31 |
Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusionSimpson, Daniel Peter January 2008 (has links)
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A..=2b, where A 2 Rnn is a large, sparse symmetric positive definite matrix and b 2 Rn is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LLT is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L..T z, with x = A..1=2z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form n = A..=2b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t..=2 and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A..=2b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
|
32 |
Reconstruction d'hypersurfaces de champs de normales sous contraintes : application à l'analyse stratigraphique des images sismiquesZinck, Guillaume 18 December 2012 (has links)
Cette thèse traite de la reconstruction d'hypersurfaces au sein de champs de normales en dimension quelconque et trouve des applications dans l’analyse des empreintes digitales (lignes dermiques), des images satellites météorologiques (lieux de turbulence) et astrophysiques (bras de galaxies) ainsi que dans l’analyse stratigraphique des images sismiques (horizons). Les méthodes développées s’appuient sur la minimisation d’une équation aux dérivées partielles non linéaire reliant une hypersurface au pendage déduit d’un champ de normales. Elles prennent en compte des contraintes diverses telles que des points de passages, des frontières, des bornes et des discontinuités. La contribution principale de la thèse réside dans l’introduction d’un changement d’espace du pendage qui permet de reconstruire aussi bien des hypersurfaces exprimées sous des formes implicites dans les repères de définition des champs de normales que des horizons sismiques de manière rapide et interactive. Deux schémas de reconstruction d’horizons sismiques unidimensionnels présentant une discontinuité d’amplitude et de lieu inconnus sont également proposés. / This thesis deals with the reconstruction of hypersurfaces from a finite-dimensional normal vector field. Application scopes can be found in the analysis of fingerprints (epidermal ridges), meteorological images (eddies and cyclones), astrophysical images (galaxy arms) and in the stratigraphic analysis of seismic images (horizons). The hypersurfaces are obtained by solving a non-linear partial derivative equation relied on the local dip deduced from a normal vector field. Several constraints such as boundaries, bounds, points belonging to the hypersurface or discontinuities can be considered.The major contribution of this thesis consists in a local dip transformation which allows to reconstruct implicit hypersurfaces as well as seismic horizons by a fast and interactive method. Two schemes dedicated to the reconstruction of discontinuous one-dimensional seismic horizons are also proposed when the discontinuity location and jump are unknown.
|
33 |
Skip-free markov processes: analysis of regular perturbationsDendievel, Sarah 19 June 2015 (has links)
A Markov process is defined by its transition matrix. A skip-free Markov process is a stochastic system defined by a level that can only change by one unit either upwards or downwards. A regular perturbation is defined as a modification of one or more parameters that is small enough not to change qualitatively the model.<p>This thesis focuses on a category of methods, called matrix analytic methods, that has gained much interest because of good computational properties for the analysis of a large family of stochastic processes. Those methods are used in this work in order i) to analyze the effect of regular perturbations of the transition matrix on the stationary distribution of skip-free Markov processes; ii) to determine transient distributions of skip-free Markov processes by performing regular perturbations.<p>In the class of skip-free Markov processes, we focus in particular on quasi-birth-and-death (QBD) processes and Markov modulated fluid models.<p><p>We first determine the first order derivative of the stationary distribution - a key vector in Markov models - of a QBD for which we slightly perturb the transition matrix. This leads us to the study of Poisson equations that we analyze for finite and infinite QBDs. The infinite case has to be treated with more caution therefore, we first analyze it using probabilistic arguments based on a decomposition through first passage times to lower levels. Then, we use general algebraic arguments and use the repetitive block structure of the transition matrix to obtain all the solutions of the equation. The solutions of the Poisson equation need a generalized inverse called the deviation matrix. We develop a recursive formula for the computation of this matrix for the finite case and we derive an explicit expression for the elements of this matrix for the infinite case.<p><p>Then, we analyze the first order derivative of the stationary distribution of a Markov modulated fluid model. This leads to the analysis of the matrix of first return times to the initial level, a charactersitic matrix of Markov modulated fluid models.<p><p>Finally, we study the cumulative distribution function of the level in finite time and joint distribution functions (such as the level at a given finite time and the maximum level reached over a finite time interval). We show that our technique gives good approximations and allow to compute efficiently those distribution functions.<p><p><p>----------<p><p><p><p><p><p>Un processus markovien est défini par sa matrice de transition. Un processus markovien sans sauts est un processus stochastique de Markov défini par un niveau qui ne peut changer que d'une unité à la fois, soit vers le haut, soit vers le bas. Une perturbation régulière est une modification suffisamment petite d'un ou plusieurs paramètres qui ne modifie pas qualitativement le modèle.<p><p>Dans ce travail, nous utilisons des méthodes matricielles pour i) analyser l'effet de perturbations régulières de la matrice de transition sur le processus markoviens sans sauts; ii) déterminer des lois de probabilités en temps fini de processus markoviens sans sauts en réalisant des perturbations régulières. <p>Dans la famille des processus markoviens sans sauts, nous nous concentrons en particulier sur les processus quasi-birth-and-death (QBD) et sur les files fluides markoviennes. <p><p><p><p>Nous nous intéressons d'abord à la dérivée de premier ordre de la distribution stationnaire – vecteur clé des modèles markoviens – d'un QBD dont on modifie légèrement la matrice de transition. Celle-ci nous amène à devoir résoudre les équations de Poisson, que nous étudions pour les processus QBD finis et infinis. Le cas infini étant plus délicat, nous l'analysons en premier lieu par des arguments probabilistes en nous basant sur une décomposition par des temps de premier passage. En second lieu, nous faisons appel à un théorème général d'algèbre linéaire et utilisons la structure répétitive de la matrice de transition pour obtenir toutes les solutions à l’équation. Les solutions de l'équation de Poisson font appel à un inverse généralisé, appelé la matrice de déviation. Nous développons ensuite une formule récursive pour le calcul de cette matrice dans le cas fini et nous dérivons une expression explicite des éléments de cette dernière dans le cas infini.<p>Ensuite, nous analysons la dérivée de premier ordre de la distribution stationnaire d'une file fluide markovienne perturbée. Celle-ci nous amène à développer l'analyse de la matrice des temps de premier retour au niveau initial – matrice caractéristique des files fluides markoviennes. <p>Enfin, dans les files fluides markoviennes, nous étudions la fonction de répartition en temps fini du niveau et des fonctions de répartitions jointes (telles que le niveau à un instant donné et le niveau maximum atteint pendant un intervalle de temps donné). Nous montrerons que cette technique permet de trouver des bonnes approximations et de calculer efficacement ces fonctions de répartitions. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
34 |
Modely stochastického programování v inženýrském návrhu / The Selected Stochastic Programs in Engineering DesignČajánek, Michal January 2009 (has links)
Two-stage stochastic programming problem with PDE constraint, specially elliptic equation is formulated. The computational scheme is proposed, whereas the emphasis is put on approximation techniques. We introduce method of approximation of random variables of stochastic problem and utilize suitable numerical methods, finite difference method first, then finite element method. There is also formulated a mathematical programming problem describing a membrane deflection with random load. It is followed by determination of the acceptableness of using stochastic optimization rather than deterministic problem and assess the quality of approximations based on Monte Carlo simulation method and the theory of interval estimates. The resulting mathematical models are implemented and solved in the general algebraic modeling system GAMS. Graphical and numerical results are presented.
|
35 |
A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshesKunert, Gerd 08 January 1999 (has links)
Many physical problems lead to boundary value problems for partial differential equations, which can be solved with the finite element method. In order to construct adaptive solution algorithms or to measure the error one aims at reliable a posteriori error estimators. Many such estimators are known, as well as their theoretical foundation.
Some boundary value problems yield so-called anisotropic solutions (e.g. with boundary layers). Then anisotropic finite element meshes can be advantageous. However, the common error estimators for isotropic meshes fail when applied to anisotropic meshes, or they were not investigated yet.
For rectangular or cuboidal anisotropic meshes a modified error estimator had already been derived. In this paper error estimators for anisotropic tetrahedral or triangular meshes are considered. Such meshes offer a greater geometrical flexibility.
For the Poisson equation we introduce a residual error estimator, an estimator based on a local problem, several Zienkiewicz-Zhu estimators, and an L_2 error estimator, respectively. A corresponding mathematical theory is given.For a singularly perturbed reaction-diffusion equation a residual error estimator is derived as well. The numerical examples demonstrate that reliable and efficient error estimation is possible on anisotropic meshes.
The analysis basically relies on two important tools, namely anisotropic interpolation error estimates and the so-called bubble functions. Moreover, the correspondence of an anisotropic mesh with an anisotropic solution plays a vital role.
AMS(MOS): 65N30, 65N15, 35B25
|
36 |
Untersuchungen zur Strömungs-Struktur Interaktion an dynamisch bewegten, flexiblen OberflächenKunze, Sebastian 12 July 2011 (has links)
Die experimentellen Untersuchungen zur Strömungs-Struktur-Interaktion kommen zu folgenden Ergebnissen. Die als entrainment bezeichnete Verhaltensweise von Fischen kann durch den gezielten Ausgleich von Auftriebs-, Widerstands- und einer erstmals nachgewiesenen Saugkraft und der damit verbundenen Reduzierung der lokomotorischen Energie erklärt werden. Des Weiteren zeigen die Experimente an einer wellenförmig bewegten Oberfläche, dass die Strömung an einem Wellenberg zyklisch zwischen laminarem und turbulentem Regime wechselt und dass diese Oszillation zur Reduzierung des Form- und Gesamtwiderstandes der geschleppten Oberfläche führt. Dünne, flexible Häutchen hairy flaps an der Rückseite eines Zylinders führen zu einer Änderung der Struktur der Wirbelablösung an diesem. Dadurch wird sowohl die auf den Zylinder wirkende Auftriebskraft als auch die Widerstandskraft um bis zu 65% reduziert. Für die Interaktion zwischen der Strömung um zwei hintereinander positionierte elastische Zylinder und ihrer Kinematik konnte die Synchronisierung (lock-in) ihrer Bewegung mit einer verbundenen Zerstörung der Wirbelstraße hinter dem zweiten Zylinder gezeigt werden.:Zusammenfassung 1
Conclusions 7
1. Einleitung und Zielsetzung 11
2. Messtechnische Grundlagen 17
2.1. Klassische Particle Image Velocimetry 18
2.2. Scanning Particle Image Velocimetry 20
2.3. Mirror Particle Tracking Velocimetry 21
2.4. Druckberechnung 35
3. Hydrodynamisches Modell des entrainments 37
3.1. Stand der Forschung 38
3.2. Experimenteller Aufbau 42
3.3. Ergebnisse 44
3.4. Zusammenfassung 51
4. Undulatorisch bewegte Oberflächen 53
4.1. Stand der Forschung 54
4.2. Mechanisches Modell 57
4.3. Experimenteller Aufbau 61
4.4. Ergebnisse 65
4.5. Zusammenfassung 74
5. Selbstadaptive elastische Klappen - hairy flaps 77
5.1. Stand der Forschung 78
5.2. Experimenteller Aufbau 82
5.3. Ergebnisse 86
5.4. Zusammenfassung 107
6. Umströmung stumpfer elastischer Körper 109
6.1. Stand der Forschung 110
6.2. Experimenteller Aufbau 116
6.3. Ergebnisse 120
6.4. Zusammenfassung 128
7. Ausblick 131
Abbildungsverzeichnis 135
Tabellenverzeichnis 141
Symbolverzeichnis 142
Literaturverzeichnis 146
A. Anhang 155 / The experimental investigations presented herein explain the behavioural adaptation of fish called entrainment for the first time. The results confirm a balance of lift-, drag- and a suction-force, explaining the reduction of locomotive energy. Furthermore, flow measurements around an undulating membrane affirm an oscillation between laminar and turbulent flow over one period of the motion and that this oscillation decreases the pressure- and drag-force of the towed membrane. Experiments on thin and flexible flaps attached at the lee-side of a cylinder, show that the flaps alter the natural vortex separation cycle in such a way that the vortices do not shed in a staggered side-by-side arrangement but in line in a row with the cylinder wake axis. Thus, flow fluctuations are reduced by 42% in stream-wise - and 35% in transversal direction at best, compared to a reference case without hairy-flaps. Finally, investigations on the flow around and on the kinematics of two flexible cylinders in a tandem arrangement demonstrate a synchronisation of their motion (lock-in), resulting in the destruction of the vortex-street behind the second cylinder.:Zusammenfassung 1
Conclusions 7
1. Einleitung und Zielsetzung 11
2. Messtechnische Grundlagen 17
2.1. Klassische Particle Image Velocimetry 18
2.2. Scanning Particle Image Velocimetry 20
2.3. Mirror Particle Tracking Velocimetry 21
2.4. Druckberechnung 35
3. Hydrodynamisches Modell des entrainments 37
3.1. Stand der Forschung 38
3.2. Experimenteller Aufbau 42
3.3. Ergebnisse 44
3.4. Zusammenfassung 51
4. Undulatorisch bewegte Oberflächen 53
4.1. Stand der Forschung 54
4.2. Mechanisches Modell 57
4.3. Experimenteller Aufbau 61
4.4. Ergebnisse 65
4.5. Zusammenfassung 74
5. Selbstadaptive elastische Klappen - hairy flaps 77
5.1. Stand der Forschung 78
5.2. Experimenteller Aufbau 82
5.3. Ergebnisse 86
5.4. Zusammenfassung 107
6. Umströmung stumpfer elastischer Körper 109
6.1. Stand der Forschung 110
6.2. Experimenteller Aufbau 116
6.3. Ergebnisse 120
6.4. Zusammenfassung 128
7. Ausblick 131
Abbildungsverzeichnis 135
Tabellenverzeichnis 141
Symbolverzeichnis 142
Literaturverzeichnis 146
A. Anhang 155
|
37 |
Image-based Mapping of Regional Relative Pressures Using the Pressure Poisson Equation - Evaluations on Dynamically Varying Domains in a Cardiovascular Setting / Bildbaserad skattning av regionala tryckförändringar med Pressure Poission-ekvationen - utvärdering över dynamiskt varierande domänar för kardiovaskulär tillämpning.Lechner, Vincent January 2023 (has links)
In this project, the inverse problem of determining regional pressure variations from measured blood velocity data in the contect of a cardiovascular setting has been approached. A common esimator, the pressure poisson estimator (PPE) has been implemented in a non-variational setting and evaluated for clinically relevant synthetic flow cases, over dynamically varying domains, mimicking or directly representing the intra-cardiac space: A synthetic dynamic domain benchmark problem and a patient specific model of the left ventricle. The results obtained show under ideal condition the capability of the approach to tackle complex domains successfully and to obtain regional pressure fields to a high degree of accuracy when compared to a locally provided state of the art estimator, the stokes estimator (STE). Under noise, results obtained suggest that divergence may occur with finer temporal resolution. Spatially convergence in a setting mimicking an image scenario is observed with minor exceptions though to stem from the specific composition of the flow field between discretizations. The implementation at hand avoids common problems in the non-variational approaches of this estimator stemming from domain complexity and leads to a simple application of the pure neumann boundary conditions required to compute the relative pressure field while avoiding the need to estimate boundary normals or use an embedded approach. The resulting linear system has desirable properties such as symmetry and compliance with the discrete compatibility condition by construction. / Syftet med följande projekt har varit att undersöka metoder för uppskattning av regionala tryckvariationer från uppmätta flödeshastigheter, med direkt tillämpning för förbättrad kardiovaskulär diagnostik. Mer specifikt har en tillgänglig gold-standardmetod; Pressure Poisson Estimatorn (PPE); implementerats i en icke-variationell miljö och utvärderats över en samling testfall med ökande komplexitet och med ökande relevans för det kliniska problemet med kardiovaskulär tryckmätning i det dynamiskt varierande hjärtutrymmet: ett syntetiskt referensproblem med varierande dynamisk rörelse, och en patientspecifik modell av vänster kammare. De erhållna resultaten visar att den icke-variationella implementeringen av PPE framgångsrikt kan hantera komplexa domäner och erhålla regionala tryckfält med hög noggrannhet. PPE-metoden påvisar också konkurrenskraftig noggrannhet i jamförelse med alternativa referensmetoder så som den s.k. Stokes-estimators (STE). Resultat visar också på tillfredställande beteende under realistiska signal-till-brus-förhallanden, likväl som spatiotemporell konvergens vid upplösningar som motsvarar vad som kan förväntas vid klinisk bildgivning. I summering visar våra resultat att vår implementering av PPE undviker vanliga problem i alterantiva icke-variationella implementeringar som annars kan uppkomma vid analys av komplexa flödesdomaner, och att en förenklad men likväl korrekt implementering av de rena Neumann-gränsvillkor som krävs för att beräkna det relativa tryckfältet kan uppnås utan behovet av att uppskatta icke-triviala gränsnormaler. Utöver detta påvisar det resulterande linjära systemet även önskvarda egenskaper såsom numerisk symmetri och överenstämmelse med diskreta kompatibilitetsvillkor.
|
38 |
Etude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d'un plasma de Tokamak / Mathematical and numerical study of a gyrokinetic model including electromagnetic effects for the simulation of the plasma in a Tokamak.Lutz, Mathieu 24 October 2013 (has links)
Cette thèse propose différentes méthodes théoriques et numériques pour simuler à coût réduit le comportement des plasmas ou des faisceaux de particules chargées sous l’action d’un champ magnétique fort. Outre le champ magnétique externe, chaque particule est soumise à champ électromagnétique créé par les particules elles-mêmes. Dans les modèles cinétiques, les particules sont représentées par une fonction de distribution f(x,v,t) qui vérifie l’équation de Vlasov. Afin de déterminer le champ électromagnétique, cette équation est couplée aux équations de Maxwell ou de Poisson. L’aspect champ magnétique fort est alors pris en compte par un dimensionnement adéquat qui fait apparaître un paramètre de perturbation singulière 1/ε. / This thesis is devoted to the study of charged particle beams under the action of strong magnetic fields. In addition to the external magnetic field, each particle is submitted to an electromagnetic field created by the particles themselves. In kinetic models, the particles are represented by a distribution function f(x,v,t) solution of the Vlasov equation. To determine the electromagnetic field, this equation is coupled with the Maxwell equations or with the Poisson equation. The strong magnetic field assumption is translated by a scaling wich introduces a singular perturbation parameter 1/ε.
|
39 |
Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions / Attractive models in Astrophysics and Biology : Critical Points and Large Time AsymtoticsCampos Serrano, Juan 14 December 2012 (has links)
Dans cette thèse, nous étudions l'ensemble des solutions d'équations aux dérivées partielles résultant de modèles d'astrophysique et de biologie. Nous répondons aux questions de l'existence, mais aussi nous essayons de décrire le comportement de certaines familles de solutions lorsque les paramètres varient. Tout d'abord, nous étudions deux problèmes issus de l'astrophysique, pour lesquels nous montrons l'existence d'ensembles particuliers de solutions dépendant d'un paramètre à l'aide de la méthode de réduction de Lyapunov-Schmidt. Ensuite un argument de perturbation et le théorème du Point xe de Banach réduisent le problème original à un problème de dimension finie, et qui peut être résolu, habituellement, par des techniques variationnelles. Le reste de la thèse est consacré à l'étude du modèle Keller-Segel, qui décrit le mouvement d'amibes unicellulaires. Dans sa version plus simple, le modèle de Keller-Segel est un système parabolique-elliptique qui partage avec certains modèles gravitationnels la propriété que l'interaction est calculée au moyen d'une équation de Poisson / Newton attractive. Une différence majeure réside dans le fait que le modèle est défini dans un espace bidimensionnel, qui est expérimentalement consistant, tandis que les modèles de gravitationnels sont ordinairement posés en trois dimensions. Pour ce problème, les questions de l'existence sont bien connues, mais le comportement des solutions au cours de l'évolution dans le temps est encore un domaine actif de recherche. Ici nous étendre les propriétés déjà connues dans des régimes particuliers à un intervalle plus large du paramètre de masse, et nous donnons une estimation précise de la vitesse de convergence de la solution vers un profil donné quand le temps tend vers l'infini. Ce résultat est obtenu à l'aide de divers outils tels que des techniques de symétrisation et des inégalités fonctionnelles optimales. Les derniers chapitres traitent de résultats numériques et de calculs formels liés au modèle Keller-Segel / In this thesis we study the set of solutions of partial differential equations arising from models in astrophysics and biology. We answer the questions of existence but also we try to describe the behavior of some families of solutions when parameters vary. First we study two problems concerned with astrophysics, where we show the existence of particular sets of solutions depending on a parameter using the Lyapunov-Schmidt reduction method. Afterwards a perturbation argument and Banach's Fixed Point Theorem reduce the original problem to a finite-dimensional one, which can be solved, usually, by variational techniques. The rest of the thesis is de-voted to the study of the Keller-Segel model, which describes the motion of unicellular amoebae. In its simpler version, the Keller-Segel model is a parabolic-elliptic system which shares with some gravitational models the property that interaction is computed through an attractive Poisson / Newton equation. A major difference is the fact that it is set in a two-dimensional setting, which experimentally makes sense, while gravitational models are ordinarily three-dimensional. For this problem the existence issues are well known, but the behaviour of the solutions during the time evolution is still an active area of research. Here we extend properties already known in particular regimes to a broader range of the mass parameter, and we give a precise estimate of the convergence rate of the solution to a known profile as time goes to infinity. This result is achieved using various tools such as symmetrization techniques and optimal functional inequalities. The last chapters deal with numerical results and formal computations related to the Keller-Segel model
|
40 |
Field reconstructions and range tests for acoustics and electromagnetics in homogeneous and layered media / Feld-Rekonstruktionen und Range Tests für Akustik und Elektromagnetik in homogenen und geschichteten MedienSchulz, Jochen 04 December 2007 (has links)
No description available.
|
Page generated in 0.0997 seconds