131 |
Modelling and simulation of surface morphology driven by ion bombardment / Modellieren und Simulation der Oberflächenmorphologie gefahren durch IonenbombardierungYewande, Emmanuel Oluwole 02 May 2006 (has links)
No description available.
|
132 |
Control of electronic and optical properties of single and double quantum dots via electroelastic fieldsZallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies.
In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface.
By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources.
A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system.
For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
|
133 |
Control of electronic and optical properties of single and double quantum dots via electroelastic fieldsZallo, Eugenio 12 March 2015 (has links)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies.
In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface.
By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources.
A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system.
For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
|
134 |
Single- and entangled-photon emission from strain tunable quantum dots devicesZhang, Jiaxiang 21 August 2015 (has links)
On demand single-photon and entangled-photon sources are key building-blocks for many proposed photonic quantum technologies. For practical device applications, epitaxially grown quantum dots (QDs) are of increasing importance due to their bright photon emission with sharp line width. Particularly, they are solid-state systems and can be easily embedded within a light-emitting diode (LED) to achieve electrically driven sources. Therefore, one would expect a full-fledged optoelectronic quantum network that is running on macroscopically separated, QD-based single- and entangled-photon devices.
An all-electrically operated wavelength-tunable on demand single-photon source (SPS) is demonstrated first. The device consists of a LED in the form of self-assembled InGaAs QDs containing nanomembrane integrated onto a piezoelectric crystal. Triggered single photons are generated via injection of ultra-short electrical pulses into the diode, while their energy can be precisely tuned over a broad range of about 4.8 meV by varying the voltage applied to the piezoelectric crystal. High speed operation of this single-photon emitting diode up to 0.8 GHz is demonstrated.
In the second part of this thesis, a fast strain-tunable entangled-light-emitting diode (ELED) is demonstrated. It has been shown that the fine structure splitting of the exciton can be effectively overcome by employing a specific anisotropic strain field. By injecting ultra-fast electrical pulses to the diode, electrically triggered entangled-photon emission with high degree of entanglement is successfully realized. A statistical investigation reveals that more than 30% of the QDs in the strain-tunable quantum LED emit polarization-entangled photon-pairs with entanglement-fidelities up to f+ = 0.83(5). Driven at the highest operation speed ever reported so far (400 MHz), the strain-tunable quantum LED emerges as unique devices for high-data rate entangled-photon applications.
In the end of this thesis, on demand and wavelength-tunable LH single-photon emission from strain engineered GaAs QDs is demonstrated. Fourier-transform spectroscopy is performed, from which the coherence time of the LH single-photon emission is studied. It is envisioned that this new type of LH exciton-based SPS can be applied to realize an all-semiconductor based quantum interface in the foreseeable distributed quantum networks.
|
135 |
Dynamik der Photo-Lumineszenz-Unterbrechung von Halbleiter-Nanokristallen in elektrischen FeldernKrasselt, Cornelius 09 July 2015 (has links) (PDF)
Diese Arbeit untersucht die Photo-Lumineszenz (PL)-Unterbrechung (Blinken) einzelner in Polymer-Nanopartikeln eingebetteter CdSe/CdS Halbleiter-Nanokristalle (Quantenpunkte) im Einfluss elektrischer Gleich- und Wechselfelder mittels Weitfeld-Mikroskopie. Hierbei emittieren die einzelnen Quantenpunkte trotz kontinuierlicher Anregung mit einer zwischen hellen An- und dunklen Aus-Zuständen variierenden PL-Intensität.
Die Ergebnisse zeigen, dass die Dynamik dieses Blinkens durch Wechselfelder stark beeinflusst wird und von deren Feldstärke, teilweise auch deren Feldfrequenz abhängt. Für zunehmende Feldstärken lässt sich ein schnellerer Wechsel zwischen An- und Aus-Zuständen (erhöhte Blinkfrequenz) beobachten, der von einer reduzierten Häufigkeit langer An- und Aus-Ereignisse begleitet wird. Der Verlauf der An-Zeit-Verteilungen bei kleinen Zeiten wird zunehmend (monoton) flacher, während die Verteilungen der Aus-Zeiten zunächst ebenfalls einem analogen Trend folgen, ab einer bestimmten und von der Feldfrequenz abhängenden Feldstärke jedoch wieder steiler verlaufen. Ein solcher Monotonie-Wechsel in der Blinkdynamik im Fall einer gleichbleibenden Variation einer äußeren Bedingung wurde bei Halbleiter-Nanokristallen so erstmalig beobachtet.
Für Gleichfelder zeigen sich hingegen nahezu keine Auswirkungen. Lediglich die An-Zeit-Verteilungen sowie die Blinkfrequenz im Fall hoher Feldstärken werden modifiziert.
Die Ergebnisse werden im Kontext verschiedener aktueller Modelle zur PL-Unterbrechung wie dem trapping-Modell, dem self-trapping-Mechanismus oder dem Modell multipler Rekombinationszentren diskutiert und diese entsprechend erweitert. Dabei stehen die dielektrischen Eigenschaften und die Relaxationsdynamik der lokalen Quantenpunkt-Umgebung im Mittelpunkt, deren Reaktion auf die externen Felder durch eine zeitabhängige Ausrichtung permanenter Dipole beschrieben werden kann.
|
136 |
Nutzung der Photolumineszenz von Quantenpunkten für die Belastungsdetektion an LeichtbaumaterialienMöbius, Martin 17 February 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines neuartigen, autarken, folienbasierten Sensorsystems für die Belastungsdetektion an Leichtbaumaterialien. Das integrierte Sensorsystem ist in der Lage mechanische Belastungen über die Photolumineszenz von Quantum Dots visuell darzustellen, wodurch strukturelle Defekte in Leichtbaumaterialien frühzeitig erkannt und ein Totalausfall einer gesamten Leichtbaukonstruktion verhindert werden kann. Dies führt neben einer erhöhten Sicherheit einzelner Komponenten und kompletter Konstruktionen auch zu Gewichts-, Kosten- und Rohstoffersparnissen. Die gezielte Beeinflussung der Photolumineszenz von Quantum Dots durch Ladungsträgerinjektion als Hauptmechanismus des Sensorsystems erfordert spezielle Lagenaufbauten von Dünnschichtsystemen. Durch die Kombination dieser Dünnschichtsysteme mit piezoelektrischen Materialien entsteht ein autarkes Sensorsystem, wodurch eine Auswertung, Visualisierung und Speicherung der Information über eine stattgefundene mechanische Belastung an Leichtbaumaterialien auf kleinsten Raum erreicht wird.:Inhaltsverzeichnis
Formelverzeichnis
Abkürzungsverzeichnis
Vorwort
1 Einleitung
1.1 Motivation
1.2 Zielstellung
2 Autarker Sensor für mechanische Beanspruchungen
2.1 Sensorkonzept, -aufbau und Funktionsweise
2.2 Anforderungen an die Funktionalität
2.3 Stand der Technik
3 Theoretische Grundlagen
3.1 Quantum Dots
3.1.1 Größenquantisierungseffekt
3.1.2 Photolumineszenz
3.1.3 Aufbau und Materialien
3.1.4 Kommerziell erhältliche Quantum Dots
3.2 Mechanismen zur Beeinflussung der Photolumineszenz
3.2.1 Ladungsträgerinjektion in den QD Kern
3.2.2 Feldinduzierte Ionisation des Exzitons
3.2.3 Weitere Mechanismen
3.3 Ladungsträgertransportschichten
3.3.1 Poly(N-vinylkarbazol)
3.3.2 N,N,N´,N´-Tetrakis(3-methylphenyl)-3,3´-dimethylbenzidin
3.3.3 Poly(3,4-ethylendioxythiophen)-poly(styrolsulfonat)
3.4 Lithiumfluorid als elektrischer Isolator
3.5 Modellsysteme
3.5.1 Einbettung der QDs in organische Lochtransportschichten
3.5.2 QDs zwischen Elektrode und organischer Lochtransportschicht
3.5.3 QDs zwischen Elektrode und Nichtleiter
4 Experimentelle Vorgehensweise
4.1 Layout und Kontaktierung von Teststrukturen
4.2 Verfahren zur Herstellung dünner Schichten
4.2.1 Physikalische Gasphasenabscheidung
4.2.2 Rotationsbeschichtung
4.2.3 Weitere Verfahren
4.3 Charakterisierung der Schichten und der Gesamtfunktionalität
4.3.1 Mikrospektroskopieaufbau
4.3.2 Weitere Messverfahren
4.4 Integration der Schichtstapel in Faserkunststoffverbund
5 Experimentelle Untersuchungen
5.1 Einordnung der einzelnen Schichten der Modellsysteme
5.1.1 Elektroden
5.1.2 Matrixmaterial und Quantum Dots
5.2 Einordnung des elektrischen Verhaltens der Modellsysteme
5.2.1 Modellsystem I
5.2.2 Modellsystem II
5.2.3 Modellsystem III
5.3 Einfluss externer Beleuchtung am Modellsystem II und III
5.3.1 Modellsystem II
5.3.2 Modellsystem III
5.4 Wiederholbarkeit der elektrischen Beanspruchung am Modellsystem III
5.4.1 Photolumineszenzintensität
5.4.2 Stromdichte
5.4.3 Gesamtwiderstand im Schichtstapel
5.5 Einfluss des elektrischen Feldes am Modellsystem III
5.5.1 Photolumineszenzintensität
5.5.2 Stromdichte
5.5.3 Widerstand
5.6 Einfluss der Integration auf das Verhalten von Modellsystem III
5.6.1 Optisches Verhalten der Laminiertasche und des Harzsystems
5.6.2 Funktionalität des Schichtstapels nach der Integration
5.7 Temperaturwechseltest am integrierten Schichtstapel
5.8 Speicherzeit elektrischer Ladungsträger am Modellsystem III
5.8.1 Stabilität des Lasers und der PL Intensität
5.8.2 Reproduzierbarkeit
5.8.3 Langzeitmessung
5.9 Kopplung des Schichtsystems mit piezoelektrischem Element
6 Zusammenfassung und Ausblick
6.1 Zusammenfassung
6.2 Ausblick
Anhang A : Layouts für untere Elektrode E1 und obere Elektrode E2
Anhang B : Halter für die Kontaktierung der Teststrukturen
Anhang C : Frontpanel zur Aufnahme der Photolumineszenz
Anhang D : Messdaten Profilometer Veeco Dektak 150
Literaturverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Lebenslauf / This work focuses on the development of a novel, self-sufficient, film-based sensor system for load detection on lightweight materials. The integrated sensor system is capable to visualize mechanical loads on lightweight structures by quenching the photoluminescence of quantum dots. Structural defects in lightweight materials can thus be detected at an early stage and total failure of an entire lightweight structure can be prevented. In addition to increased safety of individual components and complete structures, this also leads to weight, cost and raw material savings. The quenching of the photoluminescence of quantum dots by charge carrier injection as the main mechanism of the sensor system requires special thin-film layer stacks. By combining these thin-film layer stacks with piezoelectric materials, a self-sufficient sensor system is created. An evaluation, visualization and storage of the information about a mechanical load that has taken place on lightweight materials is thus achieved in a very small space.:Inhaltsverzeichnis
Formelverzeichnis
Abkürzungsverzeichnis
Vorwort
1 Einleitung
1.1 Motivation
1.2 Zielstellung
2 Autarker Sensor für mechanische Beanspruchungen
2.1 Sensorkonzept, -aufbau und Funktionsweise
2.2 Anforderungen an die Funktionalität
2.3 Stand der Technik
3 Theoretische Grundlagen
3.1 Quantum Dots
3.1.1 Größenquantisierungseffekt
3.1.2 Photolumineszenz
3.1.3 Aufbau und Materialien
3.1.4 Kommerziell erhältliche Quantum Dots
3.2 Mechanismen zur Beeinflussung der Photolumineszenz
3.2.1 Ladungsträgerinjektion in den QD Kern
3.2.2 Feldinduzierte Ionisation des Exzitons
3.2.3 Weitere Mechanismen
3.3 Ladungsträgertransportschichten
3.3.1 Poly(N-vinylkarbazol)
3.3.2 N,N,N´,N´-Tetrakis(3-methylphenyl)-3,3´-dimethylbenzidin
3.3.3 Poly(3,4-ethylendioxythiophen)-poly(styrolsulfonat)
3.4 Lithiumfluorid als elektrischer Isolator
3.5 Modellsysteme
3.5.1 Einbettung der QDs in organische Lochtransportschichten
3.5.2 QDs zwischen Elektrode und organischer Lochtransportschicht
3.5.3 QDs zwischen Elektrode und Nichtleiter
4 Experimentelle Vorgehensweise
4.1 Layout und Kontaktierung von Teststrukturen
4.2 Verfahren zur Herstellung dünner Schichten
4.2.1 Physikalische Gasphasenabscheidung
4.2.2 Rotationsbeschichtung
4.2.3 Weitere Verfahren
4.3 Charakterisierung der Schichten und der Gesamtfunktionalität
4.3.1 Mikrospektroskopieaufbau
4.3.2 Weitere Messverfahren
4.4 Integration der Schichtstapel in Faserkunststoffverbund
5 Experimentelle Untersuchungen
5.1 Einordnung der einzelnen Schichten der Modellsysteme
5.1.1 Elektroden
5.1.2 Matrixmaterial und Quantum Dots
5.2 Einordnung des elektrischen Verhaltens der Modellsysteme
5.2.1 Modellsystem I
5.2.2 Modellsystem II
5.2.3 Modellsystem III
5.3 Einfluss externer Beleuchtung am Modellsystem II und III
5.3.1 Modellsystem II
5.3.2 Modellsystem III
5.4 Wiederholbarkeit der elektrischen Beanspruchung am Modellsystem III
5.4.1 Photolumineszenzintensität
5.4.2 Stromdichte
5.4.3 Gesamtwiderstand im Schichtstapel
5.5 Einfluss des elektrischen Feldes am Modellsystem III
5.5.1 Photolumineszenzintensität
5.5.2 Stromdichte
5.5.3 Widerstand
5.6 Einfluss der Integration auf das Verhalten von Modellsystem III
5.6.1 Optisches Verhalten der Laminiertasche und des Harzsystems
5.6.2 Funktionalität des Schichtstapels nach der Integration
5.7 Temperaturwechseltest am integrierten Schichtstapel
5.8 Speicherzeit elektrischer Ladungsträger am Modellsystem III
5.8.1 Stabilität des Lasers und der PL Intensität
5.8.2 Reproduzierbarkeit
5.8.3 Langzeitmessung
5.9 Kopplung des Schichtsystems mit piezoelektrischem Element
6 Zusammenfassung und Ausblick
6.1 Zusammenfassung
6.2 Ausblick
Anhang A : Layouts für untere Elektrode E1 und obere Elektrode E2
Anhang B : Halter für die Kontaktierung der Teststrukturen
Anhang C : Frontpanel zur Aufnahme der Photolumineszenz
Anhang D : Messdaten Profilometer Veeco Dektak 150
Literaturverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Lebenslauf
|
137 |
Dynamic Processes in Functionalised Perylene Bisimide Molecules, Semiconductor Nanocrystals and AssembliesKowerko, Danny 03 December 2010 (has links)
Funktionalisierte organische Perylenbisimidfarbstoffe (PBI) und aus Cadmiumselenid bestehende Halbleiternanokristalle werden hinsichtlich physikalischer sowie chemischer Wechselwirkungsprozesse miteinander und mit ihrer Umgebung mittels zeitaufgelöster optischer Spektroskopie untersucht. Im Mittelpunkt der Studien an diesem organisch/anorganischen Modellsystem nanoskopischer Größe steht die Aggregatbildungskinetik und die Identifikation und Quantifizierung von Transferpozessen. Die Anbindung der gut löslichen PBI-Farbstoffe an die Oberfläche solcher Halbleiternanokristalle mittels spezieller Ankergruppen wird durch Selbstorganisation in Lösung realisiert. Die Kombination von Absorptions- und zeitaufgelöster Fluoreszenzspektroskopie zeigt einen unterschiedlich starken Einfluss von Liganden und Farbstoffen auf die Fluoreszenzlöschung der Nanokristalle und belegt, dass Resonanzenergietransfer zum Farbstoff nur in sehr geringem Maße die physikalische Ursache der Fluoreszenzlöschung ist. Die Anzahl adsorbierter Farbstoffe und die Stärke der Fluoreszenzlöschung eines einzelnen Farbstoffmoleküls werden aus zeitaufgelösten Einzelmolekülexperimenten an immobilisierten Emittern gewonnen, welche den direkten spektroskopischen Zugang zur Verteilung gebundener und freier Farbstoffe/Nanokristalle erlaubt. Darüber hinaus werden ankergruppen- und umgebungsspezifische Einflüsse auf die Konformations- und Orientierungsdynamik von Perylenbisimidmolekülen dargestellt. Abschließend werden photo-physikalische Gemeinsamkeiten chemisch unterschiedlich hervorgerufener Fluoreszenzlöschungsprozesse herausgearbeitet und im Kontext von Einzelkristall-Blinkprozessen diskutiert.
|
138 |
Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam EpitaxyTauchnitz, Tina 12 March 2020 (has links)
GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process.
The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform.
This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx and their interaction with SiOx, and confirms theoretical predictions about the so-called nucleation antibunching, the temporal anti-correlation of consecutive nucleation events.
In the second part of this thesis, an alternative method called droplet-confined alternate-pulsed epitaxy (DCAPE) for the self-catalyzed growth of GaAs nanowires and GaAs/AlxGa1-xAs axial nanowire heterostructures has been developed. DCAPE enables nanowire growth at unconventional, low temperatures in the range of 450-550 °C and is compatible with the standard Si-CMOS platform. The novel growth approach allows one to precisely control the crystal structure of the nanowires and, thus, to produce defect-free pure zinc blende GaAs-based nanowires. The strength of DCAPE is further highlighted by the controlled growth of GaAs/AlxGa1-xAs axial quantum well nanowires with abrupt interfaces and tunable thickness and Al-content of the AlxGa1-xAs sections. The GaAs/AlxGa1-xAs axial nanowire heterostructures are interesting for applications as single photon emitters with tunable emission wavelength, when they are overgrown with thick lattice-mismatched InxAl1-xAs layers in a core-shell fashion. All results presented in this thesis contribute to paving the way for a successful monolithic integration of
highly uniform GaAs-based nanowires with controlled number density, dimensions and crystal structure on the mature Si platform. / GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration
der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit
präziser Kontrolle des Wachstumsprozesses der Nanodrähte.
Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen.
Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse.
Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum
von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen.
|
139 |
Dynamik der Photo-Lumineszenz-Unterbrechung von Halbleiter-Nanokristallen in elektrischen FeldernKrasselt, Cornelius 02 July 2015 (has links)
Diese Arbeit untersucht die Photo-Lumineszenz (PL)-Unterbrechung (Blinken) einzelner in Polymer-Nanopartikeln eingebetteter CdSe/CdS Halbleiter-Nanokristalle (Quantenpunkte) im Einfluss elektrischer Gleich- und Wechselfelder mittels Weitfeld-Mikroskopie. Hierbei emittieren die einzelnen Quantenpunkte trotz kontinuierlicher Anregung mit einer zwischen hellen An- und dunklen Aus-Zuständen variierenden PL-Intensität.
Die Ergebnisse zeigen, dass die Dynamik dieses Blinkens durch Wechselfelder stark beeinflusst wird und von deren Feldstärke, teilweise auch deren Feldfrequenz abhängt. Für zunehmende Feldstärken lässt sich ein schnellerer Wechsel zwischen An- und Aus-Zuständen (erhöhte Blinkfrequenz) beobachten, der von einer reduzierten Häufigkeit langer An- und Aus-Ereignisse begleitet wird. Der Verlauf der An-Zeit-Verteilungen bei kleinen Zeiten wird zunehmend (monoton) flacher, während die Verteilungen der Aus-Zeiten zunächst ebenfalls einem analogen Trend folgen, ab einer bestimmten und von der Feldfrequenz abhängenden Feldstärke jedoch wieder steiler verlaufen. Ein solcher Monotonie-Wechsel in der Blinkdynamik im Fall einer gleichbleibenden Variation einer äußeren Bedingung wurde bei Halbleiter-Nanokristallen so erstmalig beobachtet.
Für Gleichfelder zeigen sich hingegen nahezu keine Auswirkungen. Lediglich die An-Zeit-Verteilungen sowie die Blinkfrequenz im Fall hoher Feldstärken werden modifiziert.
Die Ergebnisse werden im Kontext verschiedener aktueller Modelle zur PL-Unterbrechung wie dem trapping-Modell, dem self-trapping-Mechanismus oder dem Modell multipler Rekombinationszentren diskutiert und diese entsprechend erweitert. Dabei stehen die dielektrischen Eigenschaften und die Relaxationsdynamik der lokalen Quantenpunkt-Umgebung im Mittelpunkt, deren Reaktion auf die externen Felder durch eine zeitabhängige Ausrichtung permanenter Dipole beschrieben werden kann.
|
140 |
Structural, electronic and optical properties of cadmium sulfide nanoparticlesFrenzel, Johannes 19 December 2006 (has links)
In this work, the structural, electronic, and optical properties of CdS nanoparticles with sizes up to 4nm have been calculated using density-functional theory (DFT). Inaccuracies in the description of the unoccupied states of the applied density-functional based tight-binding method (DFTB) are overcome by a new SCF-DFTB method. Density-functional-based calculations employing linear-response theory have been performed on cadmium sulfide nanoparticles considering different stoichiometries, underlying crystal structures (zincblende, wurtzite, rocksalt), particle shapes (spherical, cuboctahedral, tetrahedral), and saturations (unsaturated, partly saturated, completely saturated). For saturated particles, the calculated onset excitations are strong excitonic. The quantum-confinement effect in the lowest excitation is visible as the excitation energy decreases towards the bulk band gap with increasing particle size. Dangling bonds at unsaturated surface atoms introduce trapped surface states which lie below the lowest excitations of the completely saturated particles. The molecular orbitals (MOs), that are participating in the excitonic excitations, show the shape of the angular momenta of a hydrogen atom (s, p). Zincblende- and wurtzite-derived particles show very similar spectra, whereas the spectra of rocksalt-derived particles are rather featureless. Particle shapes that confine the orbital wavefunctions strongly (tetrahedron) give rise to less pronounced spectra with lower oscillator strengths. Finally, a very good agreement of the calculated data to experimentally available spectra and excitation energies is found.
|
Page generated in 0.108 seconds