• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 113
  • 44
  • 44
  • 36
  • 27
  • 19
  • 18
  • 10
  • 10
  • 7
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 705
  • 112
  • 94
  • 79
  • 71
  • 67
  • 63
  • 62
  • 56
  • 51
  • 38
  • 36
  • 34
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

REPRESENTATION OF DIFFERENTIAL MOLECULAR DIFFUSION BY USING LAMINAR FLAMELET AND MODELING OF POOL FIRE BY USING TRANSPORTED PDF METHOD

Tianfang Xie (13171122) 28 July 2022 (has links)
<p><br></p> <p>A  combustion simulation involves various physiochemical processes, such as molecular and turbulent diffusion, smoke and soot formation, thermal radiation, chemical reaction mechanisms, and kinetics. In the last decade, computational fluid dynamics (CFD) has been increasingly used in combustion modeling. It is critically important to improve and enhance the predictive capabilities of combustion models. This work presents an analysis of two types of diffusion flames: the momentum-dominant jet flames and buoyancy-controlled pool fires. The gap between the existing knowledge of differential molecular diffusion in turbulent high momentum jet flow and the practical applications has been reduced. The importance of mixing modeling in pool fire simulations has been revealed, and enhancement for predicting fire extinction limits has been proposed.</p> <p><br></p> <p>Modeling differential molecular diffusion in turbulent non-premixed combustion remains a great challenge for flamelet models. The laminar flamelet is a key component of a flamelet model for turbulent combustion. One significant challenge that has not been well addressed is the representativity of laminar flamelet for the characteristics of differential molecular diffusion in turbulent combustion problems. Laminar flamelet is generated typically based on two conceptual burner configurations, the opposed jet burner, and the Tsuji burner. They are commonly considered equivalent when dealing with the description of laminar flamelet structures. A difference between them is revealed in this work for the first time when they are used to represent differential molecular diffusion. The traditionally opposed jet burner yields an almost fixed equal diffusion location in the mixture fraction space for the transport of different elements. The Tsuji burner can produce a continuous variation of the equal diffusion location in the mixture fraction space with a slight extension. This variation of the equal diffusion location is shown to be an essential characteristic of turbulent non-premixed combustion, as demonstrated in a laminar jet mixing layer problem, a turbulent jet mixing layer problem, and a turbulent jet non-premixed flame. The Tsuji burner is thus potentially a more suitable choice than the opposed jet burner for laminar flamelet generation that can be consequently used in flamelet modeling of differential molecular diffusion for turbulent non-premixed combustion.</p> <p><br></p> <p>Capturing fire extinction limits in simulations is essential for developing predictive capabilities for fire. In this work, the combined large-eddy simulation (LES) and transported probability density function (PDF) methods are assessed for the predictions of fire extinction. The University of Maryland line burner is adopted as a validation test case. The NIST Fire Dynamics Simulator (FDS) code for LES is combined with an in-house PDF code called HPDF for the fire simulations. The simulation results were verified by using the available experimental data. The combustion efficiency under the different oxygen depletion levels in the oxidizer is analyzed. Fire extinction occurs when the oxygen depletion level reduces to a certain level. The model’s capability to capture this extinction limit is assessed by using the experimental data. Different mixing models and model parameters are examined. It is found that the fire extinction limit is very sensitive to the different mixing models and mixing parameters. The level of sensitivity is higher than in momentum-driven turbulent flames, which suggests the importance of mixing modeling in fire simulations. The existing mixing models need further enhancement for predicting fire extinction. </p> <p><br></p>
322

Minimering av kursavvikelse för bottensugen Weda B600 / Minimizing the Course Deviation of the Bottom Suction Robot Weda B600

Sjöberg, Robin, Sibo, Danny January 2021 (has links)
Detta examensarbete har genomförts hos Weda AB gällande deras bottensug B600. Syftet med projektet har varit att åstadkomma en ökning av robotens automationsgrad för att eliminera behovet av övervakning och samtidigt minska robotens operationstid per rengöringscykel. För att öka automationsgraden har en kursavvikelse, som uppkommer i samband med robotens övergång från poolens djupa del till dess grunda del, undersökts. Fokus har legat på att minska denna avvikelse genom att ta fram ett mekaniskt tillbehör som enkelt kan monteras på roboten. Två stycken iterationer av prototypen har tillverkats och testats. Den andra iterationen kunde inte validera lösningen på grund av oförutsedda problem. En tredje iteration har som resultat av detta teoretiskt föreslagits med syfte att lösa dessa problem för att kunna validera konceptets verkan. Fortsatt testning av den tredje iterationen kommer därmed att vara avgörande för ifall konceptet som helhet fungerar som tänkt. / This thesis has been carried out at Weda AB regarding their bottom suction robot B600. The purpose of the project has been to achieve an increase in the robot's degree of automation to eliminate the need for monitoring and at the same time reduce the robot's operating time per cleaning cycle. To increase the degree of automation, a deviation of the course that occurs in connection with the robot's transition from the deep part of the pool to its shallow part has been investigated. The focus has been on reducing this deviation by developing a mechanical accessory that can be easily mounted on the robot. Two iterations of the prototype have been manufactured and tested. The second iteration could not validate the solution due to unforeseen problems. As a result, a third iteration has been theoretically proposed with the aim of solving these problems. Continued testing of the third iteration will thus be decisive for whether the concept as a whole will work as intended.
323

Critical Heat Flux for a Downwards Facing Disk in a Subcooled Pool Boiling Environment

Gocmanac, Marko 04 1900 (has links)
<p>An experimental investigation of the physical feasibility of thermal creep failure of the Calandria Vessel under a severe accident load is presented in this thesis. Thermal creep failure is postulated to occur if film boiling is instigated in the Shield Tank Water surrounding the Calandria Vessel. The objective of this experimental study is to measure the Critical Heat Flux (CHF) for a representative geometry in environmental conditions similar to those existing in the CANDU Calandria Vessel and Shield Tank Water.<br />Two geometries of downwards facing surfaces are studied. The first is termed the ‘confined’ study in which bubble motion is demarcated to the heated surface. The second is termed the ‘unconfined’ study where individual bubbles are free to move along the heated surface and vent in any direction.<br />The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The level of confinement is adjusted by varying the inclination angle. Data has been obtained for Bond Numbers (Bo) 0, 1.5, 3, 3.6 and 11.8 with corresponding qCHF 596, 495, 295, 223, and 187 kW/m2, respectively. A correlation relating the CHF to level of confinement is stated. The CHF results are in good agreement with Theofanous et. al. (1994), as is the observation that a transition angle is observed in the correlation. The transition angle in this study is found to be ~5.5°. The obtained nucleate boiling curves are compared to Su et. al. (2008) data for similar Bo and excellent agreement is achieved in the medium to high heat flux regions.<br />The unconfined study consists of a downward facing plate in a pool of subcooled water. The obtained nucleate boiling curve is compared with the Stephan-Andelsalam correlation and agreement is not observed. There were visibly different trends in the convective heat transfer coefficient with a mean difference of 31%. The experimental data is compared to data obtained by Nishikawa et. al. (1984) and is found to be in acceptable agreement. The power requirement to instigate film boiling was not met, meaning that the CHF is greater than 1 MW/m2. Visual observations are made and an argument is based on the premise that the phenomenon of dryout for a downwards facing surface is similar to that of an upwards facing surface. The theory and current acceptance of CHF for an upwards facing surface is discussed—in particular Zuber’s “Hydrodynamic Limit” of 1.1 MW/m2, Dhir (1992) and recent experimental evidence from Theofanous et. al. (2002). These three studies were found to be in agreement with results presented here.<br />The experimental evidence presented herein supports the statement that thermal creep failure of the Calandria Vessel is physically unreasonable under analyzed severe accident loads.</p> / Master of Applied Science (MASc)
324

A New Pool Boiling Facility for the Study of Nanofluids

Strack, James M. 04 1900 (has links)
<p>Nanofluids are engineered colloidal dispersions of nanoparticles in a liquid. The field of nanofluids has seen much interest due to reported heat transfer enhancements over the corresponding pure fluids at low particle concentrations. Particularly, a large increase in critical heat flux (CHF) has been widely reported along with modification of the boiling interface. Inconsistencies in reported impact on nucleate boiling heat transfer and the degree of CHF enhancement illustrate the need for further study.</p> <p>A pool boiling experiment has been designed and constructed at McMaster University to allow for the study the boiling of water-based nanofluids. The facility has been commissioned with saturated distilled water tests at atmospheric pressure, heat flux levels up to 1200 kW·m<sup>-2</sup>, and at wall superheat levels up to 19.5<sup>o</sup>C. Wall superheat and heat flux uncertainties were estimated to be ±0.6<sup>o</sup>C and ±20 kW∙m<sup>-2</sup>, respectively. For the installed test section, heat flux is limited to 2.62 ± 0.06 MW·m<sup>-2</sup>. A high speed video system for the analysis of bubble dynamics was tested and used for qualitative comparisons between experimental runs. This system was tested at 2500 FPS and an imaging resolution of 39 pixels per mm, but is capable of up to 10 000 FPS at the same spatial resolution. Heat flux versus wall superheat data was compared to the Rohsenow correlation and found to qualitatively agree using surface factor <em>C<sub>sf</sub></em> = 0.011. Results were found to have a high degree of repeatability at heat flux levels higher than 600 kW·m<sup>-2</sup>.</p> <p>The new facility will be used to conduct studies into the pool boiling of saturated water-based nanofluids at atmospheric pressure. Additional work will involve the control and characterization of heater surface conditions before and after boiling. Quantitative analysis of bubble dynamics will be possible using high speed video and particle image velocimetry.</p> / Master of Applied Science (MASc)
325

Pool boiling heat transfer enhancement with sink electrical discharge machined surfaces

Dhadda, Gurpyar January 2019 (has links)
Heat transfer technologies based on boiling refer to applications like heat pumps, waste heat recovery systems, power plants and electronic components cooling. The widespread use of boiling as the heat transfer mode is due to high heat transfer coefficients associated with the phase change from liquid to vapor. Boiling heat transfer coefficients can be further enhanced by modifying the texture or chemical composition of the interface at which boiling occurs. The objective of this research is to fabricate textured surfaces with electrical discharge machining (EDM) and investigate the enhancement in pool boiling heat transfer, concerning machining and surface characterization parameters. It is complemented by a qualitative analysis of bubble dynamics with high-speed imaging, to provide insights into the differences in boiling performance associated with the changes in surface topography. Sink electrical discharge machined surfaces demonstrated ten times higher heat transfer coefficient compared to a polished surface during these studies. / Thesis / Master of Applied Science (MASc)
326

Temperature Measurements During Robotized Additive Manufacturing of Metals

Pranav Kumar, Nallam Reddy January 2022 (has links)
Additive Manufacturing has brought about substantial benefits to the manufacturing industry due to the numerous advantages it provides, at the same time there are factors that can be improved upon. Temperature control is an important parameter during the build process as it affects build quality. The main objective of this thesis project was to investigate what sensors could be used for monitoring the temperature during the additive manufacturing processand to compare and evaluate their performance. This involved implementing two 2-color pyrometers and a short-wave infrared camera to monitor the temperature of the area behind the melt pool and then visualizing the respective data. Initial issues arose during test runs in the form of noise in the pyrometer data, this was solved by implementing a smoothing filter to the signal. Multiple runs were conducted to capture the required data as images produced by the camera were overexposed and out of focus during initial runs. This was solved by changing the camera position and exposure settings. Reading the temperature values from the images involved interpreting the Average Dark Units (ADU) values of the region of interest and then comparing those values to a reference chart. The data gathered with the help of LabVIEW software and the proprietary imaging software of the camera showed that the selected sensors were in fact suitable for the intended task and could be used in conjunction with each other. This data could then be used to create a closed-loop system in the future (not in the scope of this thesis work) and thus enable the increase in the level of automation for Robotized Laser Wire Additive Manufacturing.
327

Fuzzy Bayesian estimation and consequence modeling of the domino effects of methanol storage tanks

Pouyakian, M., Laal, F., Jafari, M.J., Nourai, F., Kabir, Sohag 07 April 2022 (has links)
Yes / In this study, a Fuzzy Bayesian network (FBN) approach was proposed to analyze the domino effects of pool fire in storage tanks. Failure probabilities were calculated using triangular fuzzy numbers, the combined Center of area (CoA)/Sum-Product method, and the BN approach. Consequence modeling, probit equations, and Leaky-Noisy OR (L-NOR) gates were used to analyze the domino effects, and modify conditional probability tables (CPTs). Methanol storage tanks were selected to confirm the practical feasibility of the suggested method. Then the domino probability using bow-tie analysis (BTA), and FBN in the first and second levels was compared, and the Ratio of Variation (RoV) was used for sensitivity analysis. The probability of the domino effect in the first and second levels (FBN) was 0.0071472631 and 0.0090630640, respectively. The results confirm that this method is a suitable tool for analyzing the domino effects and using FBN and L-NOR gate is a good way for assessing the reliability of tanks. / National Petrochemical Company (NPC) of Iran
328

Guld eller gröna skogar? : En explorativ studie om samiskt inflytande i skogsbruket

Wahlström, Nicky January 2024 (has links)
No description available.
329

Structure-based Optimizations for Sparse Matrix-Vector Multiply

Belgin, Mehmet 16 January 2011 (has links)
This dissertation introduces two novel techniques, OSF and PBR, to improve the performance of Sparse Matrix-vector Multiply (SMVM) kernels, which dominate the runtime of iterative solvers for systems of linear equations. SMVM computations that use sparse formats typically achieve only a small fraction of peak CPU speeds because they are memory bound due to their low flops:byte ratio, they access memory irregularly, and exhibit poor ILP due to inefficient pipelining. We particularly focus on improving the flops:byte ratio, which is the main limiter on performance, by exploiting recurring structures or sub-structures in matrices. Our techniques also support micro-architecture level optimizations to further improve performance. Operation Stacking Framework (OSF) stacks problems in large ensemble computations, which run the same sparse kernel using an identical matrix structure, such that they share a single copy of the indexing information to significantly reduce memory bandwidth usage. OSF provides performance improvements of up to 1.94x on an AMD Opteron compared to the CSR method. We validate performance results using hardware event counters, which demonstrate significantly improved cache and pipeline utilization. Pattern-based Representation (PBR) exploits recurring block nonzero patterns by generating custom code for each recurring block pattern. In this way, no indexing data for individual nonzero elements are read from memory, reducing the overall size of the indices by up to 98%. Our code generator emits highly tuned codes that utilize SSE vectorization and software prefetching. PBR accurately identifies a block size that achieves optimal or near-optimal performance using a linear multiple regression performance model. On recent multicore machines, PBR provides performance improvements of up to 3.4x sequentially and 5x in parallel, compared to the CSR method. The PBR library we provide converts matrices at runtime, allowing our method to be used as a drop-in replacement for existing methods. We compare PBR's overhead relative to its benefits and show that PBR is beneficial for many applications that repetitively call the SMVM kernel for the same matrix structure. / Ph. D.
330

Efficient Prevalence Estimation for Emerging and Seasonal Diseases Under Limited Resources

Nguyen, Ngoc Thu 30 May 2019 (has links)
Estimating the prevalence rate of a disease is crucial for controlling its spread, and for planning of healthcare services. Due to limited testing budgets and resources, prevalence estimation typically entails pooled, or group, testing where specimens (e.g., blood, urine, tissue swabs) from a number of subjects are combined into a testing pool, which is then tested via a single test. Testing outcomes from multiple pools are analyzed so as to assess the prevalence of the disease. The accuracy of prevalence estimation relies on the testing pool design, i.e., the number of pools to test and the pool sizes (the number of specimens to combine in a pool). Determining an optimal pool design for prevalence estimation can be challenging, as it requires prior information on the current status of the disease, which can be highly unreliable, or simply unavailable, especially for emerging and/or seasonal diseases. We develop and study frameworks for prevalence estimation, under highly unreliable prior information on the disease and limited testing budgets. Embedded into each estimation framework is an optimization model that determines the optimal testing pool design, considering the trade-off between testing cost and estimation accuracy. We establish important structural properties of optimal testing pool designs in various settings, and develop efficient and exact algorithms. Our numerous case studies, ranging from prevalence estimation of the human immunodeficiency virus (HIV) in various parts of Africa, to prevalence estimation of diseases in plants and insects, including the Tomato Spotted Wilt virus in thrips and West Nile virus in mosquitoes, indicate that the proposed estimation methods substantially outperform current approaches developed in the literature, and produce robust testing pool designs that can hedge against the uncertainty in model inputs.Our research findings indicate that the proposed prevalence estimation frameworks are capable of producing accurate prevalence estimates, and are highly desirable, especially for emerging and/or seasonal diseases under limited testing budgets. / Doctor of Philosophy / Accurately estimating the proportion of a population that has a disease, i.e., the disease prevalence rate, is crucial for controlling its spread, and for planning of healthcare services, such as disease prevention, screening, and treatment. Due to limited testing budgets and resources, prevalence estimation typically entails pooled, or group, testing where biological specimens (e.g., blood, urine, tissue swabs) from a number of subjects are combined into a testing pool, which is then tested via a single test. Testing results from the testing pools are analyzed so as to assess the prevalence of the disease. The accuracy of prevalence estimation relies on the testing pool design, i.e., the number of pools to test and the pool sizes (the number of specimens to combine in a pool). Determining an optimal pool design for prevalence estimation, e.g., the pool design that minimizes the estimation error, can be challenging, as it requires information on the current status of the disease prior to testing, which can be highly unreliable, or simply unavailable, especially for emerging and/or seasonal diseases. Examples of such diseases include, but are not limited to, Zika virus, West Nile virus, and Lyme disease. We develop and study frameworks for prevalence estimation, under highly unreliable prior information on the disease and limited testing budgets. Embedded into each estimation framework is an optimization model that determines the optimal testing pool design, considering the trade-off between testing cost and estimation accuracy. We establish important structural properties of optimal testing pool designs in various settings, and develop efficient and exact optimization algorithms. Our numerous case studies, ranging from prevalence estimation of the human immunodeficiency virus (HIV) in various parts of Africa, to prevalence estimation of diseases in plants and insects, including the Tomato Spotted Wilt virus in thrips and West Nile virus in mosquitoes, indicate that the proposed estimation methods substantially outperform current approaches developed in the literature, and produce robust testing pool designs that can hedge against the uncertainty in model input parameters. Our research findings indicate that the proposed prevalence estimation frameworks are capable of producing accurate prevalence estimates, and are highly desirable, especially for emerging and/or seasonal diseases under limited testing budgets.

Page generated in 0.029 seconds