• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 76
  • 8
  • Tagged with
  • 236
  • 162
  • 70
  • 49
  • 45
  • 41
  • 40
  • 29
  • 25
  • 24
  • 24
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Extrémités 3’ de l’ARN du Virus de l’Hépatite C : structures et Rôles dans la réplication du génome / Hepatitis C Virus RNA 3’ ends : Structures and Roles in Genome Replication

Jaubert, Chloe 18 November 2016 (has links)
Le génome du virus de l’Hépatite C est constitué d’un ARN monocaténaire linéaire de polarité positive (+). Les interactions ARN-ARN prennent une place essentielle dans la régulation du cycle viral.La synthèse de l’ARN est réalisée par l’ARN-polymérase ARN-dépendante (RdRp) codée par le virus. Elle serait initiée à l’extrémité 3’ des molécules à répliquer. Un ARN génomique complémentaire de polarité négative (-) est d’abord synthétisé. Il sert ensuite de matrice pour la production des brins génomiques. Les mécanismes qui président au recrutement de la polymérase et à l’initiation de la synthèse d’ARN restent, aujourd’hui, mal connus.Les structures ARN présentes aux extrémités 3’ et leurs rôles ont donc étés étudiés au cours des travaux de cette thèse. Au niveau de l’extrémité 3’ de l’ARN (+), la dimérisation a été montrée indispensable à la réplication du virus in cellulo. Ces travaux ont par la suite permis de caractériser par gel retard et cryo-microscopie la dimérisation des ARN génomiques en solution. Au niveau de l’extrémité 3’ de l’ARN (-), la dimérisation de deux molécules a également pu être caractérisée par des approches biochimiques et biophysiques. Par ailleurs la présence d’un G-quadruplex introduit un remaniement conformationnel qui se révèle indispensable à une synthèse performante de l’ARN. De manière similaire au brin génomique, la dynamique structurale résultante de ces interactions semble donc nécessaire à une réplication efficace de l’ARN par la RdRp.Les résultats obtenus soulignent l’importance de la dimérisation et des variations conformationnelles prisent aux extrémités 3’ pour la réplication de l’ARN. Ces données ouvrent alors la voie vers de nouvelles perspectives quant à la compréhension des mécanismes qui président au fonctionnement de la polymérase du VHC. / The hepatitis C virus genome consists of a linear positive sens (+) single-stranded RNA. RNA-RNA interactions play an essential role in the regulation of the viral cycle.RNA synthesis is performed by the RNA-dependent RNA-polymerase (RdRp) encoded by the virus. It would be initiated at the 3 'end of the molecule to be replicated. A complementary genomic RNA of negative polarity (-) is first synthesized. It then serves as a matrix for the production of genomic strands. The mechanisms that govern the recruitment of the polymerase and the initiation of RNA synthesis remain poorly understood today.The RNA structures found at the 3 'ends and their roles have therefore been studied during the work of this thesis. At the 3 'end of the (+) RNA, dimerization was shown to be essential for replication of the virus in cellulo. This work made it possible to characterize by gel shift assay and cryo-microscopy the dimerization of the genomic RNAs in solution. At the 3 'end of (-) RNA, the dimerization of two molecules could also be characterized by biochemical and biophysical approaches. Moreover, the presence of a G-quadruplex introduces a conformational reshuffle which proves to be indispensable for an efficient RNA synthesis. Similarly to the genomic strand, the resulting structural dynamics of these interactions appear to be necessary for efficient RNA replication by the RdRp.The results obtained here underline the importance of dimerization and conformational variations at the 3 'ends for RNA replication. These data then open the way to new perspectives on understanding the mechanisms that govern the functioning of HCV polymerase.
82

Formation et devenir de l'empreinte parentale chez la levure S. pombe / Formation and maintenance of the parental imprint in the yeast S. pombe

Raimondi, Célia 22 September 2017 (has links)
Des études moléculaires et génétiques ont montré qu'une empreinte épigénétique, située au niveau du locus sexuel (mat1) de la levure Schizosaccharomyces pombe, initie le changement de type sexuel. La réplication unidirectionnelle du locus mat1 permet la formation de l'empreinte sur le brin Watson. Les éléments moléculaires qui forment et protègent l'empreinte durant le cycle cellulaire restent peu connus. Afin de mieux comprendre le mécanisme de formation et de maintien de l'empreinte, j'ai caractérisé le recrutement au niveau du locus mat1 d'acteurs précoces dans le changement de type sexuel. J'ai montré que la protéine Sap1 (switch activating protein 1) est préférentiellement recrutée à l'intérieur de la séquence SS13, une séquence qui stabilise l'empreinte. Les protéines Lsd1/2 (lysine specific demethylases) qui contrôlent la pause de la fourche de réplication à mat1 et la formation de l'empreinte sont spécialement recrutées au niveau de mat1 indépendamment de l'allèle présent. La protéine Abp1 (homologue de CENP-B) est enrichie à côté de mat1 mais n'est pas impliquée dans la formation/maintien de l'empreinte. De plus, j'ai établi la signature de l'empreinte par séquençage à haut débit. En utilisant cette signature, j'ai mis en évidence que les protéines Lsd1/2 et Sap1 immunoprécipitent les deux côtés de la chromatide qui porte l'empreinte ce qui suggère la formation d'une structure protective définie comme l'imprintosome. / Genetic and molecular studies have indicated that an epigenetic imprint at mat1, the sexual locus of fission yeast, initiates mating type switching. The polar DNA replication of mat1 generates an imprint on the Watson strand. The process by which the imprint is formed and maintained through the cell cycle remains unclear. To understand better the mechanism of imprint formation and stability, we characterized the recruitment of early players of mating type switch at the mat1 region. We found that the switching activating protein 1 (Sap1) is preferentially recruited inside the mat1M allele on a sequence (SS13) that enhances the imprint. The lysine specific demethylases, Lsd1/2, that control the replication fork pause at MPS1 and the formation of the imprint are specifically drafted inside of mat1, regardless of the allele. The CENP-B homolog, Abp1, is highly enriched next to mat1 but it is not required in the process. Additionally, we established the computational signature of the imprint. Using this signature, we show that both sides of the imprinted molecule are bound by Lsd1/2 and Sap1, suggesting a nucleoprotein protective structure defined as imprintosome.
83

Rôle de la protéine TRF2 et de ses partenaires dans la recombinaison des télomères humains / Role of TRF2 and its partners in the homologous recombination of human telomeres

Saint-Léger, Adélaïde 02 December 2011 (has links)
La protéine télomérique TRF2 permet de protéger les télomères notamment en régulant leur taille. Dans des cellules humaines, la surexpression de la protéine mutante TRF2ΔB, dont le domaine basique est absent, induit un raccourcissement soudain des télomères. In vitro, ce domaine basique protège des structures d’ADN particulières, appelées Jonctions de Holliday (JH), de la résolution par des endonucléases. Ces JH peuvent être présentes aux télomères d’une part au niveau de la boucle télomérique, une conformation de l’ADN qui ressemble à une structure intermédiaire de la recombinaison homologue (RH), et d’autre part au niveau des fourches de réplication bloquées, fréquentes aux télomères. Nous pensons que le raccourcissement soudain des télomères implique la résolution de JH au cours d’un événement de recombinaison homologue qui doit être étroitement régulé afin d’éviter qu’il ne se réalise de façon inappropriée. Dans le but de mieux caractériser cet événement, j’ai montré que différentes endonucléases capables de résoudre des JH (GEN1, MUS81, SLX1-SLX4) sont impliquées dans le raccourcissement des télomères induit par la surexpression de la protéine TRF2ΔB. Puis j’ai étudié le rôle de la protéine hRAP1 dans la régulation de ce mécanisme et l’implication des protéines de la RH. L’ensemble des résultats obtenus nous ont permis de proposer un nouveau rôle de la protéine TRF2 dans la régulation des événements de recombinaison homologue au cours de la réplication des télomères. / The stability of mammalian telomeres depends upon TRF2 which prevents inappropriate repair and checkpoint activation. In human cells, overexpressing a TRF2 mutant lacking the N-terminal basic domain, TRF2ΔB, induces sudden telomere shortening. In vitro, the basic domain protects particular DNA structures, called Holliday junctions (HJ), of the resolution by endonucleases. These HJ may be present at telomeres in one hand at the t-loop, a DNA conformation looking like a structural intermediate of homologous recombination (HR), and also at the level of stalled replication forks, frequent at telomeres. We believe that the sudden shortening of telomeres involves the resolution of HJ during a HR event that would be tightly regulated to prevent it occurs inappropriately. In order to better characterize this event, I have shown that different proteins harbouring resolving activities (GEN1, MUS81, SLX1-SLX4) are involved in telomere shortening induced by overexpression of TRF2ΔB. Then, I studied the role of hRAP1 in the regulation of this mechanism and involvement of HR proteins. The overall results allowed us to propose a new role of TRF2 in the regulation of HR events during the replication of telomeres.
84

Étude des altérations du programme de réplication lors du vieillissement cellulaire : peuvent-elles être reprogrammées ? / Study of replication program alterations upon aging : can they be reprogramed back ?

Schwerer, Hélène 17 December 2014 (has links)
La réplication de l'ADN, qui doit assurer à chaque cycle cellulaire une copie fidèle du génome pour que les cellules filles héritent du même génome, est un processus hautement régulé, faisant intervenir son organisation en chromatine mais aussi sa dynamique au sein de l'architecture nucléaire. Le vieillissement cellulaire, qu'il soit physiologique, pathologique ou induit in vitro par des conditions de culture sub-optimales, est accompagné de modifications de l'organisation du génome en chromatine, susceptibles de modifier la régulation spatiotemporelle du programme de réplication. Dans quelle mesure ces modifications sont réversibles et s'accompagnent d'une restauration du programme de réplication sont des questions que nous avons abordées. Notre étude a donc consisté dans un premier temps à analyser les modifications du programme de la réplication, dans différentes situations de vieillissement cellulaire, afin de vérifier notre hypothèse. Nous avons analysé sur l'ensemble du génome l'organisation spatiale (le long du génome) et temporelle des domaines de réplication, le timing, de cellules prolifératives ou approchant de la sénescence réplicative, de donneurs jeunes, âgés ou encore atteints de vieillissement accéléré ou progéria. Nous avons pu observer que certains domaines de timing permettent de distinguer des cellules jeunes de cellules âgées, ou des cellules prolifératives de pré-sénescentes. Afin d'explorer la réversibilité de ces processus, nous avons utilisé la reprogrammation en cellules souches pluripotentes induites ou iPS, suivie d'une redifférenciation fibroblastique. Nous avons pu démontrer que les iPS produites présentaient toutes les mêmes profils de timing, correspondant à celui d'une cellule pluripotente, indiquant que les modifications liées à l'âge ou à la sénescence pouvaient être reprogrammées. Ceci a ensuite été confirmé par une redifférenciation de ces iPS en cellules fibroblastiques dont les profils de timing de réplication ont pu être associés à ceux de fibroblastes jeunes. Cette étude nous a permis de mettre en évidence l'extrême plasticité de l'organisation spatio-temporelle de la réplication, révélant la possibilité de restaurer une dynamique de réplication altérée avec le vieillissement et l'entrée en sénescence, en manipulant le destin cellulaire vers un état indifférencié. Cette étude de la dynamique des domaines de réplication qui accompagne les modifications épigénétiques de la vie cellulaire a été complétée par l'étude à l'échelle moléculaire du rôle d'une histone déméthylase, Jarid1C/KDM5C, dans la réplication au sein des clusters d'origines. Ensemble, ces résultats apportent de nouveaux éléments sur l'interdépendance des dynamiques chromatiniennes et de réplication au cours de la vie cellulaire. / DNA replication allows at each cell cycle the exact copy of the genome that will be transmitted to daughter cells. Thus, the replication process is highly regulated in concert with its chromatin organization but also its dynamics in the nuclear architecture. Cellular ageing, be it physiologic, pathologic or induced in vitro by sub-optimal culture conditions, is accompanied by modifications of the chromatin organization of the genome. This could lead to spatio-temporal modifications of the replication program. We studied to what extent these modifications are reversible and could lead to the recovery of the replication program. In a first step, we analyzed modifications of the replication program upon several ageing situations to test our hypothesis. We analyzed the whole genome spatio-temporal organization of replication domains, the timing, of proliferating or near-senescent cells, of young, old or progeria (a premature ageing disease)-affected donors. We observed that young cells could be distinguished from old cells, and proliferative from near-senescent, by looking at some particular timing domains. To explore the reversibility of these processes, we used reprogramming to induce pluripotent stem cells (iPS cells) followed by fibroblastic re-differentiation. We were able to demonstrate that the derived iPS cells have similar timing profiles corresponding to pluripotent cells profiles: ageing- and senescence-related modifications of the replication timing could be reprogrammed. It was confirmed by re-differentiating these iPS into fibroblastic cells which timing profiles could be associated to young fibroblasts ones. By manipulating cell fate toward an undifferentiated state, this study shows the extreme plasticity of the DNA replication spatio-temporal organization and highlights a chance to restore the replication dynamics when altered by ageing and senescence. This study of the replication dynamics linked to the epigenetic modifications of cells life was completed by a study at the molecular scale of the Jarid1C/KDM5C histone demethylase influence on replication within origin clusters. Together, these results bring new insights into the interdependency of chromatin and replication dynamics during cell fate modifications.
85

Réplication et maintenance des télomères chez Schizosaccharomyces pombe : Rôle du complexe RPA dans la prévention ou la résolution de structures secondaires de type G-quadruplexes / Replication and maintenance of telomeres : Role of RPA to prevent or resolve secondary structures like G-quadruplexes in Schizosaccharomyces pombe

Audry, Julien 24 April 2015 (has links)
Les télomères sont des structures nucléoprotéiques protégeant l’extrémité des chromosomes de la dégradation et assurant la réplication de l’ADN terminal. En effet, de nombreuses protéines de réplication sont impliquées dans le maintien de ces structures, comme le complexe RPA (Replication Protein A). Ce complexe très conservé chez les eucaryotes se fixe à l’ADN simple brin et est impliqué dans la réplication, les mécanismes de recombinaison et la réparation de l’ADN. Chez S.pombe, la mutation ponctuelle de la sous-unité RPA1 (Rpa1-D223Y) provoque le raccourcissement des télomères. Dans cette étude, nous montrons que cette mutation provoque l’accumulation de structures aberrantes de haut poids moléculaire aux télomères corrélant avec une présence persistante de Polα aux télomères suggérant une accumulation de structures sur le brin riche en G. Nous avons pu mettre en évidence que la surexpression d’hélicases de la famille Pif1 incluant S.cerevisiae Pif1 et PIF1 humain ainsi que Pfh1 (S.pombe) sont capable de restaurer une longueur de télomères sauvage dans mutant rpa1-D223Y. Ces résultats suggèrent que RPA pourrait empêcher l’accumulation de G4 au niveau du brin retardé télomérique afin de faciliter l’élongation des télomères par la télomérase. De plus, des expériences in vitro ont montré que la mutation correspondante de RPA1 humain réduisait spécifiquement l’affinité de RPA pour le simple brin télomérique humain dans les conditions ou il forme des G4.Enfin l’étude de la stabilité de séquences répétées formant des G4 (minisatellite CEB25), chez S.pombe, a permis de renforcer l’hypothèse selon laquelle RPA pourrait empêcher la formation ou aiderait à la résolution de G4. / Telomeres are nucleoprotein structures that protect chromosome ends from degradation and ensure replication of the terminal DNA. In fact, many of replication proteins are involved in telomere maintenance, like RPA (Replication Protein A). RPA is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In S. pombe a mutation in the largest RPA subunit (Rpa1-D223Y) leads to substantial telomere shortening. In this study, we found that the D223Y mutation leads to the accumulation of aberrant secondary structures at telomeres. The presence of these secondary DNA structures correlates with a high association of Polα with telomeres suggesting that this mutation impairs lagging strand (G-rich) telomere replication. Strikingly, heterologous expression of the budding yeast Pif1 known to efficiently unwind G-quadruplex, human PIF1 and Phf1 (homolog of Pif1 in S.pombe) rescue the telomeric length defects of the D223Y cells. Furthermore, in vitro data show that the identical D to Y mutation in human RPA specifically affects its ability to bind G-quadruplex. We propose that RPA prevents the formation of G-quadruplex structures at lagging strand telomeres to facilitate telomerase action at telomeres. Furthermore, the study, in S.pombe, of the stability of G-rich repeat sequences (minisatellite CEB25) as known to form G4 enforce the hypothesis that RPA can prevents the formation of G4 or helps to solve this structure.
86

Conséquences d'un défaut de licensing des origines de réplication sur la stabilité du génome chez la levure Saccharomyces cerevisiae / Replication licensing defects and consequences on genome stability in the yeast Saccharomyces cerevisiae

Petit, Julie 16 December 2011 (has links)
L'instabilité chromosomique, marque des cellules tumorales, peut trouver sa source dans un défaut d'initiation de la réplication. Ceci a été illustré chez la levure Saccharomyces cerevisiae et concorde avec l'observation de mutations de régulateurs de la transition G1/S dans un grand nombre de tumeurs. Toutefois, les mécanismes par lesquels cette instabilité survient n'ont pas encore été clairement définis. Pour résoudre cette question, nous avons utilisé le mutant de levure cdc6-1 où la formation des complexes pré-réplicatifs est graduellement affectée avec l'augmentation de la température. Nous avons mis en évidence que l'allongement de la durée de la réplication qui en suit induit des cassures de l'ADN (DSB) seulement à l'entrée en mitose. Par combinaisons de mutants, nous avons vu que la condensation des chromosomes est en partie responsable de ces DSB. Ces DSB sont signalées à la cellule via la protéine Rad9, protéine adaptatrice du checkpoint de dommages à l'ADN. De façon concordante, nous avons observé une activation de la protéine effectrice de ce checkpoint Rad53 à l'entrée en mitose. La viabilité des cellules cdc6-1 repose sur les protéines de checkpoint Chk1 et Rad53 ainsi que sur la présence de cohésines et des topoisomérases Top2 et Top3. Selon nous, la réplication prolongée par diminution du nombre d'origines n'est pas détectée par les cellules comme un stress réplicatif. Lors de l'entrée en mitose, la condensation des chromosomes transformerait les fourches de réplication en structures reconnues et clivées par les nucléases Mus81-Mms4 et Yen1, qui sont activées en mitose, dirigeant ces régions sous-répliquées vers la réparation par recombinaison. Ce sont les coupures induites en mitose, non la progression des fourches, qui activent le checkpoint. Nous proposons que la sous-réplication de segments d'ADN consécutive à un défaut de licensing des origines favorise la recombinaison non homologue et génère l'instabilité chromosomique, à l'image des sites fragiles communs qui sont le siège de remaniements récurrents lors de la cancérogenèse. / Chromosome instability (CIN), a hallmark of cancer cells, can take its roots in the G1 phase of the cell cycle, when replication origins are licensed. This has been illustrated in the yeast Saccharomyces cerevisiae and is consistent with the fact that a vast number of tumors presents mutations in G1/S transition regulators. However the mechanisms by which this instability occurs are still not well established. Using the yeast cdc6-1 mutant in which preRC formation can be decreased gradually with temperature, we show that cells replicating from fewer origins undergo massive DNA double-strand break (DSB) formation in mitosis. Blocking mitotic entry by Swe1 overexpression or Clb1-4 depletion, and inactivation of Cdc5 (Polo) both suppress DSB formation in cdc6-1 cells, demonstrating that DSBs do not stem from collapsed forks but are actively induced during mitosis. DSB formation is dependent on chromosome condensation and the Mus81-Yen1 structure-specific endonucleases. These DSBs then trigger the Rad9 DNA damage checkpoint. Accordingly, Rad53 phosphorylation is detected only after entry into mitosis. We propose that cells replicating their DNA from fewer origins enter mitosis undetected, then condense their chromosomes and cleave unreplicated regions by Mus81-Yen1 for repair by recombination. The viability of cdc6-1 cells at semi-permissive temperature relies on Chk1 and Rad53, as well as on cohesins and topoisomerases Top2 and Top3. Cleavage of under replicated DNA segments in mitosis may favor non-homologous repair pathways leading to chromosome rearrangements, as seen for common fragile sites that co-localize with recurrent breakpoints in cancer.
87

Ku coordonne la résection des fourches de réplication bloquées, et stimule le redémarrage des fourches par la recombinaison homologue / Ku orchestrates resection at terminally-arrested replication forks, and stimulates fork restart by homologous recombination

Silva, Ana Carolina 20 June 2017 (has links)
Au cours de la réplication de l’ADN, les cellules rencontrent régulièrement des obstacles d’origine endogène et exogène qui peuvent mettre en péril la réplication des génomes et menacer la duplication et ségrégation des chromosomes en mitose. La Recombinaison Homologue (RH) a un rôle bien caractérisé dans la réparation des cassures double-brin. Par contre, son rôle dans la protection et le redémarrage des fourches de réplication est moins bien caractérisé. Il a été montré par l’équipe que le redémarrage des fourches bloquées par la RH dépend de la formation d’ADN simple-brin et pas d’une cassure double-brin.Afin d’étudier les mécanismes par lesquels la RH contribue au sauvetage des fourches de réplication bloquées, un système permettant de bloquer localement la progression d’une seule fourche de réplication a été utilisé. Cet essai génétique a permis de montrer que le redémarrage de fourches bloquées par la RH est associé à une synthèse d’ADN fautive suite à des événements de glissement de la polymérase au niveau de micro-homologies. Un marqueur génétique a été associé à la barrière de réplication afin de mesurer l’efficacité de redémarrage des fourches bloquées et d’étudier l’étape de résection (i.e formation de l’ADN simple brin) dans différents fonds génétiques.Dans ce travail, le rôle de facteurs impliqués dans la résection a été étudié dans le contexte d’un blocage de fourche de réplication. Comme pour la réparation de cassures double-brin, la résection des fourches bloquées se fait en deux étapes : résection initiale et extensive. La résection initiale, de faible portée, dépend du complexe MRN (Mre11/Rad50/Nbs1) et Ctp1. A cette étape, la dégradation de l’ADN néosynthétisé se fait sur une distance de 110 bp. Cette résection est suffisante pour permettre de recruter les facteurs de la RH, mais est aussi nécessaire pour que les fourches continuent à être résectées. L’absence de MRN et/ou Ctp1 conduit à un défaut de redémarrage. La résection extensive, qui expose de l’ADN simple brin sur une distance de 0,8 à 1Kb, est largement dépendante de la nucléase Exo1. Contrairement à la résection initiale, la résection extensive n’est pas critique pour le redémarrage des fourches par la RH.De façon intéressante, le facteur Ku, connu pour être impliqué dans la jonction d’extrémités non-homologue, a un rôle dans le contrôle de la résection initiale et extensive et dans l’optimisation du redémarrage des fourches bloquées. Plus précisément, en absence de Ku, de l’ADN simple-brin s’accumule en amont des fourches bloquées, et la dynamique de redémarrage est affaiblie, mais pas abolie. Globalement, ces résultats clarifient une étape cruciale dans le redémarrage des fourches par la RH : la résection. / On a regular basis, cells encounter endogenous and exogenous replication stresses that jeopardize the progression of replication forks, thus threatening both the accuracy of chromosome duplication and their segregation during mitosis. Homologous recombination (HR) has a well-known role in repairing DNA double strand breaks (DSB). Other less acknowledged functions of HR are to protect and restart impeded forks. As it was previously reported by the team, restarting replication forks by HR requires the exposure of a single-stranded gap through fork resection, and not a DSB, to allow the recruitment of recombination factors.To study the effects of HR in blocked replication forks, a conditional fork barrier (RFB) was used to terminally-arrest replication at a specific locus. This construct allowed to determine that replication restart by HR is error-prone, leading to replication forks liable to slippage at micro-homology. A genetic reporter assay was placed in the vicinity of the RFB to allow the efficiency of replication restart and the step of resection to be quantified.In here, we explored factors involved in the formation of ssDNA gaps at halted replication forks. Similarly to DSB repair, resection in fork restart occurs in two steps. The initial resection is performed by MRN (Mre11/Rad50/NBS1) and Ctp1. This small degradation of approximately 110 bp of newly synthetized strands is sufficient to recruit HR factors and is required to promote the subsequent resection. The absence of either MRN or Ctp1 leads to defective replication restart by HR. The extensive resection (about 0.8-1Kb in size) is largely dependent on the nuclease Exo1, and it is not required for efficient fork restart.Interestingly, the non-homologous end-joining factor Ku was found to have a role in orchestrating initial and extensive resection and fine-tuning fork restart. Specifically, in the absence of Ku, ssDNA accumulates at the terminally-arrested replication forks, and fork restart dynamics is decreased, but not abolished. Overall, these results shed light on a delicate step of replication fork recovery by homologous recombination: resection.
88

Rôle oncogénique de LMO1/2 par la dérégulation de la réplication

Renoult, Aline 12 1900 (has links)
La leucémie lymphoblastique aiguë touche 30% des enfants atteints de cancer. 60% des patients atteints de leucémies lymphoblastiques aigües de type T (T-ALL) expriment de façon aberrante les gènes LMO1/2 (LIM -only2 and LMI-only1) suite à des translocations. Contrairement à leur rôle en tant que facteur de transcription qui est bien connu, leur rôle au niveau de la réplication de l’ADN et son impact oncogénique reste à étudier. Nous avons précédemment montré que LMO2 interagit avec le complexe de réplication et que son expression aberrante induit la réplication de l'ADN. Fait intéressant, des données préliminaires du laboratoire montrent une augmentation des dommages à l’ADN au stade pré-leucémique lorsque LMO1 est surexprimé dans les thymocytes. De plus, 90% des patients atteints de leucémies T-ALL présentent une délétion des gènes CDKN2A/B, des régulateurs importants de la sénescence. Afin de mettre en évidence l’importance du rôle de LMO1/2 dans la réplication de l’ADN, j’ai étudié l’interaction entre LMO2 et les protéines du complexe réplicatif, sa conséquence fonctionnelle ainsi que l’induction de sénescence pouvant en découler. L'analyse des séquences des clones issus d’un crible de double hybride pour des partenaires d’interaction avec LMO2 (POLD1, MCM6, PRIM1 et KAT7) a permis d’identifier des domaines potentiellement importants pour ces interactions, plus spécifiquement, un domaine en doigt de zinc dans la protéine KAT7. Une seconde approche bio-informatique de la dépendance génique et de sensibilité aux drogues en utilisant les bases de données Depmap et CancerRX des lignées leucémiques a permis de mettre en évidence un stress réplicatif spécifique aux lignées cellulaires leucémiques. Fait intéressant, 6 lignées cellulaires leucémiques sur 7, présentent dans la base de données CancerRX, (6 sur 7) qui présentent une sensibilité aux médicaments causant des dommages à l'ADN expriment des oncogènes LMO1 ou LMO2. Enfin, grâce au marquage intracellulaire par FACS, la surexpression de LMO1 et de son partenaire SCL dans les thymocytes conduit à une augmentation du niveau d’expression de la protéine P16, un marqueur de sénescence, au stade pré-leucémique. Nos résultats révèlent l’impact des oncogènes LMO1 et LMO2 dans les leucémies T-ALL, en particulier, sur la réplication de l'ADN. Ce stress réplicatif et la sensibilité spécifique des lignées cellulaires leucémiques au médicament causant des dommages à l'ADN pourraient donc expliquer l’efficacité de certains traitements en clinique contre la leucémie. / The acute lymphoblastic leukemia affects 30% of children with cancer. Chromosomal rearrangement implicating LMO1 or LMO2 are found in 60% of T-cell acute lymphoblastic leukemia (T-ALL) cases. Contrary to their known transcriptional role, their precise function in DNA replication is still unclear. We previously showed that LMO2 interacts with the replication complex and its aberrant expression induce DNA replication. Interestingly, preliminary data show that overexpression of LMO1 in mice lead to an increase in DNA damage at the pre-leukemic stage. Moreover, 90% of T-ALL patients present a deletion of CDKN2A/B genes, which are important regulators of senescence. In order to demonstrate the importance of the role of LMO1/2 in DNA replication, I studied the interaction between LMO2 and proteins from the replicative complex, its functional consequence as well as the induction of senescence that may result from it. Sequence analysis of yeast two-hybrid clones of interaction with LMO2 (POLD1, MCM6, PRIM1 and KAT7) identified important domains for these interactions, more specifically, a zinc finger domain in KAT7 protein. A second bioinformatic approach of gene dependency and drug sensitivities using the Depmap and CancerRX databases has revealed a specific DNA replicative stress in leukemic cell lines. Interestingly, the majority of leukemic cell lines (6 out of 7) which present a sensitivity to drug causing DNA damage expresses either LMO1 or LMO2 oncogenes. Finally, using FACS intracellular labelling, the overexpression of LMO1 and its partner SCL in thymocytes lead to an increase in p16 protein levels, a marker of senescence, at the pre-leukemic stage. Our results revealed the impact of LMO1 and LMO2 oncogenes overexpression in T-ALL leukemia, in particular, on DNA replication. This replicative stress and the specific sensitivity of leukemic cell lines to drug causing DNA damage could therefore explain the effectiveness of certain clinical treatments against leukemia.
89

Ensuring availability and managing consistency in geo-replicated file systems / Assurance de disponibilité et cohérence dirigeante dans systèmes de fichiers géo-reproduits

Tao Thanh, Vinh 08 December 2017 (has links)
Les systèmes de fichiers géo-distribués souffrent de latences élevées et de partitions réseau. À cause de cela, et pour assurer une haute disponibilité, de tels systèmes effectuent généralement des mises à jour localement, sans latence, et les propagent ensuite en arrière-plan. Cette réplication optimiste est confrontée à deux défis majeurs : (i) détecter les conflits entre les mises à jour simultanées et les résoudre d'une manière significative pour les utilisateurs, tout en maintenant les invariants d'intégrité du système; et (ii) la prise en charge d'applications qui n'ont pas été conçues pour gérer les anomalies de concurrence. Les systèmes de fichiers géo-distribués optimistes existants ne permettent pas de relever ces défis. Par exemple, Dropbox ne supporte pas les liens matériels. Le système de fichiers AndrewFS échoue sur certains changements de noms de répertoires; et tous les systèmes existants utilisent la résolution automatique des conflits qui viole la sémantique POSIX. Nous présentons notre solution aux problèmes posés ci-dessus dans la conception et la mise en œuvre d'un prototype de système de fichiers géo-distribué, nommé Tofu. Sa conception inclut une nouvelle abstraction de session pour prendre en charge l'API, tout en permettant des mises à jour optimistes. Il est capable de détecter tous les conflits sur ces structures de données et de les résoudre d'une façon que nous pensons que les utilisateurs trouveront raisonnable. Les expériences montrent que Tofu est hautement évolutif et qu'il entraîne des surcoûts linéaires, améliorant ainsi les systèmes académiques et industriels existants. / Geo-distributed file systems suffer from high latency and network partitions. Because of this, and to ensure high availability, such systems typically commit updates locally, with no latency, and propagate them in the background. Such optimistic replication faces two major challenges: (i) detecting conflicts between concurrent updates and resolving them in a way meaningful for users, while maintaining system integrity invariants; and (ii) supporting legacy applications that are not prepared to deal with concurrency anomalies. Existing optimistic geo-distributed file systems fall short of addressing the challenges. For instance, Dropbox does not support hard links; Andrew File System fails on some concurrent renaming of directories; and all existing systems use automatic conflict resolution that violates the legacy POSIX semantics. We present our solution to the above problems in the design and implementation of a prototype geo-distributed file system, named Tofu. Its design includes a new session abstraction to support the legacy API, while allowing optimistic updates. Unlike previous approaches, our solution is based on a formal model covering all aspects of a Unix-like file system, including directories, inodes, hard links, etc. It is able to detect all conflicts on those data structures, and resolves them in a way that we believe users will find generally reasonable. Experiments show that Tofu is highly scalable, and incurs linear overhead, improving over existing academic and industrial systems.
90

Conservation structurale et fonctionnelle du complexe histone acétyltransférase NuA4 de la levure à l'humain : identification et caractérisation des complexes histone acétyltransférase de la famille MYST chez l'humain

Doyon, Yannick 12 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / La régulation de la dynamique des chromosomes dicte la finalité de nombreux processus, tels la transcription, la réparation, la réplication et la recombinaison de l'ADN. Ce contrôle s'exerce notamment par la modification de la chromatine, un assemblage nucléoprotéique responsable de l'organisation de l'information génétique à l'intérieur du noyau des cellules eucaryotes. La chromatine constitue une plateforme dynamique et active où l'intégration de multiples événements de signalisation s'effectue. De ce fait, elle est porteuse d'une information épigénétique cruciale à l'homéostasie de la cellule et des organismes. Les complexes multiprotéiques pouvant modifier ou remodeler la structure de la chromatine sont au cœur de cette régulation. Leur caractérisation biochimique et fonctionnelle est donc primordiale à la compréhension des fonctions nucléaires. Une des modifications les mieux caractérisées est l'acétylation post-traductionnelle des queues N-terminales des histones, protéines structurales majeures de la chromatine. Chez Saccharomyces cerevisiae, le complexe histone acétyltransférase NuA4, dont l'activité catalytique est portée par la protéine Esal, est le seul de ce type à être essentiel à la viabilité de la levure. Cet assemblage de 13 sous-unités cible les extrémités des histones H2A et H4 et agit comme co-activateur transcriptionnel ainsi que co-facteur dans la réparation des cassures double brin de l'ADN. Le but premier mes études doctorales était de déterminer si le complexe NuA4 était conservé chez l'humain. Nous avons donc entrepris la purification et la caractérisation biochimique et fonctionnelle de ce complexe à partir de cellules humaines en culture. Ainsi, nous avons pu mettre en évidence l'étonnante conservation de NuA4 chez les eucaryotes, en plus d'observer l'évolution convergente de deux complexes aux activités distinctes, réunis en une seule entité chez les métazoaires. L'identification des différentes protéines constituant ces complexes nous a amené à caractériser l'environnement moléculaire d'une famille de suppresseurs de tumeur impliqués dans le contrôle du cycle cellulaire et agissant comme co facteurs de p53; la famille « inhibitor of growth ». Ceci nous a permis d'identifier trois nouveaux complexes histone acétyltransférase chez l'humain. De plus, nous avons mis en évidence leur rôle essentiel dans le processus de réplication de l'ADN.

Page generated in 0.1562 seconds