Spelling suggestions: "subject:"ptychographic"" "subject:"ptychography""
1 |
Contrôle et métrologie de la génération d'harmoniques sur miroir plasma / Control and metrology of high harmonic generation on plasma mirrorMonchocé, Sylvain 21 November 2014 (has links)
Lorsqu'on focalise une impulsion laser femtoseconde ultraintense à très haut contraste sur une cible solide, le champ laser au foyer est suffisamment important pour ioniser la surface durant le front montant de l'impulsion et former un plasma. Au sein de ce plasma s'établit un gradient de densité résultant de l'expansion hydrodynamique du plasma. Ce plasma très dense, réfléchit le faisceau laser incident dans la direction spéculaire: on parle alors de miroir plasma. Comme l'interaction entre le laser et le miroir plasma est fortement non-linéaire, cela conduit à la génération d'harmoniques d'ordre élevé dans le faisceau réfléchi. Dans le domaine temporel, ce spectre d'harmonique est associé à un train d'impulsions attosecondes. Les objectifs de ma thèse étaient de contrôler expérimentalement cette génération d'harmoniques et d'en mesurer toutes les propriétés. Nous nous sommes intéressés dans un premier temps, à l'optimisation du signal harmonique, puis à la caractérisation spatiale en champ lointain du faisceau harmonique (divergence des harmoniques).Si la caractérisation et le contrôle de ces propriétés sont des points importants pour le développement de la source, ces résultats permettent également une meilleure compréhension de l'interaction laser-plasma à ultra-haute intensité. Ils nous ont notamment permis d'obtenir des informations cruciales sur les dynamiques électronique et ionique du plasma, démontrant ainsi qu'il est possible d'utiliser les harmoniques comme un diagnostic de l'interaction laser-plasma.Nous introduisons également une méthode complètement optique permettant de structurer un plasma in-situ. En tirant partie des propriétés de l'expansion d'un plasma, nous avons pu créer in-situ des réseaux plasmas transitoires, que nous avons ensuite exploités pour réaliser les premières mesures ptychographiques à des intensités de 10^19W/cm^2, permettant de mesurer entièrement, pour la première fois, les propriétés spatiales des harmoniques (taille de source et phase) dans le plan de leur génération. / When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of attosecond pulses.The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/attosecond light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction.We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultraintense laser pulse to establish their usability atrelativistically high intensities. We then show how these gratings can be used as a `spatial ruler' to determine the source size of the high-order harmonic beams roduced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh intensity plasmonics.
|
2 |
High-Resolution 3D PtychographyStephan, Sandra 04 July 2013 (has links) (PDF)
Coherent imaging is a promising method in the field of x-ray microscopy allowing for the nondestructive determination of the interior structure of radiation-hard samples with a spatial resolution that is only limited by the fluence on the sample and the scattering strength of the sample. Ultimately, the achievable spatial resolution is limited by the wavelength of the incoming x-ray radiation.
Combining coherent imaging with scanning microscopy to a method called ptychography enables one to also probe extended objects. In this method, a sample is scanned through a defined coherent x-ray beam and at each scan point a diffraction pattern is recorded with a diffraction camera located in the far field of the sample. Neighboring illuminated areas must have a certain overlap to guarantee the collection of sufficient information about the object for a subsequent successful and unique computational reconstruction of the object.
Modern ptychographic reconstruction algorithms are even able to reconstruct the complex-valued transmission function of the sample and the complex illumination wave field at the same time. Once the 2D transmission function of a sample is known, it is an obvious step forward to combine ptychography with tomographic techniques yielding the 3D internal structure of an object with unprecedented spatial resolution. Here, projections at varying angular positions of the sample are generated via ptychographic scans and are subsequently used for the tomographic reconstruction.
In this thesis the development of 3D ptychography is described. It includes the description of the required experimental environment, the numerical implementation of ptychographic phase retrieval and tomographic reconstruction routines, and a detailed analysis of the performance of 3D ptychography using an example of an experiment carried out at beamline P06 of PETRA III at DESY in Hamburg. In that experiment the investigated object was a Mo/UO2 thin film, which is a simplified model for spent nuclear fuel from nuclear power plant reactors. Such models find application in systematic scientific investigations related to the safe disposal of nuclear waste. We determined the three-dimensional interior structure of this sample with an unprecedented spatial resolution of at least 18 nm.
The measurement of the fluorescence signal at each scan point of the ptychograms delivers the two- and three-dimensional elemental distribution of the sample with a spatial resolution of 80 nm. Using the fluorescence data, we assigned the chemical element to the area of the corresponding phase shift in the ptychographic reconstruction of the object phase and to the corresponding refractive index decrement in the tomographic reconstruction.
The successful demonstration of the feasibility of the 3D ptychography motivates further applications, for instance, in the field of medicine, of material science, and of basic physical research. / Kohärente Bildgebung ist eine vielversprechende Methode der Röntgenmikroskopie. Sie ermöglicht die zerstörungsfreie Bestimmung der inneren Struktur von strahlenharten Untersuchungsobjekten mit einer räumlichen Auflösung, die im Prinzip nur von der integralen Anzahl der Photonen auf der Probe sowie deren Streukraft abhängt. Letztendlich stellt die Wellenlänge der verwendeten Röntgenstrahlung eine Grenze für die erreichbare räumliche Auflösung dar.
Die Kombination der kohärenten Bildgebung mit der Rastermikroskopie zur sogenannten Ptychographie eröffnet die Möglichkeit, auch ausgedehnte Objekte mit hoher Auflösung zu untersuchen. Dabei wird die Probe mit einem räumlich begrenzten, kohärenten Röntgenstrahl abgerastert und an jedem Rasterpunkt ein Beugungsbild von einer im Fernfeld platzierten Beugungskamera registriert. Die Beleuchtungen benachbarter Rasterpunkte müssen dabei zu einem bestimmten Prozentsatz überlappen, um genügend Informationen für eine anschließende computergestützte und eindeutige Rekonstruktion des Objektes sicherzustellen.
Moderne Rekonstruktionsalgorithmen ermöglichen sogar die gleichzeitige Rekonstruktion der Transmissionsfunktion des Objektes und der Beleuchtungsfunktion des eintreffenden Röntgenstrahls. Die Verknüpfung der Ptychographie mit der Tomographie zur 3D-Ptychographie ist der nahe liegende Schritt, um nun auch die dreidimensionale innere Struktur von Objekten mit hoher räumlicher Auflösung zu bestimmen. Die Projektionen an den verschiedenen Winkelpositionen der Probe werden dabei mittels ptychographischer Abrasterung der Probe erzeugt und anschließend der tomographischen Rekonstruktion zugrunde gelegt.
In dieser Arbeit wird die Entwicklung der 3D-Ptychographie beschrieben. Das beinhaltet die Beschreibung der experimentellen Umgebung, der numerischen Implementierung des ptychographischen und des tomographischen Rekonstruktionsalgorithmus als auch eine detaillierte Darstellung der Durchführung der 3D-Ptychographie am Beispiel eines Experiments, welches unter Verwendung des modernen Nanoprobe-Aufbaus des Strahlrohres P06 am PETRA III Synchrotronring des DESY in Hamburg durchgeführt wurde.
Als Untersuchungsobjekt diente dabei ein dünner Mo/UO2-Film, der ein vereinfachtes Modell für die in Reaktoren von Atomkraftwerken verbrauchten Brennstäbe darstellt und deshalb im Bereich des Umweltschutzes Anwendung findet.
Die dreidimensionale Struktur der Probe wurde mit einer - für diese Methode bisher einmaligen - räumlichen Auflösung von 18 nm bestimmt. Die Messung des von der Probe kommenden Fluoreszenz-Signals an jedem Rasterpunkt der Ptychogramme ermöglichte zusätzlich die Bestimmung der zwei- und dreidimensionalen Elementverteilung innerhalb der Probe mit einer räumlichen Auflösung von 80 nm. Anhand der Fluoreszenzdaten konnte sowohl den Bereichen verschiedener Phasenschübe in den ptychographischen Rekonstruktionen der Objektphase als auch den verschiedenen Werten des Dekrementes des Brechungsindex in der tomographischen Rekonstruktion, das entsprechende chemische Element zugeordnet werden.
Die erfolgreiche Demonstration der Durchführbarkeit der 3D-Ptychographie motiviert weitere zukünftige Anwendungen, z. B. auf dem Gebiet der Medizin, der Materialforschung und der physikalischen Grundlagenforschung.
|
3 |
Three dimensional X-ray Bragg ptychography of an extended semiconductor heterostructure / Microscopie quantitative tri-dimensionnelle de nanostructures cristallinesPateras, Anastasios 07 December 2015 (has links)
La ptychographie est une technique d’imagerie par diffraction cohérente qui vise à récupérer la phase perdue, uniquement par des mesures d’intensité en champ lointain. Cette technique permet l’imagerie des champs de déformation dans des cristaux périodiques avec des résolutions sous-faisceau. Dans ce travail, la ptychographie de Bragg en 3D est utilisée pour étudier les propriétés d’une couche cristalline nanostructurée de InP/InGaAs collée sur un substrat de silicium. L’expérience a été réalisée sur la ligne ID13 de l’ESRF, avec un faisceau monochromatique concentré à 100nm. Les intensités 2D ont été acquises avec plusieurs angles d’incidence dans le voisinage du pic de Bragg InP (004), empilant un jeu de données tridimensionnelles. L’analyse numérique du problème donné a été effectuée à l’avance afin d’optimiser la stratégie d’inversion et d’étudier la possibilité d’introduire des contraintes physiques supplémentaires basées sur des approches de régularisation. L’inversion de l’ensemble des données a été effectuée en utilisant un algorithme ptychographique de reconstruction de phase. L’image 3D récupérée représente la haute qualité cristalline de l’échantillon, avec les valeurs de l’épaisseur et du désaccord de maille attendus en moyenne. Néanmoins, de petites inclinaisons locales de mailles ont été observées - de l’ordre de 0.02°- et confirmées par modélisation numérique. Les résultats démontrent la sensibilité de la technique, ainsi que ses perspectives passionnantes pour l’imagerie des matériaux organiques et inorganiques nanostructurés complexes. / Ptychography is a coherent diffraction imaging technique which aims in retrieving the lost phase from intensity-only far-field measurements. The versatility of the approach has proved an important asset for 3D mapping of different physical quantities, like the electron density of micrometer-sized specimens with resolution in the 10 - 100nm range. In this work, we explored the possibility to push further the current limits of 3D Bragg ptychography, by addressing the case of an extended InP/InGaAs nanostructured thin film, bonded on a silicon wafer. The experiment was performed at the ID13 beamline at ESRF, with a monochromatic beam focused down to 100nm. 2D intensity patterns were acquired at several incidence angles in the vicinity of the InP (004) Bragg peak, stacking up a three dimensional dataset. Numerical analysis of the given problem was performed beforehand in order to optimize the inversion strategy and study the possibility of introducing additional physical constraints through regularization approaches. Inversions of the dataset were done using a ptychographical gradient-based optimization phase retrieval algorithm. The developed strategy was applied on the experimental data which led to the retrieval of a complex-valued 3D image. The result exhibits the high crystallinity quality of the sample with the expected values of thickness and lattice mismatch, nevertheless, small local lattice tilts have been observed - in the order of 0.02°- and confirmed by numerical modeling. This result demonstrates the high sensitivity of the technique, as well as its exciting perspectives for imaging complex organic and inorganic nanostructured materials.
|
4 |
High-Resolution 3D PtychographyStephan, Sandra 15 April 2013 (has links)
Coherent imaging is a promising method in the field of x-ray microscopy allowing for the nondestructive determination of the interior structure of radiation-hard samples with a spatial resolution that is only limited by the fluence on the sample and the scattering strength of the sample. Ultimately, the achievable spatial resolution is limited by the wavelength of the incoming x-ray radiation.
Combining coherent imaging with scanning microscopy to a method called ptychography enables one to also probe extended objects. In this method, a sample is scanned through a defined coherent x-ray beam and at each scan point a diffraction pattern is recorded with a diffraction camera located in the far field of the sample. Neighboring illuminated areas must have a certain overlap to guarantee the collection of sufficient information about the object for a subsequent successful and unique computational reconstruction of the object.
Modern ptychographic reconstruction algorithms are even able to reconstruct the complex-valued transmission function of the sample and the complex illumination wave field at the same time. Once the 2D transmission function of a sample is known, it is an obvious step forward to combine ptychography with tomographic techniques yielding the 3D internal structure of an object with unprecedented spatial resolution. Here, projections at varying angular positions of the sample are generated via ptychographic scans and are subsequently used for the tomographic reconstruction.
In this thesis the development of 3D ptychography is described. It includes the description of the required experimental environment, the numerical implementation of ptychographic phase retrieval and tomographic reconstruction routines, and a detailed analysis of the performance of 3D ptychography using an example of an experiment carried out at beamline P06 of PETRA III at DESY in Hamburg. In that experiment the investigated object was a Mo/UO2 thin film, which is a simplified model for spent nuclear fuel from nuclear power plant reactors. Such models find application in systematic scientific investigations related to the safe disposal of nuclear waste. We determined the three-dimensional interior structure of this sample with an unprecedented spatial resolution of at least 18 nm.
The measurement of the fluorescence signal at each scan point of the ptychograms delivers the two- and three-dimensional elemental distribution of the sample with a spatial resolution of 80 nm. Using the fluorescence data, we assigned the chemical element to the area of the corresponding phase shift in the ptychographic reconstruction of the object phase and to the corresponding refractive index decrement in the tomographic reconstruction.
The successful demonstration of the feasibility of the 3D ptychography motivates further applications, for instance, in the field of medicine, of material science, and of basic physical research. / Kohärente Bildgebung ist eine vielversprechende Methode der Röntgenmikroskopie. Sie ermöglicht die zerstörungsfreie Bestimmung der inneren Struktur von strahlenharten Untersuchungsobjekten mit einer räumlichen Auflösung, die im Prinzip nur von der integralen Anzahl der Photonen auf der Probe sowie deren Streukraft abhängt. Letztendlich stellt die Wellenlänge der verwendeten Röntgenstrahlung eine Grenze für die erreichbare räumliche Auflösung dar.
Die Kombination der kohärenten Bildgebung mit der Rastermikroskopie zur sogenannten Ptychographie eröffnet die Möglichkeit, auch ausgedehnte Objekte mit hoher Auflösung zu untersuchen. Dabei wird die Probe mit einem räumlich begrenzten, kohärenten Röntgenstrahl abgerastert und an jedem Rasterpunkt ein Beugungsbild von einer im Fernfeld platzierten Beugungskamera registriert. Die Beleuchtungen benachbarter Rasterpunkte müssen dabei zu einem bestimmten Prozentsatz überlappen, um genügend Informationen für eine anschließende computergestützte und eindeutige Rekonstruktion des Objektes sicherzustellen.
Moderne Rekonstruktionsalgorithmen ermöglichen sogar die gleichzeitige Rekonstruktion der Transmissionsfunktion des Objektes und der Beleuchtungsfunktion des eintreffenden Röntgenstrahls. Die Verknüpfung der Ptychographie mit der Tomographie zur 3D-Ptychographie ist der nahe liegende Schritt, um nun auch die dreidimensionale innere Struktur von Objekten mit hoher räumlicher Auflösung zu bestimmen. Die Projektionen an den verschiedenen Winkelpositionen der Probe werden dabei mittels ptychographischer Abrasterung der Probe erzeugt und anschließend der tomographischen Rekonstruktion zugrunde gelegt.
In dieser Arbeit wird die Entwicklung der 3D-Ptychographie beschrieben. Das beinhaltet die Beschreibung der experimentellen Umgebung, der numerischen Implementierung des ptychographischen und des tomographischen Rekonstruktionsalgorithmus als auch eine detaillierte Darstellung der Durchführung der 3D-Ptychographie am Beispiel eines Experiments, welches unter Verwendung des modernen Nanoprobe-Aufbaus des Strahlrohres P06 am PETRA III Synchrotronring des DESY in Hamburg durchgeführt wurde.
Als Untersuchungsobjekt diente dabei ein dünner Mo/UO2-Film, der ein vereinfachtes Modell für die in Reaktoren von Atomkraftwerken verbrauchten Brennstäbe darstellt und deshalb im Bereich des Umweltschutzes Anwendung findet.
Die dreidimensionale Struktur der Probe wurde mit einer - für diese Methode bisher einmaligen - räumlichen Auflösung von 18 nm bestimmt. Die Messung des von der Probe kommenden Fluoreszenz-Signals an jedem Rasterpunkt der Ptychogramme ermöglichte zusätzlich die Bestimmung der zwei- und dreidimensionalen Elementverteilung innerhalb der Probe mit einer räumlichen Auflösung von 80 nm. Anhand der Fluoreszenzdaten konnte sowohl den Bereichen verschiedener Phasenschübe in den ptychographischen Rekonstruktionen der Objektphase als auch den verschiedenen Werten des Dekrementes des Brechungsindex in der tomographischen Rekonstruktion, das entsprechende chemische Element zugeordnet werden.
Die erfolgreiche Demonstration der Durchführbarkeit der 3D-Ptychographie motiviert weitere zukünftige Anwendungen, z. B. auf dem Gebiet der Medizin, der Materialforschung und der physikalischen Grundlagenforschung.
|
5 |
In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated TemperatureBaier, Sina, Damsgaard, Christian D., Scholz, Maria, Benzi, Federico, Rochet, Amélie, Hoppe, Robert, Scherer, Torsten, Shi, Junjie, Wittstock, Arne, Weinhausen, Britta, Wagner, Jakob B., Schroer, Christian G., Grunwaldt, Jan-Dierk 03 June 2020 (has links)
A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample.
|
6 |
Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses / Rastersondenmikroskopie mit harter RöntgenstrahlungPatommel, Jens 08 March 2011 (has links) (PDF)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range.
During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy.
This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III. / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern.
Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen.
Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.
|
7 |
Untersuchung photorefraktiver Materialien mittels optischer Ptychographie / Investigation of photorefractive materials using optical ptychographyBernert, Constantin 05 January 2017 (has links) (PDF)
In der vorliegenden Arbeit wird die neuartige Mikroskopiemethode der Ptychographie für die Untersuchung photorefraktiver Materialien genutzt. Photorefraktive Materialien zeichnen sich durch die Generation lichtinduzierter Brechungsindexänderungen aus. Die Ptychographie bietet die Möglichkeit, neben der generierten Brechungsindexänderung im photorefraktiven Material auch die für die Generation genutzte Intensitätsverteilung des Laserstrahls zu bestimmen. Es wird sowohl die Abhängigkeit der Brechungsindexänderung von der Zeit der Generation als auch die Abhängigkeit von der Polarisation des Lasers gemessen. Durch den Vergleich der gewonnenen Werte mit einer numerischen Simulation des photorefraktiven Effekts werden mikroskopische Parameter der lichtinduzierten Ladungswanderung ermittelt. Zudem wird aus der polarisationsabhängigen ptychographischen Messung das Raumladungsfeld und die korrespondierende Ladungsdichte im Material berechnet. Die Ptychographie liefert damit einen neuen Zugang zum quantitativen Verständnis der Photorefraktivität. / In the present thesis the novel microscopy technique of ptychography is applied to the investigation of photorefractive materials. Photorefractive materials exhibit a change of the refractive index due to the exposure to light. The method of ptychography determines the refractive index change of the material together with the intensity distribution of the laser beam that was used for its generation. In one part of the experiment the time dependence of the refractive index change versus the generation time is investigated, in the other part of the experiment the dependence of the refractive index change to the polarisation of the laser beam is examined. Microscopic parameters of the photorefractive charge migration are determined with the utilisation of a numerical simulation of the photorefractive effect and its comparison with the measurement. Finally, the whole space charge field with the corresponding space charge density is calculated from a set of ptychographic measurements of one refractive index change with different polarisation directions of the laser. The presented experiments and their evaluation show, that the method of ptychography opens a new possibility for a quantitative understanding of the photorefractive effect.
|
8 |
Untersuchung photorefraktiver Materialien mittels optischer PtychographieBernert, Constantin 04 October 2016 (has links)
In der vorliegenden Arbeit wird die neuartige Mikroskopiemethode der Ptychographie für die Untersuchung photorefraktiver Materialien genutzt. Photorefraktive Materialien zeichnen sich durch die Generation lichtinduzierter Brechungsindexänderungen aus. Die Ptychographie bietet die Möglichkeit, neben der generierten Brechungsindexänderung im photorefraktiven Material auch die für die Generation genutzte Intensitätsverteilung des Laserstrahls zu bestimmen. Es wird sowohl die Abhängigkeit der Brechungsindexänderung von der Zeit der Generation als auch die Abhängigkeit von der Polarisation des Lasers gemessen. Durch den Vergleich der gewonnenen Werte mit einer numerischen Simulation des photorefraktiven Effekts werden mikroskopische Parameter der lichtinduzierten Ladungswanderung ermittelt. Zudem wird aus der polarisationsabhängigen ptychographischen Messung das Raumladungsfeld und die korrespondierende Ladungsdichte im Material berechnet. Die Ptychographie liefert damit einen neuen Zugang zum quantitativen Verständnis der Photorefraktivität.:1 Einleitung
2 Theoretische Vorbetrachtungen
2.1 Ptychographie
2.1.1 Messung
2.1.2 Modell und Rekonstruktion
2.1.3 Ortsauflösung
2.2 Photorefraktiver Efekt
2.2.1 Lithiumniobat - Musterbeispiel für die Photorefraktivität
2.2.2 Ein-Zentrum-Modell
2.2.3 Brechungsindexänderung
2.2.4 Hohe Intensitäten
2.3 Raumladungsfeld
2.3.1 Ableitung des Feldes aus den Messgrößen
2.3.2 Raumladungsverteilung
2.3.3 Oberflächendeformation
2.3.4 Dynamik der Ladungen und des Feldes
3 Messungen
3.1 Proben
3.1.1 Ptychographische Teststruktur
3.1.2 LiNbO3:Fe
3.2 Versuchsanordnung
3.2.1 Experimenteller Aufbau
3.2.2 Grenze der Ortsauflösung
3.2.3 Charakterisierung des Laserstrahls
3.2.4 Experimentelle Überprüfung der Näherungen
3.3 Dynamik der Brechungsindexänderung
3.4 Polarisationsabhängigkeit der Brechungsindexänderung
4 Auswertung
4.1 Dynamik des Raumladungsfeldes und der Ladungen
4.1.1 Simulation
4.1.2 Vergleich zwischen Messung und Simulation
4.1.3 Dynamik der Ladungsverteilung
4.1.4 Fazit
4.2 Berechnung des Raumladungsfeldes
4.2.1 Raumladungsfeld und Ladungsverteilung
4.2.2 Simulation
4.2.3 Asymmetrie der Ladungsverteilung
4.2.4 Fazit
5 Zusammenfassung
Appendizes
A Physikalische Konstanten
B Tensoren für LiNbO3
C Ungenäherte Herleitung der Brechungsindexänderung
D Implementierung eines iterativen Verfahrens zur Bestimmung der Dynamik
des Ein-Zentrum-Modells
E Quelltext der Implementierung des iterativen Verfahrens
Literaturverzeichnis / In the present thesis the novel microscopy technique of ptychography is applied to the investigation of photorefractive materials. Photorefractive materials exhibit a change of the refractive index due to the exposure to light. The method of ptychography determines the refractive index change of the material together with the intensity distribution of the laser beam that was used for its generation. In one part of the experiment the time dependence of the refractive index change versus the generation time is investigated, in the other part of the experiment the dependence of the refractive index change to the polarisation of the laser beam is examined. Microscopic parameters of the photorefractive charge migration are determined with the utilisation of a numerical simulation of the photorefractive effect and its comparison with the measurement. Finally, the whole space charge field with the corresponding space charge density is calculated from a set of ptychographic measurements of one refractive index change with different polarisation directions of the laser. The presented experiments and their evaluation show, that the method of ptychography opens a new possibility for a quantitative understanding of the photorefractive effect.:1 Einleitung
2 Theoretische Vorbetrachtungen
2.1 Ptychographie
2.1.1 Messung
2.1.2 Modell und Rekonstruktion
2.1.3 Ortsauflösung
2.2 Photorefraktiver Efekt
2.2.1 Lithiumniobat - Musterbeispiel für die Photorefraktivität
2.2.2 Ein-Zentrum-Modell
2.2.3 Brechungsindexänderung
2.2.4 Hohe Intensitäten
2.3 Raumladungsfeld
2.3.1 Ableitung des Feldes aus den Messgrößen
2.3.2 Raumladungsverteilung
2.3.3 Oberflächendeformation
2.3.4 Dynamik der Ladungen und des Feldes
3 Messungen
3.1 Proben
3.1.1 Ptychographische Teststruktur
3.1.2 LiNbO3:Fe
3.2 Versuchsanordnung
3.2.1 Experimenteller Aufbau
3.2.2 Grenze der Ortsauflösung
3.2.3 Charakterisierung des Laserstrahls
3.2.4 Experimentelle Überprüfung der Näherungen
3.3 Dynamik der Brechungsindexänderung
3.4 Polarisationsabhängigkeit der Brechungsindexänderung
4 Auswertung
4.1 Dynamik des Raumladungsfeldes und der Ladungen
4.1.1 Simulation
4.1.2 Vergleich zwischen Messung und Simulation
4.1.3 Dynamik der Ladungsverteilung
4.1.4 Fazit
4.2 Berechnung des Raumladungsfeldes
4.2.1 Raumladungsfeld und Ladungsverteilung
4.2.2 Simulation
4.2.3 Asymmetrie der Ladungsverteilung
4.2.4 Fazit
5 Zusammenfassung
Appendizes
A Physikalische Konstanten
B Tensoren für LiNbO3
C Ungenäherte Herleitung der Brechungsindexänderung
D Implementierung eines iterativen Verfahrens zur Bestimmung der Dynamik
des Ein-Zentrum-Modells
E Quelltext der Implementierung des iterativen Verfahrens
Literaturverzeichnis
|
9 |
Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive LensesPatommel, Jens 12 November 2010 (has links)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range.
During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy.
This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III.:1 Introduction ............................................... 1
2 Basic Properties of Hard X Rays ............................ 3
2.1 Free Propagation of X Rays ............................... 3
2.1.1 The Helmholtz Equation ................................. 4
2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6
2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8
2.1.4 Fresnel-Kirchhoff Propagation .......................... 11
2.2 Interaction of X Rays with Matter ........................ 13
2.2.1 Complex Index of Refraction ............................ 13
2.2.2 Attenuation ............................................ 15
2.2.3 Refraction ............................................. 18
3 The X-Ray Source ........................................... 21
3.1 Requirements ............................................. 21
3.1.1 Energy and Energy Bandwidth ............................ 21
3.1.2 Source Size and Divergence ............................. 23
3.1.3 Brilliance ............................................. 23
3.2 Synchrotron Radiation .................................... 24
3.3 Layout of a Synchrotron Radiation Facility ............... 27
3.4 Liénard-Wiechert Fields .................................. 29
3.5 Dipole Magnets ........................................... 31
3.6 Insertion Devices ........................................ 36
3.6.1 Multipole Wigglers ..................................... 36
3.6.2 Undulators ............................................. 37
4 X-Ray Optics ............................................... 39
4.1 Refractive X-Ray Lenses .................................. 40
4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41
4.3 Nanofocusing Lenses (NFLs) ............................... 43
4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45
4.5 Focal Distance ........................................... 46
4.6 Transverse Focus Size .................................... 50
4.7 Beam Caustic ............................................. 52
4.8 Depth of Focus ........................................... 53
4.9 Beam Divergence .......................................... 53
4.10 Chromaticity ............................................ 54
4.11 Transmission and Cross Section .......................... 55
4.12 Transverse Coherence .................................... 56
4.12.1 Mutual Intensity Function ............................. 57
4.12.2 Free Propagation of Mutual Intensity .................. 57
4.12.3 Mutual Intensity In The Focal Plane ................... 58
4.12.4 Diffraction Limited Focus ............................. 59
4.13 Coherent Flux ........................................... 60
4.14 Two-Stage Focusing ...................................... 64
4.14.1 The Prefocusing Parameter ............................. 65
4.14.2 Required Refractive Power ............................. 67
4.14.3 Flux Considerations ................................... 70
4.14.4 Astigmatic Prefocusing ................................ 75
5 Nanoprobe Setup ............................................ 77
5.1 X-Ray Optics ............................................. 78
5.1.1 Nanofocusing Lenses .................................... 79
5.1.2 Entry Slits ............................................ 82
5.1.3 Pinhole ................................................ 82
5.1.4 Additional Shielding ................................... 83
5.1.5 Vacuum and Helium Tubes ................................ 83
5.2 Sample Stages ............................................ 84
5.2.1 High Resolution Scanner ................................ 84
5.2.2 High Precision Rotational Stage ........................ 85
5.2.3 Coarse Linear Stages ................................... 85
5.2.4 Goniometer Head ........................................ 85
5.3 Detectors ................................................ 86
5.3.1 High Resolution X-Ray Camera ........................... 86
5.3.2 Diffraction Cameras .................................... 89
5.3.3 Energy Dispersive Detectors ............................ 91
5.3.4 Photodiodes ............................................ 93
5.4 Control Software ......................................... 94
6 Experiments ................................................ 97
6.1 Lens Alignment ........................................... 97
6.2 Focus Characterization ................................... 99
6.2.1 Knife-Edge Scans ....................................... 100
6.2.2 Far-Field Measurements ................................. 102
6.2.3 X-Ray Ptychography ..................................... 103
6.3 Fluorescence Spectroscopy ................................ 105
6.3.1 Fluorescence Element Mapping ........................... 107
6.3.2 Fluorescence Tomography ................................ 110
6.4 Diffraction Experiments .................................. 111
6.4.1 Microdiffraction on Phase Change Media ................. 112
6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113
6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115
6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117
7 Conclusion and Outlook ..................................... 121
Bibliography ................................................. 125
List of Figures .............................................. 139
List of Publications ......................................... 141
Danksagung ................................................... 145
Curriculum Vitae ............................................. 149
Erklärung .................................................... 151 / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern.
Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen.
Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.:1 Introduction ............................................... 1
2 Basic Properties of Hard X Rays ............................ 3
2.1 Free Propagation of X Rays ............................... 3
2.1.1 The Helmholtz Equation ................................. 4
2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6
2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8
2.1.4 Fresnel-Kirchhoff Propagation .......................... 11
2.2 Interaction of X Rays with Matter ........................ 13
2.2.1 Complex Index of Refraction ............................ 13
2.2.2 Attenuation ............................................ 15
2.2.3 Refraction ............................................. 18
3 The X-Ray Source ........................................... 21
3.1 Requirements ............................................. 21
3.1.1 Energy and Energy Bandwidth ............................ 21
3.1.2 Source Size and Divergence ............................. 23
3.1.3 Brilliance ............................................. 23
3.2 Synchrotron Radiation .................................... 24
3.3 Layout of a Synchrotron Radiation Facility ............... 27
3.4 Liénard-Wiechert Fields .................................. 29
3.5 Dipole Magnets ........................................... 31
3.6 Insertion Devices ........................................ 36
3.6.1 Multipole Wigglers ..................................... 36
3.6.2 Undulators ............................................. 37
4 X-Ray Optics ............................................... 39
4.1 Refractive X-Ray Lenses .................................. 40
4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41
4.3 Nanofocusing Lenses (NFLs) ............................... 43
4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45
4.5 Focal Distance ........................................... 46
4.6 Transverse Focus Size .................................... 50
4.7 Beam Caustic ............................................. 52
4.8 Depth of Focus ........................................... 53
4.9 Beam Divergence .......................................... 53
4.10 Chromaticity ............................................ 54
4.11 Transmission and Cross Section .......................... 55
4.12 Transverse Coherence .................................... 56
4.12.1 Mutual Intensity Function ............................. 57
4.12.2 Free Propagation of Mutual Intensity .................. 57
4.12.3 Mutual Intensity In The Focal Plane ................... 58
4.12.4 Diffraction Limited Focus ............................. 59
4.13 Coherent Flux ........................................... 60
4.14 Two-Stage Focusing ...................................... 64
4.14.1 The Prefocusing Parameter ............................. 65
4.14.2 Required Refractive Power ............................. 67
4.14.3 Flux Considerations ................................... 70
4.14.4 Astigmatic Prefocusing ................................ 75
5 Nanoprobe Setup ............................................ 77
5.1 X-Ray Optics ............................................. 78
5.1.1 Nanofocusing Lenses .................................... 79
5.1.2 Entry Slits ............................................ 82
5.1.3 Pinhole ................................................ 82
5.1.4 Additional Shielding ................................... 83
5.1.5 Vacuum and Helium Tubes ................................ 83
5.2 Sample Stages ............................................ 84
5.2.1 High Resolution Scanner ................................ 84
5.2.2 High Precision Rotational Stage ........................ 85
5.2.3 Coarse Linear Stages ................................... 85
5.2.4 Goniometer Head ........................................ 85
5.3 Detectors ................................................ 86
5.3.1 High Resolution X-Ray Camera ........................... 86
5.3.2 Diffraction Cameras .................................... 89
5.3.3 Energy Dispersive Detectors ............................ 91
5.3.4 Photodiodes ............................................ 93
5.4 Control Software ......................................... 94
6 Experiments ................................................ 97
6.1 Lens Alignment ........................................... 97
6.2 Focus Characterization ................................... 99
6.2.1 Knife-Edge Scans ....................................... 100
6.2.2 Far-Field Measurements ................................. 102
6.2.3 X-Ray Ptychography ..................................... 103
6.3 Fluorescence Spectroscopy ................................ 105
6.3.1 Fluorescence Element Mapping ........................... 107
6.3.2 Fluorescence Tomography ................................ 110
6.4 Diffraction Experiments .................................. 111
6.4.1 Microdiffraction on Phase Change Media ................. 112
6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113
6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115
6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117
7 Conclusion and Outlook ..................................... 121
Bibliography ................................................. 125
List of Figures .............................................. 139
List of Publications ......................................... 141
Danksagung ................................................... 145
Curriculum Vitae ............................................. 149
Erklärung .................................................... 151
|
Page generated in 0.063 seconds