du « réservoir naturel » devrait être légèrement plus enrichie en isotopes lourds que celle du réservoir « anthropique commun » (par analogie au Zn). Si la géochimie isotopique du Cu et du Zn a le potentiel de distinguer différentes sources de pollution, l’évaluation des risques liés à ces pollutions doit tenir compte des formes chimiques des ETM, typiquement mises en évidences par les méthodes d’extraction sélectives (séquentielles, dont le protocole BCR). La méthode alternative proposée pour l’étude de la spéciation, plus versatile (capable de mettre en évidence des phases non prédéfinies et applicable à une variété de matrices plus large) est capable de surmonter plusieurs limitations (dont les problèmes de sélectivité liées au mauvais contrôle de l’acidité du milieu réactionnel) caractéristiques des méthodes traditionnelles. Appliquée à des sédiments marins/estuariens et des sols, la méthode de titrage acidimétrique s’est révélée capable de quantifier les proportions relatives des phases acido-solubles (principal problème des méthodes d’extraction sélectives), ce qui permet d’établir univoquement la spéciation des éléments qui leurs sont associés, d’évaluer la réactivité des ETM vis-à-vis du pH, mais aussi d’évaluer la sélectivité des protocoles d’extraction séquentielle « BCR » et « Tessier ». La méthode de titrage acidimétrique apporte également des informations importantes sur la géochimie des éléments majeurs dans l’estuaire de l’Escaut et met en évidence les particularités minéralogiques des sols pollués en comparaison aux sédiments. Les études de cas démontrent que ces nouvelles techniques ont des applications dans le domaine de la géochimie de l’environnement, mais peuvent également être vouées, sur le moyen/long terme à une utilisation sortant du cadre des sciences exactes. En effet, l’identification/ discrimination des sources de pollutions et l’évaluation des risques de remobilisation des polluants métalliques font partie des nombreuses questions posées par la société aux scientifiques de l’environnement.
503

Predictive Modelling of Aquatic Ecosystems at Different Scales using Mass Balances and GIS

Gyllenhammar, Andreas January 2004 (has links)
This thesis presents models applicable for aquatic ecosystems. Geographical Information Systems (GIS) form an important part of the thesis. The dynamic mass balance models focus on nutrient fluxes, biotic/abiotic interactions and operate on different temporal and spatial scales (site, local, regional and international). The relevance and role of scale in mass balance modelling is a focal point of the thesis. A mesocosm experiment was used to construct a model to estimate the nutrient load of phosphorus and nitrogen from net cage fish farming (i.e., the site scale). The model was used to estimate what feeding conditions that are required for a sustainable aquaculture scenario, i.e., a zero nutrient load situation (a linkage between the site scale and the regional scale). A dynamic model was constructed for suspended particulate matter (SPM) and sedimentation in coastal areas (i.e., the local scale) with different morphometric characteristics and distances to the Sea. The results demonstrate that the conditions in the Sea (the regional and international scale) are of fundamental importance, also for the most enclosed coastal areas. A foodweb model for lakes was transformed and recalibrated for Baltic Sea conditions (i.e., the international scale). The model also includes a mass balance model for phosphorus and accounts for key environmental factors that regulate the presuppositions for production and biomasses of key functional groups of organisms. The potential use of the new model for setting fish quotas of cod was examined. For the intermittent (i.e., regional) scale, topographically complex areas can be difficult to define and model. Therefore, an attempt was made to construct a waterscape subbasin identification program (WASUBI). The method was tested for the Finnish Archipelago Sea and the Okavango Delta in Botswana. A comparison to results from a semi-random delineation method showed that more enclosed basins was created with the WASUBI method.
504

Predictive Modeling of Lake Eutrophication

Malmaeus, Jan Mikael January 2004 (has links)
This thesis presents predictive models for important variables concerning eutrophication effects in lakes. The keystone is a dynamic phosphorus model based on ordinary differential equations. By calculating mass fluxes of phosphorus into, within and out from a lake, the concentrations of different forms of phosphorus in different compartments of the lake are estimated. The dynamic phosphorus model is critically tested and several improvements are presented, including two new compartments for colloidal phosphorus, a sub-model for suspended particulate matter (SPM) and new algorithms for lake outflow, water mixing, diffusion, water content and organic content of accumulation sediments are implemented. Predictions with the new version show good agreement against empirical data in five tested lakes. The sub-model for SPM uses the same driving variables as the basic phosphorus model, so the inclusion of this model as a sub-model does not require any additional variables. The model for SPM may also be used as a separate model giving monthly predictions of suspended particulate matter in two water compartments and one compartment with SPM available for resuspension in ET-sediments. Empirical data from Lake Erken (Sweden) and Lake Balaton (Hungary) are used to evaluate the variability in settling velocity of SPM. It is found that the variability is substantial and may be accounted for by using a dimensionless moderator for SPM concentration. Empirical data from accumulation area sediments in Lake Erken are used to develop a model for the dynamics of phosphorus sedimentation, burial and diffusion in the sediments. The model is shown to provide reasonable monthly predictions of four functional forms of phosphorus at different sediment depths. Simulations with the lake phosphorus model using two different climate scenarios indicate that lakes may respond very differently to climate change depending on their physical character. Lake Erken, with a water retention time of 7 years, appears to be much more sensitive than two basins of Lake Mälaren (Sweden) with substantially shorter retention times. The implication would be that in eutrophic lakes with long water retention times, eutrophication problems may become serious if the future becomes warmer. This will be important in contexts of lake management when remedial measures against lake eutrophication have to be taken.
505

Controlled Human Exposures to Concentrated Ambient Fine Particles and Ozone: Individual and Combined Effects on Cardiorespiratory Outcomes

Urch, R. Bruce 17 February 2011 (has links)
Epidemiological studies have shown strong and consistent associations between exposure to air pollution and increases in morbidity and mortality. Key air pollutants that have been identified include fine particulate matter (PM) and ozone (O3), both major contributors to smog. However, there is a lack of understanding of the mechanisms involved and the relative contributions of individual pollutants. A controlled human exposure facility was used to carry out inhalation studies of concentrated ambient fine particles (CAP), O3, CAP+O3 and filtered air following a randomized design. Exposures were 2 hrs in duration at rest. Subjects included mild asthmatics and non-asthmatics. This thesis focuses on acute cardiovascular responses including blood pressure (BP), brachial artery reactivity (flow-mediated dilatation [FMD]) and markers of systemic inflammation (blood neutrophils and interleukin [IL]-6). Results showed that for CAP-containing exposures (CAP, CAP+O3) there were small but significant transient increases in diastolic BP (DBP) during exposures. Furthermore, neutrophils and IL-6 increased 1 - 3 hrs after and FMD decreased 20 hrs after CAP-containing exposures. Responses to O3 were smaller, comparable to filtered air. The data suggests that adverse responses were mainly driven by PM. The DBP increase was rapid-developing and quick to dissipate, which points to an autonomic irritant response. The magnitude of the DBP increase was strongly negatively associated with the high frequency component of heart rate variability, suggesting parasympathetic withdrawal as a mechanism. In comparison, IL-6, neutrophil and FMD responses were slower to develop, indicative of an inflammatory mechanism. An intriguing finding was that IL-6 increased 3 hrs after CAP, but not after CAP+O3. Further investigation revealed that exposure to CAP+O3 in some individuals may trigger a reflex inhibition of inspiration, decreasing their tidal volume and inhaled pollutant dose, leading to a reduction in systemic IL-6, a potential protective mechanism. Together the findings support the epidemiological evidence of adverse fine PM health effects. Many questions remain to be answered about the health effects of air pollution including a better understanding of how inhaled pollutants result in cardiovascular effects. It is hoped that the insights gained from this thesis will advance the understanding of air pollution health effects.
506

Controlled Human Exposures to Concentrated Ambient Fine Particles and Ozone: Individual and Combined Effects on Cardiorespiratory Outcomes

Urch, R. Bruce 17 February 2011 (has links)
Epidemiological studies have shown strong and consistent associations between exposure to air pollution and increases in morbidity and mortality. Key air pollutants that have been identified include fine particulate matter (PM) and ozone (O3), both major contributors to smog. However, there is a lack of understanding of the mechanisms involved and the relative contributions of individual pollutants. A controlled human exposure facility was used to carry out inhalation studies of concentrated ambient fine particles (CAP), O3, CAP+O3 and filtered air following a randomized design. Exposures were 2 hrs in duration at rest. Subjects included mild asthmatics and non-asthmatics. This thesis focuses on acute cardiovascular responses including blood pressure (BP), brachial artery reactivity (flow-mediated dilatation [FMD]) and markers of systemic inflammation (blood neutrophils and interleukin [IL]-6). Results showed that for CAP-containing exposures (CAP, CAP+O3) there were small but significant transient increases in diastolic BP (DBP) during exposures. Furthermore, neutrophils and IL-6 increased 1 - 3 hrs after and FMD decreased 20 hrs after CAP-containing exposures. Responses to O3 were smaller, comparable to filtered air. The data suggests that adverse responses were mainly driven by PM. The DBP increase was rapid-developing and quick to dissipate, which points to an autonomic irritant response. The magnitude of the DBP increase was strongly negatively associated with the high frequency component of heart rate variability, suggesting parasympathetic withdrawal as a mechanism. In comparison, IL-6, neutrophil and FMD responses were slower to develop, indicative of an inflammatory mechanism. An intriguing finding was that IL-6 increased 3 hrs after CAP, but not after CAP+O3. Further investigation revealed that exposure to CAP+O3 in some individuals may trigger a reflex inhibition of inspiration, decreasing their tidal volume and inhaled pollutant dose, leading to a reduction in systemic IL-6, a potential protective mechanism. Together the findings support the epidemiological evidence of adverse fine PM health effects. Many questions remain to be answered about the health effects of air pollution including a better understanding of how inhaled pollutants result in cardiovascular effects. It is hoped that the insights gained from this thesis will advance the understanding of air pollution health effects.
507

An investigation into local air quality throughout two residential communities bisected by major highways in South Auckland, New Zealand.

Pattinson, Woodrow Jules January 2014 (has links)
Population exposure to traffic pollution is a rapidly developing, multi-disciplinary scientific field. While the link between long-term exposure and respiratory issues is well-established, there are probable links to a number of more serious health effects, which are still not fully understood. In the interests of protecting human health, it is prudent that we take a cautionary approach and actively seek to reduce exposure levels, especially in the home environment where people spend a significant portion of their time. In many large cities, a substantial number of homes are situated on land immediately adjacent to busy freeways and other heavily-trafficked roads. Characterising exposures of local residents is incredibly challenging but necessary for advancing epidemiological understandings. While existing studies are plentiful, the results are mixed and generally not transferable to other urban areas due to the localised nature of the built environment and meteorological influences. This thesis aimed to employ a variety of methods to develop a holistic understanding of the influence of traffic emissions on near-highway residents' exposure in two communities of South Auckland, New Zealand, where Annual Average Daily Traffic (AADT) is as high as 122,000 vehicles. First, ultrafine particles (UFPs), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter ≤ 10 μm (PM₁₀) were continuously monitored using a series of fixed stations at different distances from the highways, over several months during the winters of 2010 and 2011. Emissions modelling output (based on traffic composition), was used within a dispersion model to compare modelled concentrations with monitored levels. In addition, community census meshblock units were mapped by level of social deprivation in order to assess potential inequities in highway emissions exposure. The second layer of local air quality investigation involved using a bicycle platform to systematically measure concentrations of UFPs, CO and PM₁₀ using the entire street-grid network throughout each community. This was done forty times - five times at four times of day (07:00, 12:00, 17:00 and 22:00), for each study area, with the aim of mapping the diurnal fluctuation of microspatial variation in concentrations. Using global positioning system (GPS) data and geographical information system (GIS) software, spatially-resolved pollutant levels were pooled by time of day and the median values mapped, providing a visualisation of the spatial extent of the influence of emissions from the highways compared to minor roads. The third layer involved using data from multiple ambient monitors, both within the local areas and around the city, to simulate fifty-four residents' personal exposure for the month of June, 2010. This required collecting timeactivity information which was carried out by door-to-door surveying. The time-activity data were transformed into microenvironment and activity codes reflecting residents movements across a typical week, which were then run through the US-EPA's Air Pollution Exposure Model (APEX). APEX is a probabilistic population exposure model for which the user sets numerous microenvironmental parameters such as Air Exchange Rates (AERs) and infiltration factors, which are used in combination with air pollutant concentrations, meteorological, and geospatial data, to calculate individuals' exposures. Simulated exposure outputs were grouped by residents' occupations and their home addresses were artificially placed at varying distances from the highways. The effects of residential proximity to the highway, occupation, work destination and commute distance were explored using a Generalised Linear Model (GLM). Surveyed residents were also asked a series of Likert-type, ordered response questions relating to their perceptions and understandings of the potential impacts of living near a significant emissions source. Their response scores were explored as a function of proximity to the highway using multivariate linear regression. This formed the final layer of this investigation into air quality throughout these South Auckland communities of Otahuhu and Mangere Bridge. Results show that concentrations of primary traffic pollutants (UFPs, NOx, CO) are elevated by 41 - 64% within the roadside corridor compared to setback distances approximately 150 m away and that the spatial extent of UFPs can reach up to 650 m downwind early in the morning and late in the evening. Further, social deprivation mapping revealed that 100% of all census meshblocks within 150 m either side of both highways are at the extreme end of the deprivation index (NZDep levels 8 - 10). Simulations for residents dispersed across the community of Otahuhu estimated daily NOx and CO exposure would increase by 32 and 37% (p<0.001) if they lived immediately downwind of the highway. If they were to shift 100 m further downwind, daily exposure would decline by 56 - 70% (p<0.001). The difference in individuals' exposure levels by occupation varied across the same distance by a factor of eight (p<0.05), with unemployed or retired persons the most exposed due to having more free time to spend outdoors at home (recreation, gardening, etc.). Those working in ventilated offices were the least exposed, even though ambient concentrations - likely due to a strong urban street canyon effect - were higher than the nearest highway monitor (5 m downwind) by 25 - 30% for NOx and CO, respectively. Inverse linear relationships were identified for distance from highway and measures of concern for health impacts, as well as for noise (p<0.05). Positive linear relationships were identified for distance from highway and ratings of both outdoor and indoor air quality (p<0.05). Measures of level of income had no conclusive statistically significant effect on perceptions (p>0.05). The main findings within this thesis demonstrate that those living within the highway corridor are disproportionately exposed to elevated long-term average concentrations of toxic air pollutants which may impact on physical health. While the socioeconomic characteristics could also heighten susceptibility to potential health impacts in these areas, certain activity patterns can help mitigate exposure. This thesis has also shown that there may be quantifiable psychological benefits of a separation buffer of at least 100 m alongside major highways. These results enhance a very limited knowledge base on the impacts of near-roadway pollution in New Zealand. Furthermore, the results lend additional support to the international literature which is working to reduce residential exposures and population exposure disparities through better policies and improved environmental planning. Where possible, the placement of sensitive population groups within highway corridors, e.g. retirement homes, social housing complexes, schools and childcare centres, should be avoided.
508

Trace Metal Composition Of Particulate Matter In The Water Column And Sediments Of The Black Sea And Regional Rivers

Yigiterhan, Oguz - 01 July 2005 (has links) (PDF)
The Black Sea, with its oxic, suboxic and anoxic layers, provides a unique environment for studying how biological and geochemical processes affect the composition of particulate matter. The elemental composition of particles in the Black Sea is controlled by their origin and sources. Particles from rivers are dominated by aluminosilicate material that has compositions similar to the earth&rsquo / s crust. In general this material is relatively unreactive. Biological processes in the upper oxic and suboxic layers of the water column result in enrichments of elements which used as nutrients. Cu, Ba and Mo have been proposed as tracers for planktonic material and new production. Geochemical processes like manganese and iron recycling between oxidized and reduced forms, metal sulfide formation, and biogenic matter decomposition can have a large impact on the composition of particles in the suboxic and anoxic zones. The aim of this thesis was to study the composition of particles suspended in the water column of the Black Sea, in regional rivers draining into the Black Sea, and of particles deposited in these rivers and Black Sea sediments. The objectives were to determine the chemical composition and distribution of particles supplied by rivers and produced in the Black Sea, and compare with those particles buried in the sediments. The chemical distributions can help us to understand the biogeochemical processes taking place. The ultimate goal is to understand if there is a chemical signature that characterizes sediments deposited in anoxic basins that can be used to determine if ancient sedimentary rocks were deposited under such conditions. Water column filter samples were collected from the central western basin and along transects to the SW shelf regions during several research cruises of R/V Bilim and R/V Knorr in the Black Sea. Samples were taken by using both in situ large volume filtration systems and on deck vacuum filtration of discrete samples. River samples were collected by hand from the bank of four Turkish rivers and the Danube River. Sediment samples were obtained from 0 - 25 cm interval of a box core from the deep western basin. All samples were digested and analyzed by inductively coupled plasma - mass spectrometry and combination of atomic absorption (flame &amp / graphite furnace) instruments. The elements analyzed included Al, Ti, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Mo, Ag, Cd, Ba, Pb, and U. Great care was taken to avoid contamination and to obtain the highest level of precision and accuracy. The precision was typically about 5% for most elements. The accuracy, determined using standard reference materials, was also usually better than 5%. Another goal of this research was to determine the metal concentrations and best digestion methods using different types of filter materials. Blank filters were digested and analyzed and the analyses of various filter blanks are presented in the thesis. The analyses showed that the particulate matter data from Turkish Rivers were very similar to the composition of global average riverine particulate material and global average crust. The Danube River had elevated concentrations for some elements that were probably due to anthropogenic contamination. The Turkish river samples were closer to (but still higher than) the averages for the world&rsquo / s rivers but many elements in the Danube were much higher. These high values determined for major elements in the Danube samples strongly suggest considerable contamination of the Danube as compared to the Turkish Rivers. The Danube River samples were especially enriched in Pb, Zn, Ag, Cu, Cd, and Mn and slightly enriched with Cr and Ni. The first five elements, in particular, are well known indicators of pollution. The particulate matter in the water column of the Black Sea was influenced by lithogenic input from rivers, biological processes and geochemical processes. In order to examine the biogeochemical processes extensively, all the data were plotted as Metal/Al (Me/Al) ratios and compared with the ratios of the average crust and Turkish Rivers. Deviations were used to examine the anomalies due to biological and geochemical processes. In addition, the Al content of individual sample and the Me/Al ratio of crust or rivers were used to subtract the lithogenic component from the total composition. Enrichments due to biological processes were observed for Ba &gt / Fe &gt / Cr &gt / Mn &gt / Zn &gt / Ni &gt / Cu &gt / Mo &gt / V &gt / Co &gt / Cd &gt / U for the overall biogenic composition. Enrichments due to biology are most evident for Ba, Fe, Cr and Mn. This is a unique data set as there have been few previous analyses of biological enrichment for most of these elements. The results of particulate matter analyses showed that some elements including U, V, Cr, Ni, Cu, Co, Zn, Ba and Mo were enriched in the set of samples from the euphotic zone. Redox cycling in the suboxic zone was observed, as expected, for Mn and Fe, whose oxides play an important role in scavenging processes. The redox dependent processes in the suboxic &ndash / anoxic interface influence the vertical distribution of U, Ni, Co, Cu, Zn, Ba and possibly Mo, Cr and V. Elements influenced by sulfide formation in the anoxic layer are Fe, Cr, Ni, Co, Mo, and presumably Ag. The sediment data were also examined based on the same approaches. The elements Zn, Pb, U and Cd decreased with sediment depth over the top 5 cm suggesting that they were remobilized out of the sediments. In general the sediments from the Black Sea have Me/Al ratios very similar to local Turkish Rivers and average crust. There is no unique sediment signature (except possibly for Mo) indicating that these sediments were deposited under sulphidic conditions. This study does not support the hypothesis that the composition of ancient rocks can be used to characterize the environment of deposition.
509

Caractérisation du résidu particulaire et étude des mécanismes limitant la biodégradation des boues d'épuration / Characterization of the refractory anaerobic residue and study of the mechanisms limiting the biodegradation of sewage sludge

Decremps, Sophie 18 April 2014 (has links)
La matière des eaux usées urbaines (ERU) subit des transformations au sein des filières « eau » et « boue » des stations d’épuration (STEP). Une fraction de la matière organique est systématiquement retrouvée en fin de traitement biologique sous forme particulaire et est, à ce titre, identifiée comme non biodégradable et notée XU. L’origine « exogène » i.e. provenant de l’ERU brute, ou « endogène », i.e, résidus générés par les processus microbiens, et la contribution quantitative des composés accumulés dans cette fraction XU ne sont pas identifiables simplement. Par ailleurs, si une faible bioaccessibilité et/ou une inadéquation entre leur nature chimique et le pool enzymatique présent peuvent être suspectées, les raisons de leur caractère réfractaire sont mal connues et constituent un frein pour optimiser la valorisation de la boue par digestion anaérobie. S’intéressant spécifiquement à la fraction organique réfractaire d’une boue d’épuration, ce travail de thèse s’est donc attaché à définir son origine, à quantifier sa proportion selon différentes conditions opératoires de STEP et à caractériser ses composés d’un point de vue physique et chimique. Une approche filière a tout d’abord été menée pour analyser la relation entre l’origine et la biodégradabilité d’une boue. Deux approches de caractérisation chimique ont été mises en œuvre : (i) Analyse directe de l’empreinte chimique globale par spectrophotométrie infrarouge (IR) en réflexion totale atténuée (ATR) ; (ii) Analyses moléculaires (fluorescence 2D et 3D, UV 210 et 280 nm, dosages biochimiques) de fractions solubilisées après déconstruction thermo-chimique de l’agrégat réfractaire. Associée à des analyses statistiques, l’utilisation de l’empreinte IR s’est révélée pertinente pour différencier chimiquement différentes matrices réfractaires et suivre l’évolution des empreintes au fil des unités de traitement d’épuration. Par ailleurs, l’utilisation combinée de techniques analytiques complémentaires a permis une caractérisation plus précise des familles de molécules impliquées. Enfin, l’empreinte IR s’est avéré un outil pertinent de caractérisation de l’effet d’un traitement thermique (60 à 95°C) ou chimique (hydrolyse acide et alcaline) sur la chimie de la fraction XU / Organic matter of urban wastewaters (WW) is modified all along the treatment units of a wastewater treatment plant (WWTP). A fraction of the organic matter systematically remains at the end of biological treatment, mainly aggregated in particulate form. It is thus classified as refractory organics, noticed XU. The “exogenous” origin (e.g. originated from the urban WW) or “endogenous” one (e.g. residues produced by the microbial processes) and the quantitative contribution of compounds accumulated into the XU fraction are difficult to identify. Limited bioaccessibility and/or inappropriate chemical characteristics can be suspected. However, the reasons of their non-biodegradability are not clearly identified that limits an optimal valorization of sewage sludge by anaerobic digestion (AD). Focusing specifically on the refractory COD fraction of sewage sludge, this research work attempts to define its origin, to quantify its proportion depending on the applied operating conditions in the WWTP and to characterize the physical and chemical properties of its different compounds.A first approach is carried out to analyze the relationship between the WWTP operating conditions and the biodegradability of various sludges. The scientific approach is based on (1) the use of sludges of contrasted composition (fed with raw wastewater, or pre-settled WW, diluted primary sludge or synthetic influent, and produced with a solid retention time in the range of 2 and 70 days), and, on (2) the comparative analysis of physical, biological and chemical characteristics for refractory matrices resulting from their ultimate anaerobic digestion. Refractory COD fractionations are estimated comparing experimental and ASM1 predicted data. While 85% of anaerobic refractory organic matter remain aggregated, two characterization approaches were applied: (i) direct analysis (on unmodified particulate matter) of the global chemical fingerprint by infrared spectroscopy (IR) on attenuated total reflexion (ATR); (ii) molecular analysis (fluorescence 2D and 3D, UV 210 and 280 nm, biochemical assays) of solubilized fractions obtained by thermo-chemical solubilisation of the refractory aggregate.Combined with statistical tools (Hierarchical Ascendant Classification, HAC and Principal Component Analysis, PCA), infrared fingerprints appear relevant to chemically discriminate refractory residues of the selected sludges and hence to follow the evolution of the chemistry of matrices along the treatments chains. Main factors involved in the chemical fingerprint of XU are highlighted. For example the major effect of the chemistry of exogenic refractory compounds (XU,inf) on the XU chemical fingerprint is shown. In addition, our work underlines the interest of using complementary analytical techniques to get a more accurate chemical characterization of the molecules involved in the ultimate refractory matrices. For example, a significant contribution of proteins and humics on the chemistry of refractory aggregate could be observed with a clear contribution of bacterial compounds to protein refractory fraction.Finally, the infrared fingerprint was used to characterize the effect of heat treatments (60-95°C) or chemical treatments (acid and alkaline hydrolysis) on the chemistry of XU. In perspective, this approach could be extended to other treatments (e.g. high temperature, ozonation, enzymatic hydrolysis) to assess their effects and to define their optimal operating point for degradation of refractory compounds. Furthermore, the possibility to discriminate chemical fingerprints of different refractory residues could also be exploited. Acquiring spectral data banks could better define the scope of application of treatment units combined with the anaerobic digestion of sewage sludge.
510

Exposição ao material particulado 2,5 m coletado em vias de alto tráfego da cidade do Rio de Janeiro: avaliação mutagênica, genotóxica e determinação de risco à saúde induzido por hidrocarbonetos policíclicos aromáticos / Exposure to particulate matter 2.5 mM collected at high traffic routes in Rio de Janeiro city: evaluation mutagenic, genotoxic and determination of health risks induced by polycyclic aromatic hydrocarbons

Claudia Ramos de Rainho Ribeiro 15 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A mutagenicidade do material particulado é atribuída primeiramente aos hidrocarbonetos policíclicos aromáticos (HPA). Investigamos a atividade mutagênica do material particulado (MP2,5) em amostras coletadas em três pontos da cidade do Rio de Janeiro. As coletas foram realizadas com auxílio de um amostrador de grande volume na Avenida Brasil, no campus da Universidade do Estado do Rio de Janeiro e no Túnel Rebouças em filtros de fibra de vidro. Metade de cada filtro foi submetido à extração por sonicação com o solvente diclorometano. Seis HPA foram identificados e quantificados por cromatografia gasosa com espectrometria de massa (GC/MS). Após a análise química as concentrações dos HPA obtidos foram correlacionados ao fatores físicos, além de ser realizado avaliação de risco para cada HPA estudado. Linhagens de Salmonella typhimurium (TA98 e derivadas TA98/1.8-DNP6, YG1021 e YG1024) foram utilizadas no ensaio de mutagenicidade e tratadas (10-50 g/placa) com extrato orgânico na presença e na ausência de metabolização exógena. Células de raiz de cebola foram tratadas com extratos orgânicos nas concentrações (5-25g/mL). A alta umidade encontrada no Túnel Rebouças pode ter influenciado na deposição de cinco dos seis HPA estudados em material particulado. Além disso, em diferentes condições de tráfego, motoristas de ônibus que cruzam a Avenida Brasil e o Rebouças túnel estão expostos ao risco induzidos por HPA na ordem de 10-6. Mutagenicidade foi detectada tanto na presença quanto na ausência de metabolização, para as linhagens YG1021 e YG1024 nos três pontos, sugerindo a presença de nitro e amino derivados de HPA. As amostras do Túnel Rebouças apresentaram os maiores valores para rev/g e rev/m3. Estes resultados podem estar relacionados ao longo trajeto e a restrita ventilação. Efeito citotóxico foi detectado pelo ensaio Allium cepa nos três pontos de monitoramento. Além disso os extratos orgânicos provenientes das coletas da Avenida Brasil, UERJ e do Túnel Rebouças induziram efeito clastogênico em células de raiz de Allium cepa / The mutagenicity of airborne particles from combustion is attributed primarily to polycyclic aromatic hydrocarbons (PAHs). We investigated the mutagenic activity of particulate matter (PM2.5) samples collected from three sites in Rio de Janeiro. Samples were collected using a high-volume sampler at Avenida Brasil, the campus of the Rio de Janeiro State University, and Rebouças tunnel. Half of each filter was submitted to sequential extraction by sonication with dichloromethane. Six PAHs were quantified by gas chromatography/mass spectrometry (GC/MS). Salmonella typhimurium TA98 and the derivative strains TA98/1.8-DNP6, YG1021 and YG1024 used in mutagenicity assays were treated (10-50 g/plate) with and without exogenous metabolization. Onion root cells were treated with organic extracts concentrations (5-25g/mL). The high humidity detected in the Rebouças Tunnel may have influenced the deposition of five of the six PAHs studied in particulate matter. Moreover, in different traffic conditions can put the bus drivers that cross the Brasil Avenue and Rebouças tunnel at the risk of exposure induced by HPA in the order of 10-6. Independently of exogenous metabolization, mutagenicity was detected for strains YG1021 and YG1024 at all the sites, suggesting the presence of nitro and amino derivatives of PAHs. Rebouças tunnel presented the highest values for rev/g and rev/m3. These could be related to the fact that this long, enclosed passageway and restricts ventilation. Cytotoxic effect was detected by the Allium cepa test in the three monitoring sites. Also organic extracts from Brazil Avenue, UERJ and Rebouças Tunnel showed clastogenic effect in Allium cepa roots

Page generated in 0.1171 seconds