201 |
Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flowLin, X., Kelly, Adrian L., Ren, D.Y., Woodhead, Michael, Coates, Philip D., Wang, K.S. January 2013 (has links)
No / The shear viscosity of polymethylmethacrylate (PMMA) melt is particularly investigated by using a twin-bore capillary rheometer at four temperatures of 210, 225, 240, and 255 degrees C with different capillary dies. Experimental results show that the geometrical dependence of shear viscosity is significantly dependent on melt pressure as well as melt temperature. The measured shear viscosity increases with the decrease of die diameter at lower temperatures (210 and 225 degrees C) but decreases with the decrease of die diameter at higher temperatures (240 and 255 degrees C). Based on the deviation of shear viscosity curves and Mooney method, negative slip velocity is obtained at low temperatures and positive slip velocity is obtained at high temperatures, respectively. Geometrical dependence and pressure sensitivity of shear viscosity as well as temperature effect are emphasized for this viscosity deviation. Moreover, shear viscosity curve at 210 degrees C deviates from the power law model above a critical pressure and then becomes less thinning. Mechanisms of the negative slip velocity at low temperatures are explored through Doolittle viscosity model and Barus equation, in which the pressure drop is used to obtain the pressure coefficient by curve fitting. Dependence of pressure coefficient on melt temperature suggests that the pressure sensitivity of shear viscosity is significantly affected by temperature. Geometrical dependence of shear viscosity can be somewhat weakened by increasing melt temperature. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3384-3394, 2013
|
202 |
Rheological Modeling And Inkjet Printability Of Electrode Ink Formulation For Miniature And Interdigital Lithium-Ion BatteriesAjose, Habib Temitope-Adebayo 30 May 2023 (has links)
No description available.
|
203 |
Assessing the Feasibility of Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and Poly-(lactic acid) for Potential Food Packaging ApplicationsModi, Sunny J. 25 August 2010 (has links)
No description available.
|
204 |
Rheological characterisation of hydroxapatite filled polyethylene composites. Part II - Isothermal compressibility and wall slipMartyn, Michael T., Coates, Philip D., Joseph, R., Tanner, K.E., Bonfield, W. January 2001 (has links)
No / Rheological characterisation of hydroxyapatite -high density polyethylene (HA-HDPE) composites has been performed in terms of isothermal compressibility and wall slip. Addition of HA to the polymer melt decreases the compressibility of the melt. The unfilled HDPE was found to exhibit wall slip at shear stresses as low as 0.10 MPa. The flow curves of the composites showed three distinct regions: a gradient at low shear rates; a plateau region; and a gradient at higher shear rate. An increase in rheometer pressure seems to suppress the slip in composites. The 40 vol.-% HA-HDPE composite exhibited two critical shear stresses, one corresponding to wall slip, which occurs in the lower shear rate region of the flow curve, and the other corresponding to a plateau, which is identified with the stick-slip behaviour of unfilled HDPE reported in the literature. The plateau shear stress increased with filler volume fraction and this effect is attributed to the decreased compressibility of the melt. A good correlation with a negative correlation coefficient was found to exist between compressibility and shear stress in the plateau region. The slip observed in unfilled HDPE and at low shear rates in the 40 vol.-% HA- HDPE systems has been explained in terms of a low molecular weight polymer layer formed at the melt/wall interface. The large interfacial slip observed in the plateau region is attributed to complete disentanglement of adsorbed chains from free chains at the melt/wall interface at and beyond the plateau region.
|
205 |
Design and Characterization of Tunable Magneto-Rheological Fluid-Elastic MountsSouthern, Brian Mitchell 05 June 2008 (has links)
This study of adaptable vibration isolating mounts sets out to capture the uniqueness of magnetorheological (MR) fluid's variable viscosity rate, and to physically alter the damping and stiffness when used inside an elastomeric mount. Apparent variable viscosity or rheology of the MR fluid has dependency on the application of a magnetic field. Therefore, this study also intends to look at the design of a compact magnetic field generator which magnetizes the MR fluid to activate different stiffness and damping levels within the isolator to create an adaptable and tunable feature.
To achieve this adaptable isolator mount, a mold will be fabricated to construct the mounts. A process will then be devised to manufacture the mounts and place MR fluid inside the mount for later compatibility with the magnetic field generator. This process will then produce an MR fluid-elastic mount. Additionally for comparative purposes, passive mounts will be manufactured with a soft rubber casing and an assortment of metal and non-metal inserts. Next, the design of the magnetic field generator will be modeled using FEA magnetic software and then constructed.
Stiffness or force/displacement measurements will then be analyzed from testing the isolator mount and magnetic field generator on a state-of-the-art vibration dynamometer. To vary the magnetic flux through the mount, an electro-magnet is used. To analyze the results, a frequency method of the stiffness will be used to show the isolators adaptation to various increments of magnetic flux over the sinusoidal input displacement frequencies. This frequency response of the stiffness will then be converted into a modeling technique to capture the essence of the dynamics from activating the MR fluid within the isolator mount.
With this methodology for studying the adaptability of an MR fluid-elastic mount, the stiffness increases are dependent on the level of magnetic field intensity provided from the supplied electro-magnet. When the electro-magnet current supply is increased from 0.0 to 2.0 Amps, the mount stiffness magnitude increase is 78% in one of the MR fluid-elastic mounts. Through comparison, this MR fluid-elastic mount at off-state with zero magnetic field is similar to a mount made of solid rubber with a hardness of 30 Shore A. With 2 Amps of current, however, the MR fluid-elastic mount has a higher stiffness magnitude than a rubber mount and resembles a rubber casing with a steel insert.
Moreover, when the current in the electro-magnet is increased from 0.0 to 2.0 Amps the equivalent damping coefficient in a MR fluid-elastic mount increases over 500% of the value at 0 Amps at low frequency. Through damping comparisons, the MR fluid-elastic mount with no current is similar to that of a mount made of solid rubber with a hardness of 30 Shore A. At full current in the electromagnet, however, the damping in the MR fluid-elastic mount is greater than any of the comparative mounts in this study.
Therefore, the results show that the MR fluid-elastic mount can provide a wide range of stiffness and damping variation for real-time embedded applications. Since many aerospace and automotive applications use passive isolators as engine mounts in secondary suspensions to reduce transmitted forces at cruise speed, the MR fluid-elastic mount could be substituted to reduce transmitted forces over a wider range of speeds. Additionally, this compact MR fluid-elastic mount system could be easily adapted to many packaging constraints in those applications. / Master of Science
|
206 |
Calculation of electrophoretic mobility in mixed solvent buffers in capillary zone electrophoresis using a mixture response surface method.Jouyban, A., Grosse, S.C., Coleman, M.W., Chan, H.K., Kenndler, E., Clark, Brian J. 27 October 2009 (has links)
No / The electrophoretic mobilities of three beta-blocker drug practolol, timolol and propranolol, have been measured in electrolyte systems with mixed binary and ternary water-methanol-ethanol solvents with acetic acid/sodium acetate as buffer using capillary electrophoresis. The highest mobilities for the analytes studied have been observed in pure aqueous. the lowest values in ethanolic buffers The measured electrophoretic mobilities have been used to evaluate the accuracy of a mathematical model based on a mixture response surface method that expresses the mobility as a function of the solvent composition. Mean percentage error (MPE) has been computed considering experimental and calculated mobilities as an accuracy criterion. The obtained MPE for practolol, timolol and propranolol in the binary mixtures are between 0.9 and 2.6%, in the ternary water-methanol-ethanol solvent system the MPE was about 2.7%. The MPE values resulting from the proposed equation lie within the experimental relative standard deviation values and can he considered as an acceptable error.
|
207 |
Grout rheological properties for preplaced aggregate concrete productionGanaw, Abdelhamed I., Hughes, David C., Ashour, Ashraf 12 1900 (has links)
Yes / This paper investigates the effect of cement based grout rheology on the injection process through coarse aggregate for producing preplaced aggregate concrete. Four different sands were used in the grout production at different water-cement ratios and cement-sand ratios. Superplasticiers and pulverised fuel ash were also employed in the grout production. Coarse aggregate of known weight was compacted into 150 mm cubic forms, and then the grout was injected through a plastic pipe under self weight into the stone ‘skeleton’. It has been found that there are threshold values of the rheological parameters beyond which full injection is not possible. In particular, all grout mixes with and without additives and admixtures exhibited the same yield stress threshold value for full injection, whereas the threshold values for other rheological properties including the grout plastic viscosity, flow time and speed were different according to the materials added to the mix.
|
208 |
Using Magneto-Rheological Dampers in Semiactive Tuned Vibration Absorbers to Control Structural VibrationsKoo, Jeong-Hoi 03 October 2003 (has links)
Since their invention in the early 1900s, Tuned Vibration Absorbers (TVAs) have shown to be effective in suppressing vibrations of machines and structures. A vibration absorber is a vibratory subsystem attached to a primary system. It normally consists of a mass, a spring, and a damper. Mounted to the primary system, a TVA counteracts the motions of the primary system, "absorbing" the primary structure's vibrations. A conventional passive TVA, however, is only effective when it is tuned properly, hence, the name "tuned" vibration absorber. In many practical applications, inevitable off-tuning (or mistuning) of a TVA occurs because of the system's operating conditions or parameter changes over time. For example, the mass in a building floor could change by moving furnishings, people gathering, etc., which can "off-tune" TVAs. When TVAs are off-tuned, their effectiveness is sharply reduced. Moreover, the off-tuned TVAs can excessively amplify the vibration levels of the primary structures; therefore, not only rendering the TVA useless but also possibly causing damage to the structures. Off-tuning is one of the major problems of conventional passive TVAs.
This study proposes a novel semiactive TVA, which strives to combine the best features of passive and active TVA systems. The semiactive TVA in this study includes a Magneto-Rheological (MR) damper that is used as a controllable damping element, for providing the real-time adjustability that is needed for improving the TVA performance.
This study is conducted in two phases. The first phase provides a numerical investigation on a two-degree-of-freedom (2-DOF) numerical model in which the primary structure is coupled with a TVA. The numerical investigation considers four semiactive control methods for the MR TVAs, in addition to an equivalent passive TVA. These numerical models are optimally tuned using numerical optimization techniques to compare each TVA system. These tuned systems then serve as the basis for numerical parametric studies for further evaluation of their dynamic performance. The parametric study covers the effects of damping, as well as system parameter variations (off-tuning). The results indicates that semiactive TVAs are more effective in reducing the maximum vibrations of the primary structure and are more robust when subjected to off-tuning. Additionally, the numerical study identifies the "On-off Displacement-Based Groundhook control (on-off DBG)" as the most suitable control method for the semiactive TVA among control methods considered in this study.
For the second phase of this study, an experimental study is performed on a test setup, which represents a 2-DOF structure model coupled with an MR TVA. Using this setup, a series of tests are conducted in the same manner as the numerical study to evaluate the performance of the semiactive TVA. The primary purposes of the experiment are to further evaluate the most promising semiactive control methods and to serve as a "proof-of-concept" of the effectiveness of this MR TVA for floor vibration applications. The results indicate that the semiactive TVA with displacement-based groundhook control outperforms the equivalent passive TVA in reducing the maximum vibrations of the primary structure. This confirms the numerical result that identifies on-off DBG control method as the "best" control method for the MR TVA among four semiactive control schemes considered. The experimental robustness study is also conducted, focusing on the dynamic performance of both the passive and the semiactive TVAs when the mass of the primary system changes (mass off-tuning). The mass of the primary system varied from -23 % to +23 % of its nominal value by adding and removing external masses. The experimental results show that the semiactive TVA is more robust to changes in the primary mass than the passive TVA.
These results justify the benefits of the use of semiactive MR TVAs in structures, such as building floor systems. The off-tuning analysis further suggests that, in practice, semiactive TVAs should be tuned slightly less than their optimum in order to compensate for any added masses to the structure. Additionally, the lessons learned from the experimental study have paved the way for implementing the semiactive MR TVA on a test floor, which is currently in progress under a separate study. / Ph. D.
|
209 |
Polyethylene Terephthalate / clay nanocomposites. Compounding, fabrication and characterisation of the thermal, rheological, barrier and mechanical properties of Polyethylene Terephthalate / clay nanocomposites.Al-Fouzan, Abdulrahman M. January 2011 (has links)
Polyethylene Terephthalate (PET) is one of the most important polymers in use today for packaging due to its outstanding properties. The usage of PET has grown at the highest rate compared with other plastic packaging over the last 20 years, and it is anticipated that the increase in global demand will be around 6% in the 2010 ¿ 2015 period.
The rheological behaviour, thermal properties, tensile modulus, permeability properties and degradation phenomena of PET/clay nanocomposites have been investigated in this project. An overall, important finding is that incorporation of nanoclays in PET gives rise to improvements in several key process and product parameters together ¿ processability/ reduced process energy, thermal properties, barrier properties and stiffness. The PET pellets have been compounded with carefully selected nanoclays (Somasif MAE, Somasif MTE and Cloisite 25A) via twin screw extrusion to produce PET/clay nanocomposites at various weight fractions of nanoclay (1, 3, 5, 20 wt.%). The nanoclays vary in the aspect ratio of the platelets, surfactant and/or gallery spacing so different effect are to be expected. The materials were carefully prepared prior to processing in terms of sufficient drying and re-crystallisation of the amorphous pellets as well as the use of dual motor feeders for feeding the materials to the extruder.
The rheological properties of PET melts have been found to be enhanced by decreasing the viscosity of the PET i.e. increasing the ¿flowability¿ of the PET melt during the injection or/and extrusion processes. The apparent shear viscosity of PETNCs is show to be significantly lower than un-filled PET at high shear rates. The viscosity exhibits shear thinning behaviour which can be explained by two mechanisms which can occur simultaneously. The first mechanism proposed is that some polymer has entangled and few oriented molecular chain at rest and when applying high shear rates, the level of entanglements is reduced and the molecular chains tend to orient with the flow direction. The other mechanism is that the nanoparticles align with the flow direction at high shear rates. At low shear rate, the magnitudes of the shear viscosity are dependent on the nanoclay concentrations and processing shear rate. Increasing nanoclay concentration leads to increases in shear viscosity. The viscosity was observed to deviate from Newtonian behaviour and exhibited shear thinning at a 3 wt.% concentration. It is possible that the formation of aggregates of clay is responsible for an increase in shear viscosity. Reducing the shear viscosity has positive benefits for downstream manufacturers by reducing power consumption. It was observed that all
ii
three nanoclays used in this project act as nucleation agents for crystallisation by increasing the crystallisation temperature from the melt and decreasing the crystallisation temperature from the solid and increasing the crystallisation rate, while retaining the melt temperature and glass transition temperatures without significant change. This enhancement in the thermal properties leads to a decrease in the required cycle time for manufacturing processes thus potentially reducing operational costs and increasing production output.
It was observed that the nanoclay significantly enhanced the barrier properties of the PET film by up to 50% this potentially allows new PET packaging applications for longer shelf lives or high gas pressures.
PET final products require high stiffness whether for carbonated soft drinks or rough handling during distribution. The PET/Somasif nanocomposites exhibit an increase in the tensile modulus of PET nanocomposite films by up to 125% which can be attributed to many reasons including the good dispersion of these clays within the PET matrix as shown by TEM images as well as the good compatibility between the PET chains and the Somasif clays. The tensile test results for the PET/clay nanocomposites micro-moulded samples shows that the injection speed is crucial factor affecting the mechanical properties of polymer injection moulded products.
|
210 |
The effect of PEO homopolymers on the behaviours and structural evolution of Pluronic F127 Smart Hydrogels for Controlled Drug Delivery SystemsShriky, Banah, Mahmoudi, N., Kelly, Adrian L., Isreb, Mohammad, Gough, Tim 06 April 2022 (has links)
Yes / Understanding the structure-property relationships of drug delivery system (DDS) components is critical for their development and the prediction of bodily performance. This study investigates the effects of introducing polyethylene oxide (PEO) homopolymers, over a wide range of molecular weights, into Pluronic injectable smart hydrogel formulations. These smart DDSs promise to enhance patient compliance, reduce adverse effects and dosing frequency. Pharmaceutically, Pluronic systems are attractive due to their unique sol-gel phase transition in the body, biocompatibility, safety and ease of injectability as solutions before transforming into gel matrices at body temperature. This paper presents a systematic and comprehensive evaluation of gelation and the interplay of microscopic and macroscopic properties under both equilibrium and non-equilibrium conditions in controlled environments, as measured by rheology in conjunction with time-resolved Small Angle Neutron Scattering (SANS). The non-equilibrium conditions investigated in this work offer a better understanding of the two polymeric systems’ complex interactions affecting the matrix thermo-rheological behaviour and structure and therefore the future release of an active pharmaceutical ingredient from the injectable DDS.
|
Page generated in 0.0609 seconds