Spelling suggestions: "subject:"riemannian"" "subject:"riemannienne""
1 |
Théorie de l'indice et géométrie basique d'un feuilletage riemannien / Index theory and basic geometry for riemannian foliationsRey Alcantara, Alexandre 02 November 2011 (has links)
Dans cette thèse nous étudions la géométrie basique des feuilletages riemanniens. Nous reprenons d’abord le point de vue d’A. El Kacimi sur les opérateurs différentiels transversalement elliptiques. Nous traitons le cas particulier des feuilletages par fibration et des feuilletages par suspension. Nous traitons également des exemples de calcul d’indice basique et étudions les propriétés d’invariance de la signature basique. Nous nous intéressons ensuite au cas d’un feuilletage riemannien muni d’une action de groupe de Lie compact. Nous montrons alors qu’un opérateur différentiel basique transversalement elliptique au feuilletage et à l’action du groupe admet un indice distributionnel basique. Nous traitons le cas particulier des actions libres et établissons les propriétés de multiplicativité et excision. Nous finissons par établir le lien avec le point de vue d’A. El Kacimi / In this paper we study the basic geometry of a Riemannian foliation. First we return on A. El Kacimi’s point of view on transversally elliptic basic differential operator. We study the particular case of fibration and foliation defined by suspension. We study some examples of computation of basic index and study invariance property for the basic signature. After, we study a Riemannian foliation with the action of a compact Lie group. We prove then that a basic differential operator which is transversally elliptic to the foliation and to the group action has a distributional basic index. We study the particular case of free action and prove the multiplicativity and excision property. We end by study the link with El Kacimi’s point of view
|
2 |
Robust classifcation methods on the space of covariance matrices. : application to texture and polarimetric synthetic aperture radar image classification / Classification robuste sur l'espace des matrices de covariance : application à la texture et aux images de télédétection polarimétriques radar à ouverture synthétiqueIlea, Ioana 26 January 2017 (has links)
Au cours de ces dernières années, les matrices de covariance ont montré leur intérêt dans de nombreuses applications en traitement du signal et de l'image.Les travaux présentés dans cette thèse se concentrent sur l'utilisation de ces matrices comme descripteurs pour la classification. Dans ce contexte, des algorithmes robustes de classification sont proposés en développant les aspects suivants.Tout d'abord, des estimateurs robustes de la matrice de covariance sont utilisés afin de réduire l'impact des observations aberrantes. Puis, les distributions Riemannienne Gaussienne et de Laplace, ainsi que leur extension au cas des modèles de mélange, sont considérés pour la modélisation des matrices de covariance.Les algorithmes de type k-moyennes et d'espérance-maximisation sont étendus au cas Riemannien pour l'estimation de paramètres de ces lois : poids, centroïdes et paramètres de dispersion. De plus, un nouvel estimateur du centroïde est proposé en s'appuyant sur la théorie des M-estimateurs : l'estimateur de Huber. En outre,des descripteurs appelés vecteurs Riemannien de Fisher sont introduits afin de modéliser les images non-stationnaires. Enfin, un test d'hypothèse basé sur la distance géodésique est introduit pour réguler la probabilité de fausse alarme du classifieur.Toutes ces contributions sont validées en classification d'images de texture, de signaux du cerveau, et d'images polarimétriques radar simulées et réelles. / In the recent years, covariance matrices have demonstrated their interestin a wide variety of applications in signal and image processing. The workpresented in this thesis focuses on the use of covariance matrices as signatures forrobust classification. In this context, a robust classification workflow is proposed,resulting in the following contributions.First, robust covariance matrix estimators are used to reduce the impact of outlierobservations, during the estimation process. Second, the Riemannian Gaussianand Laplace distributions as well as their mixture model are considered to representthe observed covariance matrices. The k-means and expectation maximization algorithmsare then extended to the Riemannian case to estimate their parameters, thatare the mixture's weight, the central covariance matrix and the dispersion. Next,a new centroid estimator, called the Huber's centroid, is introduced based on thetheory of M-estimators. Further on, a new local descriptor named the RiemannianFisher vector is introduced to model non-stationary images. Moreover, a statisticalhypothesis test is introduced based on the geodesic distance to regulate the classification false alarm rate. In the end, the proposed methods are evaluated in thecontext of texture image classification, brain decoding, simulated and real PolSARimage classification.
|
3 |
Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées.Dahamna, Khaled 23 September 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse en premier aux problèmes sous-riemanniens sur un groupe de Lie nilpotent d'ordre 2. Dans un premier temps, on réalise la classification complète des algèbres de Lie sous-riemanniennes (SR-algèbres de Lie) nilpotentes d'ordre 2 de dimension n compris entre 3 et 7, et celles de dimension arbitraire n telle que l'algèbre dérivée est de dimension une.De plus, nous avons distingué les SR-algèbres de Lie de contact et de quasi-contact et nous avons calculé, en dimension 5, le groupe des SR-symétries infinitésimales. Une fois cette classification réalisée, on étudie les géodésiques sous-riemanniennes associées aux SR-algèbres de Lie nilpotentes d'ordre 2 obtenues dans notre classification. Nous avons étudié l'intégrabilité des équations géodésiques adjointes et donné les contrôles optimaux ainsi que les trajectoires optimales dans chacun des cas. Dans une seconde partie de la thèse, on étudie les géodésiques sous-riemanniennes pour un groupe de Lie sous-riemannien (G;D;B) où G = SO(4) ou G = SO(2; 2) et D est de codimension2 (donnant des espaces SR-homogènes de contact). Nous avons donné un modèle canonique de ces espaces et ensuite montré que les systèmes adjoints de Lie-Poisson associés au modèle étaient toujours intégrables au sens de Liouville. De plus, nous montrons que le système de Lie-Poisson est soit un système linéaire qui est super-intégrable en fonctions trigonométriques du temps ou constantes ; soit un système non linéaire intégrable au sens de Liouville et dont les solutions sont exprimables à l'aide de la fonction elliptique de Weierstrass.
|
4 |
Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne / Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifoldsPillet, Basile 13 June 2017 (has links)
L'objet de cette thèse est la construction d'objets géométriques sur une variété C paramétrant des courbes rationnelles dans l'espace des twisteurs d'une variété hyperkählérienne. On établira une correspondance entre la géométrie complexe de l'espace des twisteurs et des propriétés différentielles sur C (opérateurs différentiels et courbure de la structure riemanienne complexe héritée de la variété hyperkählérienne). Les premiers chapitres précisent le cadre et les résultats connus. Dans les chapitres 4, 5 et 6 on établit une équivalence de catégories entre fibrés triviaux en restriction à chaque droite de l'espace des twisteurs et les fibrés à connexion sur C satisfaisant une condition de courbure. Le chapitre 7 prolonge cette correspondance sur le plan cohomologique tandis que le chapitre 8 en fait l'étude infinitésimale en reliant la courbure de la connexion avec les épaississements infinitésimaux des fibrés le long des droites. / The purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines.
|
5 |
Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. / Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equationsDahamna, Khaled 23 September 2011 (has links)
Dans cette thèse, on s'intéresse en premier aux problèmes sous-riemanniens sur un groupe de Lie nilpotent d'ordre 2. Dans un premier temps, on réalise la classification complète des algèbres de Lie sous-riemanniennes (SR-algèbres de Lie) nilpotentes d'ordre 2 de dimension n compris entre 3 et 7, et celles de dimension arbitraire n telle que l'algèbre dérivée est de dimension une. De plus, nous avons distingué les SR-algèbres de Lie de contact et de quasi-contact et nous avons calculé, en dimension 5, le groupe des SR-symétries infinitésimales. Une fois cette classification réalisée, on étudie les géodésiques sous-riemanniennes associées aux SR-algèbres de Lie nilpotentes d'ordre 2 obtenues dans notre classification. Nous avons étudié l'intégrabilité des équations géodésiques adjointes et donné les contrôles optimaux ainsi que les trajectoires optimales dans chacun des cas. Dans une seconde partie de la thèse, on étudie les géodésiques sous-riemanniennes pour un groupe de Lie sous-riemannien (G;D;B) où G = SO(4) ou G = SO(2; 2) et D est de codimension 2 (donnant des espaces SR-homogènes de contact). Nous avons donné un modèle canonique de ces espaces et ensuite montré que les systèmes adjoints de Lie-Poisson associés au modèle étaient toujours intégrables au sens de Liouville. De plus, nous montrons que le système de Lie-Poisson est soit un système linéaire qui est super-intégrable en fonctions trigonométriques du temps ou constantes ; soit un système non linéaire intégrable au sens de Liouville et dont les solutions sont exprimables à l'aide de la fonction elliptique de Weierstrass. / In this thesis, we are interested first in the sub-Riemannian problems on 2-step nilpotent Lie groups. We start by obtaining a complete classification of 2-step nilpotent sub-Riemannian Lie algebras (SR-Lie algebras) of dimension n between 3 and 7, and those of arbitrary dimension n such that the derivated algebra is of dimension one. In addition, we characterize the contact and quasi contact SR-Lie algebras and we calculate, in dimension 5, the group of SR-infinitesimal symmetries. Having presented that classification, we study the sub-Riemannian geodesics associated with the 2 step nilpotent SR-Lie algebras obtained in our classification. We study the integrability of the adjoint geodesic equations and we give the optimal controls and optimal trajectories in each case. In the second part of the thesis, we study the sub-Riemannian geodesics for a sub-RiemannianLie group (G;D;B) where G = SO(4) or G = SO(2; 2) and D is of codimension 2 (giving contactSR-homogeneous spaces). We give canonical models of these spaces and then show that the Lie-Poisson adjoint systems associated with the models are always integrable in the Liouville sense. More over, we show that the Lie-Poisson system is either a linear system which is super-integrable with the help of trigonometric functions of time (or constant ones) or a non-linear system which is integrable in the Liouville sense and whose solutions can be expressed using the Weierstrass elliptic function.
|
6 |
Étude d’inspiration néo-riemannienne des structures harmoniques et scalaires d’extraits musicaux du film The Empire Strikes BackBelval, Sébastien 09 1900 (has links)
Ce mémoire a reçu l'appui financier du Fonds de recherche du Québec – Société et culture (FRQSC). / Ce mémoire porte sur la musique composée par John Towner Williams (1932- ) pour le film The Empire Strikes Back (1980). Il se limite à la musique extradiégétique, c’est-à-dire celle dont l’origine se situe à l’extérieur du monde fictionnel dans lequel prend place le récit du film. Ce répertoire présente l’intérêt de suivre le modèle classique hollywoodien, où la trame musicale est étroitement associée au déroulement narratif. L’étude propose une analyse de l’organisation des hauteurs musicales (accords, couches à l’intérieur d’une texture stratifiée) et cherche à élucider son impact narratif au sein d’une sélection de scènes. Plutôt que de s’appuyer sur des outils traditionnels propres aux approches tonale fonctionnelle ou schenkérienne, l’analyse s’inspire des théories néo-riemanniennes se traduisant par l’usage des transformations ainsi que des Tonnetz. Ceux-ci sont employés dans leur rôle usuel, mais également comme représentations d’espaces harmoniques pouvant englober des ensembles plus vastes que de simples enchainements d’accords. Ils peuvent par exemple illustrer des motifs ou encore le rapport entre les différentes couches qui composent une texture stratifiée. Cela permet d’aborder le déploiement d’un matériau musical selon l’axe diatonique, hexatonique ou octatonique d’un Tonnetz. De plus, la récurrence de certaines transformations suggère des espaces harmoniques qui contribuent à l’identité des matériaux thématiques au même titre que l’orchestration ou l’usage d’échelles données. Finalement, ce type de trame musicale étant ponctué de fréquentes ruptures et changements, sa construction est considérée à travers de multiples déplacements entre des espaces harmoniques. / This thesis is centered on John Towner Williams’s (b. 1932) music composed for the movie Star Wars: Episode V - The Empire Strikes Back (1980). It concentrates on extra-diegetic music, that is, music that originates outside the fictional world where the story takes place. The interest for this repertoire originates in its conception, which is based on classical Hollywood film scores, specifically in its high degree of correspondence with narrative content. This study proposes an analysis of pitch organization (chords, strata in a multi-layer texture) and seeks to establish the narrative connections that the music maintains with the image throughout selected scenes. Rather than relying on traditional tools drawn from functional or Schenkerian approaches, here analysis borrows from the theoretical method of Neo-Riemannian theories such as transformations and Tonnetz. These are used in a conventional way, but also as representations of harmonic spaces capable of encompassing broader musical events aside from simple triadic progressions. For example, they may represent motives, or the connections between the different strata comprised in a layered texture. This allows musical material to unfold through the diatonic, hexatonic or octatonic axis from the Tonnetz. Furthermore, the reiteration of particular transformations suggests harmonic spaces that establish the identity of thematic material in a way similar to that of orchestration or scales. Finally, because this type of soundtrack is punctuated by frequent breaks and changes, we will consider its construction throughout multiples shifts between harmonic spaces.
|
7 |
Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics / Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particulesBizi, Nadir 14 September 2018 (has links)
Dans cette thèse, nous nous intéressons à la géométrie non-commutative - aux triplets spectraux en particulier - comme moyen d'unifier gravitation et modèle standard de la physique des particules. Des triplets spectraux permettant une telle unification on déjà été construits dans le cas des variétés riemanniennes. Il s'agit donc ici de généraliser au cas des variétés semi-riemanniennes, et d'appliquer ensuite au cas lorentzien, qui est d'une importance particulière en physique. C'est ce que nous faisons dans la première partie de la thèse, ou le passage du cas riemannien au cas semi-riemannien nous oblige à nous intéresser à des espaces vectoriels de signatures indéfinies (et non définies positives), dits espaces de Krein. Ceci est une conséquence de notre étude des algèbres de Clifford indéfinies et des structures Spin sur variétés semi-riemanniennes. Nous généralisons ensuite les triplets spectraux en triplets dits indéfinis en conséquence de cela. Dans la deuxième partie de la thèse, nous appliquons le formalisme des formes différentielles non-commutatives à nos triplets indéfinis pour formuler des théories de jauge non-commutatives sur espace-temps lorentzien. Nous montrons ensuite comment obtenir le modèle standard. / The subject of this thesis is noncommutative geometry - more specifically spectral triples - and how it can be used to unify General Relativity with the Standard Model of particle physics. This unification has already been achieved with spectral triples for Riemannian manifolds. The main concern of this thesis is to generalize this construction to semi-Riemannian manifolds generally, and Lorentzian manifolds in particular. The first half of this thesis will thus be dedicated to the transition from Riemannian to semi-Riemannian manifolds. This entails a study of Clifford algebras for indefinite vector spaces and Spin structures on semi-Riemannian manifolds. An important consequence of this is the introduction of complex vector spaces of indefinite signature. These are the so-called Krein spaces, which will enable us to generalize spectral triples to indefinite spectral triples. In the second half of this thesis, we will apply the formalism of noncommutative differential forms to indefinite spectral triples to construct noncommutative gauge theories on Lorentzian spacetimes. We will then demonstrate how to recover the Standard Model.
|
8 |
Géométrie et dynamique des espaces de configuration / Geometry and dynamics of configuration spacesKourganoff, Mickaël 04 December 2015 (has links)
Cette thèse est divisée en trois parties. Dans la première, on étudie des systèmes articulés (mécanismes formés de tiges rigides) dont l'espace ambiant n'est pas le plan, mais diverses variétés riemanniennes. On étudie la question de l'universalité des mécanismes : cette notion correspond à l'idée que toute courbe serait tracée par un sommet d'un mécanisme, et que toute variété différentiable serait l'espace de configuration d'un mécanisme. On étend les théorèmes d'universalité au plan de Minkowski, au plan hyperbolique et enfin à la sphère.Toute surface dans R^3 peut être aplatie selon l'axe des z, et la surface aplatie s'approche d'une table de billard dans R^2. Dans la seconde partie, on montre que, sous certaines hypothèses, le flot géodésique de la surface converge localement uniformément vers le flot de billard. De plus, si le billard est dispersif, les propriétés chaotiques du billard remontent au flot géodésique : on montre qu'il est alors Anosov. En appliquant ce résultat à la théorie des systèmes articulés, on obtient un nouvel exemple de systèmes articulé Anosov, comportant cinq tiges.Dans la troisième partie, on s'intéresse aux variétés munies de connexions localement métriques, c'est-à-dire de connexions qui sont localement des connexions de Levi-Civita de métriques riemanniennes ; on donne dans ce cadre un analogue du théorème de décomposition de De Rham, qui s'applique habituellement aux variétés riemanniennes. Dans le cas où une telle connexion préserve une structure conforme, on montre que cette décomposition comporte au plus deux facteurs ; de plus, lorsqu'il y a exactement deux facteurs, l'un des deux est l'espace euclidien R^q. La démonstration des résultats de cette partie passe par l'étude des feuilletages munis d'une structure de similitude transverse. Sur ces feuilletages, on montre un résultat de rigidité qui peut être vu indépendamment des autres: ils sont soit transversalement plats, soit transversalement riemanniens. / This thesis is divided into three parts. In the first part, we study linkages (mechanisms made of rigid rods) whose ambiant space is no longer the plane, but various Riemannian manifolds. We study the question of the universality of linkages: this notion corresponds to the idea that every curve would be traced out by a vertex of some linkage, and that any differentiable manifold would be the configuration space of some linkage. We extend universality theorems to the Minkowski plane, the hyperbolic plane, and finally the sphere.Any surface in R^3 can be flattened with respect to the z-axis, and the flattened surface gets close to a billiard table in R^2. In the second part, we show that, under some hypotheses, the geodesic flow of the surface converges locally uniformly to the billiard flow. Moreover, if the billiard is dispersing, the chaotic properties of the billiard also apply to the geodesic flow: we show that it is Anosov in this case. By applying this result to the theory of linkages, we obtain a new example of Anosov linkage, made of five rods.In the third part, we first consider manifolds with locally metric connections, that is, connections which are locally Levi-Civita connections of Riemannian metrics; we give in this framework an analog of De Rham's decomposition theorem, which usually applies to Riemannian manifolds. In the case such a connection also preserves a conformal structure, we show that this decomposition has at most two factors; moreover, when there are exactly two factors, one of them is the Euclidean space R^q. The proofs of the results of this part use foliations with transverse similarity structures. On these foliations, we give a rigidity theorem of independant interest: they are either transversally flat, or transversally Riemannian.
|
Page generated in 0.0554 seconds