• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Directed evolution of an HIV-1 LTR specific recombinase for anti-retroviral therapy- a proof of concept study

Sarkar, Indrani 17 January 2007 (has links) (PDF)
The prospect of the work presented in this thesis has been to engineer Cre recombinase to recognize and recombine a sequence from an HIV-1 Long Terminal Repeat (LTR), characterize the recombination proficiency of the evolved recombinase in mammalian cells and explore the potential of the recombinase for a novel antiretroviral strategy.
2

Directed evolution of an HIV-1 LTR specific recombinase for anti-retroviral therapy- a proof of concept study

Sarkar, Indrani 26 September 2006 (has links)
The prospect of the work presented in this thesis has been to engineer Cre recombinase to recognize and recombine a sequence from an HIV-1 Long Terminal Repeat (LTR), characterize the recombination proficiency of the evolved recombinase in mammalian cells and explore the potential of the recombinase for a novel antiretroviral strategy.
3

Molekularer Nachweis von Felinem Coronavirus basierend auf einem Rekombinase-Polymerase-Amplifikationstest

Kobialka, Rea Maja 15 June 2022 (has links)
Das Feline Coronavirus (FCoV) ist in den Katzenpopulationen der ganzen Welt weit verbreitet. Das Problem dieses Virus ist seine große Wahrscheinlichkeit zu mutieren. Einige dieser Mutationen können zu einer veränderten Pathogenität und zu einem schweren Verlauf der Infektion führen. So bleibt es möglicherweise nicht wie bei den meisten der infizierten Tiere bei einem inapparenten Verlauf oder milden Durchfall, sondern es kommt zur Entwicklung einer häufig tödlich endenden systemischen Erkrankung, der Felinen Infektiösen Peritonitis (FIP). Um dies zu verhindern ist es essentiell, Virusausscheider schnell zu identifizieren und zu eliminieren, um den Virusdruck in Katzenpopulationen so gering wie möglich zu halten. Die Polymerase-Kettenreaktion (PCR) für den Nachweis von FCoV in Kot ist der Goldstandard, aber ist zeitaufwendig und erfordert ein gut ausgestattetes Labor. Als isothermale Methode liefert die Reverse Transkription Rekombinase Polymerase Amplifikation (RT-RPA) eine schnelle und kostengünstige Alternative für den molekularen Nachweis von FCoV. Ziel dieser Studie war es, einen Schnelltest zum Nachweis von FCoV zu entwickeln, der auf der RT-RPA basiert. Drei Vorwärts- und drei Rückwärtsprimer sowie eine Sonde wurden erstellt. Als Zielsequenz wurde die hochkonservierte, nicht-translatierte Region des 7b Gens gewählt. Alle möglichen Kombinationen dieser Primer wurden getestet und das Paar mit der höchsten Sensitivität für die weitere Validierung ausgewählt. Bei einer konstanten Temperatur von 42 °C wurde die reverse Transkription mit anschließender DNA-Amplifikation und Detektion innerhalb von 15 Minuten durchgeführt. Die analytische Sensitivität wurde anhand von neun Wiederholungen mit der Verdünnungsreihe des molekularen Standards (10^3-10^0RNA Kopien/µL) ermittelt und die Nachweisgrenze mittels Probit-Analyse berechnet. Für die Untersuchung auf Kreuzreaktionen wurde DNA oder RNA von 19 Viren getestet. Die Leistung der RT-RPA unter Verwendung klinischer Proben wurde mit extrahierter RNA von 39 felinen Kotproben analysiert. Alle Ergebnisse wurden denen der real-time RT-PCR gegenübergestellt. Die UTR des 7b Gens ausgewählter Proben, einschließlich einer falsch negativ getesteten Probe, wurde sequenziert und mittels Geneious Prime analysiert. Die Probit-Analyse ergab eine Nachweisgrenze von 58,5 RNA-Kopien/Reaktion. Die RT-RPA amplifizierte keine Nukleinsäuren der 17 getesteten anderen Pathogenen, zeigte jedoch eine Kreuzreaktion mit dem Caninen Coronavirus und dem Transmissiblen Gastroenterits-Virus. Der Vergleich der Resultate der real-time RT-PCR mit den 39 extrahierten Kotproben und den Ergebnissen der RT-RPA ergab eine Sensitivität von 90,9% und eine Spezifität von 100%. Bei der Sequenzierung wurde keine Sequenzänderung in der Region von Primern und Sonde festgestellt. Die RT-RPA hat sich als schnelle und effektive Maßnahme für den Nachweis von FCoV in extrahierten Kotproben herausgestellt. Die einfache Handhabung der RPA macht wiederholtes Testen möglich, um auch die intermittierenden Ausscheider zu erkennen. Die Anwendung des Schnelltests könnte so zu einer Reduktion von FCoV innerhalb der Katzenpopulationen beitragen.:Inhaltsverzeichnis 1. Einleitung 1 2. Literaturübersicht 3 2.1 Felines Coronavirus 3 2.1.1 Virus Klassifikation 3 2.1.2 Struktur und Genom 4 2.1.3 Virusevolution 6 2.2 Epidemiologie und Krankheitsverlauf 8 2.2.1 Übertragung und Umweltstabilität 8 2.2.2 Krankheitsverlauf 9 2.2.3 Prävalenz 12 2.2.4 Prävention 13 2.2.5 Behandlung 13 2.2.6 Impfung 14 2.3 Diagnostik 15 2.3.1 Indirekter Erregernachweis 15 2.3.2 Direkter Erregernachweis 17 3. Publikation 27 3.1 Stellungnahme zum Eigenanteil der Publikation 27 3.2 Publikation 27 4. Diskussion und Schlussfolgerung 40 5. Zusammenfassung 47 6. Summary 49 7. Literaturverzeichnis 51 8. Abbildungsverzeichnis 64 9. Tabellenverzeichnis 64 10. Anhang 65 11. Danksagung 72
4

Rapid Extraction and Detection of African Swine Fever Virus DNA Based on Isothermal Recombinase Polymerase Amplification Assay

Ceruti, Arianna 15 June 2022 (has links)
Das Afrikanische Schweinepest-Virus (ASPV) verursacht eine tödliche Viruserkrankung bei Schweinen. Dieses hat sich weltweit fortlaufend verbreitet und wurde im September 2020 erstmalig in Deutschland nachgewiesen. Der Ausbruch der Seuche kann schwere wirtschaftliche Verluste nach sich ziehen. Bis heute ist kein Impfstoff zugelassen, daher sind Überwachung der epidemiologischen Situation und der frühzeitige Erregernachweis unerlässlich für die Bekämpfung der Afrikanischen Schweinepest als Tierseuche. Die Polymerase-Kettenreaktion (PCR) gilt als Goldstandard für den Nachweis von ASPV und zeichnet sich durch eine hohe Sensitivität und Spezifität aus. Allerdings erfordert die PCR gut ausgestattete Testlabore und ist zeitintensiv. Point-of-Need-Tests können schnelle und zuverlässige direkt vor Ort liefern und stellen somit eine Alternative zum Goldstandard PCR dar. Ziel dieser Studie war es, einen Point-of-Need-Test zum Nachweis von ASPV zu entwickeln. Dieser beruht auf der Grundlage der Rekombinase-Polymerase-Amplifikation (RPA) und sollte vor Ort einsatzfähig sein. Es wurden drei Primersätze und eine Sonde auf der Grundlage des B646L-Gens, welches für das virale Kapsidprotein p72 vom ASP-Virus kodiert, entwickelt. Alle möglichen Kombinationen wurden getestet. Die analytische Sensitivität wurde mit acht Wiederholungen von Verdünnungsreihen des molekularen Standards (102-100 DNA-Kopien pro µl) ermittelt. Die Nachweisgrenze wurde anhand einer Probit-Analyse dieser Durchläufe berechnet. Die Spezifität wurde mit verschiedenen viralen Nukleinsäuren von anderen das Schwein infizierenden Erregern überprüft. Um den Test im Feld einsatzfähig zu gestalten, wurden mittels ASPV-RPA zwei verschiedene Extraktionsansätze mit allen 73 verfügbaren Schweineblutproben getestet: eine schnelle Hitze/Lysepuffer-Extraktionsmethode und ein standardisiertes Extraktionsverfahren auf Spin-Säule-Basis. Die diagnostische Sensitivität und Spezifität wurde für beide Testverfahren berechnet. Alle Ergebnisse wurden mit einer etablierten real-time PCR für ASPV verglichen. Eine kleine Pilotstudie zum Feldeinsatz des ASPV-RPA-Tests wurde in Uganda mit 20 Blutproben unter Verwendung des Kofferlabors durchgeführt. Die berechnete Nachweisgrenze von ASPV-RPA lag bei 3,5 DNA-Kopien pro µl. Alle untersuchten ASPV-Genotypen wurden detektiert, aber keine anderen viralen Nukleinsäuren. Bei Verwendung der standardisierten DNA-Extraktionsmethode mit anschließender Durchführung der ASPV-RPA lag die diagnostische Sensitivität und Spezifität bei 100%, wie auch mittels der real-time PCR. Auch das schnelle Hitze-/Lysepuffer Protokoll zeigte vielversprechende Ergebnisse und erreichte eine Positivrate von 97% mittels ASPV-RPA im Vergleich zu 38% bei der PCR. In Uganda wurden elf ASPV-RPA-Proben als positiv erkannt, darunter zwei fieberfreie asymptomatische Tiere. Der schnelle Erregernachweis stellt einen essenziellen Aspekt der ASP Seuchenbekämpfung dar. Die ASPV-RPA erwies sich als genauso empfindlich und spezifisch wie die Goldstandard-PCR zur Erregeridentifizierung. In Kombination mit dem Schritt der DNA-Extraktion durch Hitze/Lysepuffer benötigt der entwickelte Test etwa 25 Minuten von der Probenentnahme bis zum Ergebnis. Die Positivrate ist mit 97% vielversprechend, wobei die ASPV-RPA im Vergleich zur PCR eine höhere Toleranz gegenüber Inhibitoren aufwies. Wie die Pilot-Feldstudie in Uganda mit dem Kofferlabor zeigt, ist ASPV-RPA eine im Feld einsatzfähige Nachweismethode. Das Kofferlabor bedarf lediglich einer Grundausstattung und einer Solarbatterie. Somit stellt das Kofferlabor eine vielversprechende Diagnostikmethode dar, welche vor Ort in ressourcenarmen Umgebungen zum Nachweis des ASPV eingesetzt werden kann.:1. Introduction 2. Literature overview 2.1 African swine fever 2.1.1 Aetiology 2.1.1.1 Classification and taxonomy 2.1.1.2 Viral structure and genome 2.1.1.3 Genetic typing and antigenic variability 2.1.2 Epidemiology 2.1.2.1 Disease distribution 2.1.2.2 Host range and epidemiological cycles 2.1.2.2.1 Warthog-tick cycle 2.1.2.2.2 Domestic pig-tick cycle 2.1.2.2.3 Domestic pig cycle 2.1.2.2.4 Wild boar-environment cycle 2.1.2.3 Tenacity, transmission, and infectivity 2.1.3 Pathophysiology 2.1.3.1 Pathogenesis 2.1.3.2 Clinical signs and pathological findings 2.1.3.3 Differential diagnosis 2.2 Available diagnostic tools for ASFV 2.1.4 Diagnosis based on immune response 2.1.5 Diagnosis based on agent identification 2.3 Gaps in African swine fever diagnostics 3. Publication 3.1 Statement of contribution 3.1.1 Publication 4. Discussion 5. Summary 6. Zusammenfassung 7. References 8. Appendix 9. Acknowledgements / African swine fever virus (ASFV) causes a deadly viral disease in pigs. The virus has gradually spread throughout the world and was reported in Germany in September 2020. ASF outbreak can lead to huge economical loss. No vaccine is commercially available and thus, surveillance and early detection play a pivotal role to control an ASF outbreak. Polymerase Chain Reaction (PCR) is considered the gold standard for ASFV detection due to its superior sensitivity and specificity. However, it is time-consuming and requires well-equipped laboratories. Point-of-need tests can offer an alternative, delivering fast and reliable results directly in the field. The aim of this study was to establish a field-deployable point-of-need test based on Recombinase Polymerase Amplification (RPA) to detect ASFV. Material and Methods: Three sets of primers and one probe based on the B646L gene which encodes for the viral capsid protein p72 were designed. All possible combinations were screened. Analytical sensitivity was tested with eight replicates of serial dilutions of the molecular standard (102-10° DNA copies per µl). The limit of detection was calculated using probit analysis. ASFV-RPA’s specificity was tested using various viral nucleic acids of pathogens infecting pigs. To allow the deployment at point of need, two different extraction approaches were tested in ASFV-RPA with all 73 pig blood samples included in this study: a rapid heat/lysis buffer extraction method and a standardized spin-column based extraction kit. Diagnostic sensitivity and specificity were calculated for both test approaches. All results were compared to an established real-time PCR for ASFV. A small pilot study for ASFV-RPA assay deployment was done in Uganda with 20 blood samples of a suspected outbreak using the field-deployable suitcaselab. The calculated limit of detection of ASFV-RPA was 3.5 DNA copies per µl. All screened ASFV genotypes were detected while no other viral nucleic acids were identified. Using the standardized DNA extraction method in ASFV-RPA, and compared to real-time PCR, diagnostic sensitivity and specificity were 100%. The rapid heat/lysis buffer protocol showed very promising results, achieving 97% of positivity rate compared to a 38% of the real-time PCR. In Uganda, ASFV-RPA detected 11 samples as positive, including two known afebrile animals. Immediate agent detection is a key aspect of ASF outbreak control. ASFV-RPA is as sensitive and specific as a gold standard PCR for ASFV identification. Combined with the heat/lysis buffer DNA isolation step, the duration of the assay is around 25 minutes from sample collection to result readout, with a promising positivity rate of 97% which indicates tolerance against inhibitors. ASFV-RPA is a portable detection method, as revealed during the pilot field study in Uganda. Only requiring basic equipment and solar batteries, the suitcase lab is a promising tool for on-site diagnostics in resource limited settings to detect ASFV.:1. Introduction 2. Literature overview 2.1 African swine fever 2.1.1 Aetiology 2.1.1.1 Classification and taxonomy 2.1.1.2 Viral structure and genome 2.1.1.3 Genetic typing and antigenic variability 2.1.2 Epidemiology 2.1.2.1 Disease distribution 2.1.2.2 Host range and epidemiological cycles 2.1.2.2.1 Warthog-tick cycle 2.1.2.2.2 Domestic pig-tick cycle 2.1.2.2.3 Domestic pig cycle 2.1.2.2.4 Wild boar-environment cycle 2.1.2.3 Tenacity, transmission, and infectivity 2.1.3 Pathophysiology 2.1.3.1 Pathogenesis 2.1.3.2 Clinical signs and pathological findings 2.1.3.3 Differential diagnosis 2.2 Available diagnostic tools for ASFV 2.1.4 Diagnosis based on immune response 2.1.5 Diagnosis based on agent identification 2.3 Gaps in African swine fever diagnostics 3. Publication 3.1 Statement of contribution 3.1.1 Publication 4. Discussion 5. Summary 6. Zusammenfassung 7. References 8. Appendix 9. Acknowledgements
5

Structural stability of the integron synaptic complex

Vorobevskaia, Ekaterina 03 May 2024 (has links)
The predominant tool for adaptation in Gram-negative bacteria is a genetic system called integron. It rearranges gene cassettes, promoting multiple antibiotic resistances, a recognized major global health threat. It is based on a unique recombination process involving a Tyrosine recombinase – called integrase IntI – and folded single-stranded DNA hairpins – called attC sites. Four recombinases and two attC sites form a macromolecular synaptic complex, which is key to the entire recombination process and the focus of our study. The bottom strand of all attC sites shows highest recombination in vivo, however, it still varies greatly and the underlying reason is unknown. We hypothesize that the difference in recombination efficiency arises from the variable mechanical stability of the synaptic complex, which in turn is affected by the attC site. Here, we established an optical tweezers force-spectroscopy assay that allows us to probe the synaptic complex stability for different DNA substrates and protein variants. We discovered a strong correlation between recombination efficiency and the mechanical stability of the synapse, indicating a regulatory mechanism from the DNA sequence to the quaternary complex structure stability. We have discovered protein residues interacting with the DNA in trans, within the synaptic complex, which reduces its stability. Furthermore, we discovered that the C-terminal helix, a conserved structural feature of tyrosine recombinases plays a key role in the stabilization of the tetramer assembly on the DNA, which upon mutation significantly destabilized the synaptic complex. Expanding upon this new understanding of synapse stability regulation we developed a novel approach for destabilizing the synaptic complex, potentially reducing the recombination efficiency. We designed α-helix mimicking peptides that would compete with the C-terminal tail of the integrase, block the interlocking interaction, and lead to synaptic complex destabilization. We have observed a prominent destabilizing effect on the synaptic complex already at 10 µM peptide concentration. Overall, our findings reveal new regulatory mechanisms in the recombination efficiency of the bacterial integron and provide first data for the active synapse destabilization mechanism. This novel understanding of the regulatory role the synaptic complex plays in the recombination efficiency of the integron system introduces a new approach to reduce the spread of antibiotic resistance among bacteria. / Das vorherrschende Anpassungsmittel bei gramnegativen Bakterien ist ein genetisches System, das Integron genannt wird. Es ordnet Genkassetten neu an und fördert so multiple Antibiotikaresistenzen, die eine globale Gesundheitsbedrohung darstellen. Es basiert auf einem einzigartigen Rekombinationsprozess, an dem eine Tyrosin-Rekombinase - Integrase IntI genannt - und gefaltete einzelsträngige DNA-Hairpins - attC-Stellen genannt - beteiligt sind. Vier Rekombinasen und zwei attC-Stellen bilden einen makromolekularen synaptischen Komplex, der für den gesamten Rekombinationsprozess entscheidend ist und im Mittelpunkt unserer Forschung steht. Der untere Strang aller attC-Stellen weist in vivo die höchste Rekombinationsrate auf, die jedoch aus unbekannten Grund stark variier. Wir vermuten, dass der Unterschied in der Rekombinationsrate auf die unterschiedliche mechanische Stabilität des synaptischen Komplexes zurückzuführen ist, die wiederum von der attC-Stelle beeinflusst wird. Hier haben wir einen Test mittels Kraft-spektroskopie mit einer optischen Pinzette entwickelt, mit dem wir die Stabilität des synaptischen Komplexes für verschiedene DNA-Substrate und Proteinvarianten untersuchen können. Wir stellten eine starke Korrelation zwischen der Rekombinationsrate und der mechanischen Stabilität der Synapse fest, was auf einen Regulationsmechanismus zwischen der DNA-Sequenz und der Stabilität der quaternären Komplexstruktur hinweist. Wir haben Proteinreste entdeckt, die innerhalb des synaptischen Komplexes mit der DNA in trans interagieren, was zu einer Verringerung dessen Stabilität führt. Darüber hinaus stellten wir fest, dass die C-terminale Helix, ein konserviertes Strukturmerkmal von Tyrosin-Rekombinasen, eine Schlüsselrolle bei der Stabilisierung des Tetramer-Aufbaus an der DNA spielt, die bei Mutation den synaptischen Komplex erheblich destabilisiert. Auf der Grundlage dieses neuen Verständnisses der Regulierung der Synapsenstabilität haben wir einen neuen Ansatz zur Destabilisierung des synaptischen Komplexes entwickelt, der die Effizienz der Rekombination verringern könnte. Wir entwarfen α-Helix-nachahmende Peptide, die mit dem C-terminalen Ende der Integrase konkurrieren, die Interlocking-Interaktion blockieren und zur Destabilisierung des synaptischen Komplexes führen. Wir haben eine deutliche destabilisierende Wirkung auf den synaptischen Komplex bereits bei einer Peptidkonzentration von 10 µM beobachtet. Insgesamt zeigen unsere Ergebnisse neue Regulationsmechanismen für die Rekombinationsleistung des bakteriellen Integrons auf und liefern erste Daten für den Mechanismus der aktiven Destabilisierung der Synapse. Dieses neue Verständnis der regulatorischen Rolle, die der synaptische Komplex bei der Rekombinationseffizienz des Integronsystems spielt, eröffnet einen neuen Ansatz zur Verringerung der Verbreitung von Antibiotikaresistenzen unter Bakterien.
6

Entwicklung von Rekombinase-Polymerase-Amplifikations-Nachweisverfahren für virale Erreger von Atemwegsinfektionen / Development of a panel of recombinase polymerase amplification assays for detection of respiratory viruses

Ehnts, Kai Ilmo 06 August 2013 (has links)
No description available.
7

Entwicklung von Rekombinase-Polymerase-Amplifikations-Verfahren zum schnellen Nachweis von hochpathogenen Erregern / Development of a panel of recombinase polymerase amplification assays for rapid detection of highly pathogenic agents

Euler, Anna Milena 07 July 2015 (has links)
No description available.
8

Ko-Expression des astroglialen GFAP- und des oligodendrozytären PLP-Promotors in Müllerzellen der Retina: Aktivierung durch Läsionen

Lycke, Christian 07 January 2015 (has links) (PDF)
Die Dissertation befasst sich mit der Untersuchung der Ko-Expression des GFAP- und des PLP-Promotors in Müllerzellen der Netzhaut transgener Mäuse. Die verwendete Mauslinie ist tripel-transgen für den GFAP- und den PLP-Promotor sowie für einen ROSA26-Reporter. Durch die Quantifizierung der EYFP-Expression in Müllerzellen konnte gezeigt werden, dass es nach akuter ischämischer Schädigung sowie einer angeborenen retinalen Degeneration in Müllerzellen zu einer Aktivierung des oligodendrozytären PLP-Promotors kommt. Weiterhin wurde festgestellt, dass die Aktivierung des Transkriptionsfaktors Sox-9, der sowohl für die Entwicklung der Müllerzellen als auch für die Oligodendrogenese von entscheidender Rolle ist, mit dieser Promotoraktivierung korreliert. Diese Ergebnisse implizieren, dass Müllerzellen im Rahmen ihrer Stammzelleigenschaften in der Lage sind, auf embryonale Entwicklungsprozesse, die auch die oligodendrozytäre Zellreihe beinhalten, zurückgreifen zu können.
9

Ko-Expression des astroglialen GFAP- und des oligodendrozytären PLP-Promotors in Müllerzellen der Retina: Aktivierung durch Läsionen: Ko-Expression des astroglialen GFAP- und desoligodendrozytären PLP-Promotors in Müllerzellen der Retina:Aktivierung durch Läsionen

Lycke, Christian 26 June 2014 (has links)
Die Dissertation befasst sich mit der Untersuchung der Ko-Expression des GFAP- und des PLP-Promotors in Müllerzellen der Netzhaut transgener Mäuse. Die verwendete Mauslinie ist tripel-transgen für den GFAP- und den PLP-Promotor sowie für einen ROSA26-Reporter. Durch die Quantifizierung der EYFP-Expression in Müllerzellen konnte gezeigt werden, dass es nach akuter ischämischer Schädigung sowie einer angeborenen retinalen Degeneration in Müllerzellen zu einer Aktivierung des oligodendrozytären PLP-Promotors kommt. Weiterhin wurde festgestellt, dass die Aktivierung des Transkriptionsfaktors Sox-9, der sowohl für die Entwicklung der Müllerzellen als auch für die Oligodendrogenese von entscheidender Rolle ist, mit dieser Promotoraktivierung korreliert. Diese Ergebnisse implizieren, dass Müllerzellen im Rahmen ihrer Stammzelleigenschaften in der Lage sind, auf embryonale Entwicklungsprozesse, die auch die oligodendrozytäre Zellreihe beinhalten, zurückgreifen zu können.:Inhaltsverzeichnis ....................................................................................................................... 3 Bibliographische Darstellung ..................................................................................................... 5 Abkürzungsverzeichnis und Erläuterungen ................................................................................ 6 1 Einleitung ............................................................................................................................ 8 1.1 Die Retina als Teil des Auges ................................................................................................. 8 1.1.1 Aufbau .............................................................................................................................. 8 1.2 Die gliale Müllerzelle ............................................................................................................ 12 1.2.1 Definition und Morphologie der Müllerzellen ............................................................... 12 1.2.2 Funktion .......................................................................................................................... 13 1.2.3 Ursprung und Ontogenese der Müllerzelle ..................................................................... 14 1.3 Erkrankungen der Netzhaut .................................................................................................. 15 1.3.1 Akute Läsionen ............................................................................................................... 15 1.3.2 Chronische Erkrankungen der Netzhaut ......................................................................... 15 1.3.3 Die Rolle der Müllerzelle in der erkrankten Retina ....................................................... 16 1.4 Mausgenetik .......................................................................................................................... 18 1.4.1 Das Cre-loxP-System ..................................................................................................... 18 1.5 Pax-6 und Sox-9: Transkriptionsfaktoren spezifizieren das Zellschicksal ........................... 24 1.5.1 Die PAX-Familie ............................................................................................................ 24 1.5.2 SOX-9-Gene ................................................................................................................... 25 2 Ziele .................................................................................................................................. 26 3 Material und Methoden ..................................................................................................... 27 3.1 Material ................................................................................................................................. 27 3.1.1 Chemikalien .................................................................................................................... 27 3.1.2 Antikörper ....................................................................................................................... 27 3.1.3 Größenstandards ............................................................................................................. 28 3.1.4 Mauslinien ...................................................................................................................... 29 3.1.5 Geräte ............................................................................................................................. 31 3.2 Methoden .............................................................................................................................. 31 3.2.1 Genotypisierung transgener Mäuse ................................................................................ 31 3.2.2 Akute retinale Läsion durch Anlegen eines erhöhten Augeninnendrucks („high intraocular pressure“, HIOP) .......................................................................................... 37 3.2.3 Herstellung und Fixierung der retinalen Gewebsproben ................................................ 37 3.2.4 Immunhistochemische Färbungen .................................................................................. 38 3.2.5 Mikroskopische Auswertung .......................................................................................... 39 3.2.6 Datenverarbeitung und Statistik ..................................................................................... 41 4 Ergebnisse ......................................................................................................................... 42 4.1 Technische Aspekte: Vergleich der Quantifizierung in Ganzpräparate und Querschnitte ... 42 4.1.1 Vergleich der Abbildungen ............................................................................................ 42 4.1.2 Auszählung Retina-Ganzpräparate ................................................................................. 43 4.1.3 Auszählung der Zellen in Querschnitten der Netzhaut ................................................... 45 4.1.4 Vergleich der Quantifizierung von Ganzpräparaten und Querschnitten ........................ 46 4.1.5 Quantifizierung ............................................................................................................... 48 4.2 Analyse der Reporterexpression in der Retina tripel-transgener Mäuse ............................... 49 4.2.1 Quantitative Auswertung GS-positiver Müllerzellen ..................................................... 49 4.2.2 Quantitative Auswertung EYFP-positiver Müllerzellen ................................................ 51 4.2.3 Auswertung des prozentualen Anteils der EYFP-positiven Müllerzellen ...................... 53 4.3 Auswertung der Transkriptionsfaktorexpression von Pax-6 und Sox-9 ............................... 56 4.3.1 Auswertung der Pax-6-positiven Müllerzellen ............................................................... 57 4.3.2 Auswertung der Sox-9-positiven Müllerzellen .............................................................. 60 5 Diskussion ......................................................................................................................... 63 5.1 Die GFAP-Expression in der Müllerzellgliose ..................................................................... 63 5.2 Auswertung und Vergleich der retinalen Ganzpräparate und Querschnitte ......................... 64 5.3 Die Untersuchung der Promotoraktivität nach retinaler Ischämie ........................................ 65 5.4 Die Untersuchung der Promotoraktivität bei angeborener retinaler Degeneration ............... 66 5.5 Die Rolle der Transkriptionsfaktoren Pax-6 und Sox-9 ........................................................ 68 5.5.1 Pax-6 ............................................................................................................................... 68 5.5.2 Sox-9 ............................................................................................................................... 69 5.6 Einordnung der Ergebnisse in die Zellbiologie der Müllerzelle ........................................... 72 6 Zusammenfassung ............................................................................................................. 74 7 Literaturverzeichnis .......................................................................................................... 77 8 Lebenslauf ......................................................................................................................... 83 9 Danksagung ....................................................................................................................... 84 10 Eigenständigkeitserklärung ............................................................................................... 85

Page generated in 0.0438 seconds