• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 11
  • 4
  • 1
  • Tagged with
  • 64
  • 23
  • 19
  • 18
  • 13
  • 13
  • 12
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Optimisation de l'architecture des réseaux de distribution d'énergie électrique / Optimization of architecture of power distribution networks

Gladkikh, Egor 08 June 2015 (has links)
Pour faire face aux mutations du paysage énergétique, les réseaux de distribution d'électricité sont soumis à des exigences de fonctionnement avec des indices de fiabilité à garantir. Dans les années à venir, de grands investissements sont prévus pour la construction des réseaux électriques flexibles, cohérents et efficaces, basés sur de nouvelles architectures et des solutions techniques innovantes, adaptatifs à l'essor des énergies renouvelables. En prenant en compte ces besoins industriels sur le développement des réseaux de distribution du futur, nous proposons, dans cette thèse, une approche reposant sur la théorie des graphes et l'optimisation combinatoire pour la conception de nouvelles architectures pour les réseaux de distribution. Notre démarche consiste à étudier le problème général de recherche d'une architecture optimale qui respecte l'ensemble de contraintes topologiques (redondance) et électrotechniques (courant maximal, plan de tension) selon des critères d'optimisation bien précis : minimisation du coût d'exploitation (OPEX) et minimisation de l'investissement (CAPEX). Ainsi donc, les deux familles des problèmes combinatoires (et leurs relaxations) ont été explorées pour proposer des résolutions efficaces (exactes ou approchées) du problème de planification des réseaux de distribution en utilisant une formulation adaptée. Nous nous sommes intéressés particulièrement aux graphes 2-connexes et au problème de flot arborescent avec pertes quadratiques minimales. Les résultats comparatifs de tests sur les instances de réseaux (fictifs et réels) pour les méthodes proposées ont été présentés. / To cope with the changes in the energy landscape, electrical distribution networks are submitted to operational requirements in order to guarantee reliability indices. In the coming years, big investments are planned for the construction of flexible, consistent and effective electrical networks, based on the new architectures, innovative technical solutions and in response to the development of renewable energy. Taking into account the industrial needs of the development of future distribution networks, we propose in this thesis an approach based on the graph theory and combinatorial optimization for the design of new architectures for distribution networks. Our approach is to study the general problem of finding an optimal architecture which respects a set of topological (redundancy) and electrical (maximum current, voltage plan) constraints according to precise optimization criteria: minimization of operating cost (OPEX) and minimization of investment (CAPEX). Thus, the two families of combinatorial problems (and their relaxations) were explored to propose effective resolutions (exact or approximate) of the distribution network planning problem using an adapted formulation. We are particularly interested in 2-connected graphs and the arborescent flow problem with minimum quadratic losses. The comparative results of tests on the network instances (fictional and real) for the proposed methods were presented.
62

Approximations polynomiales de densités de probabilité et applications en assurance / Polynomial approximtions of probabilitty density function with applications to insurance

Goffard, Pierre-Olivier 29 June 2015 (has links)
Cette thèse a pour objet d'étude les méthodes numériques d'approximation de la densité de probabilité associée à des variables aléatoires admettant des distributions composées. Ces variables aléatoires sont couramment utilisées en actuariat pour modéliser le risque supporté par un portefeuille de contrats. En théorie de la ruine, la probabilité de ruine ultime dans le modèle de Poisson composé est égale à la fonction de survie d'une distribution géométrique composée. La méthode numérique proposée consiste en une projection orthogonale de la densité sur une base de polynômes orthogonaux. Ces polynômes sont orthogonaux par rapport à une mesure de probabilité de référence appartenant aux Familles Exponentielles Naturelles Quadratiques. La méthode d'approximation polynomiale est comparée à d'autres méthodes d'approximation de la densité basées sur les moments et la transformée de Laplace de la distribution. L'extension de la méthode en dimension supérieure à $1$ est présentée, ainsi que l'obtention d'un estimateur de la densité à partir de la formule d'approximation. Cette thèse comprend aussi la description d'une méthode d'agrégation adaptée aux portefeuilles de contrats d'assurance vie de type épargne individuelle. La procédure d'agrégation conduit à la construction de model points pour permettre l'évaluation des provisions best estimate dans des temps raisonnables et conformément à la directive européenne Solvabilité II. / This PhD thesis studies numerical methods to approximate the probability density function of random variables governed by compound distributions. These random variables are useful in actuarial science to model the risk of a portfolio of contracts. In ruin theory, the probability of ultimate ruin within the compound Poisson ruin model is the survival function of a geometric compound distribution. The proposed method consists in a projection of the probability density function onto an orthogonal polynomial system. These polynomials are orthogonal with respect to a probability measure that belongs to Natural Exponential Families with Quadratic Variance Function. The polynomiam approximation is compared to other numerical methods that recover the probability density function from the knowledge of the moments or the Laplace transform of the distribution. The polynomial method is then extended in a multidimensional setting, along with the probability density estimator derived from the approximation formula. An aggregation procedure adapted to life insurance portfolios is also described. The method aims at building a portfolio of model points in order to compute the best estimate liabilities in a timely manner and in a way that is compliant with the European directive Solvency II.
63

Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique

Estecahandy, Elodie 19 September 2013 (has links) (PDF)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée.
64

Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem

Estecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.

Page generated in 0.0684 seconds