Spelling suggestions: "subject:"saint covenant""
41 |
Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènesSAHMIM, Slah 15 June 2005 (has links) (PDF)
Cette thèse est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma, d'abord dans le cas scalaire ensuite dans le cas de systèmes, mène à une nouvelle formulation où intervient le signe de la matrice Jacobienne du système de lois de bilan considéré. Pour le système de Saint Venant avec terme de pente, on montre formellement que le schéma SRNHS vérifie la C-propriété exacte introduite pour les schémas équilibres par Bermùdez et Vázquez. Les résultats numériques 1D et 2D, en particulier du cas de rupture de barage sur un fond en forme de marche, montrent le degrés d'efficacité du schéma. Pour le système diphasiques des zones de non hyperbolicité peuvent exister, avec apparition de valeurs propres complexes dans la Jacobienne du système. On montre que pour les configurations faiblement non hyperboliques, on peut calculer le signe de la Jacobienne par l'algorithme de Newton-Schultz. Pour les configurations plus raides, où la méthode précédente ne fonctionne plus, on a recours à la méthode de perturbation par densité. Dans les deux cas évoqués, les tests numériques montrent que l'on approche la solution exacte du problème de Ransom avec une grande précision, et que l'on conserve la stabilité des calculs même avec un maillage de finesse relativement élevée.
|
42 |
Contribution à l'étude et à la modélisation d'un modèle de convection-diffusion dégénéré : application à l'étude du comportement migratoire des civelles dans l'estuaire de l'AdourPARDO, OLIVIER 16 December 2002 (has links) (PDF)
La gestion des ressources marines est l'un des enjeux majeurs du XXIe siècle. Les travaux présentés dans cette thèse portent sur l'étude du comportement migratoire des civelles (larves d'anguilles) dans l'estuaire de l'Adour. Le modèle, qui est constitué d'une équation aux dérivées partielles dégénérée de convection diffusion en 2D, prend en compte l'influence de la marée dynamique (système d'équations non linéaires dégénérées de Saint-Venant) et l'intensité lumineuse dans la colonne d'eau. Dans un premier temps, en appliquant la théorie du degré topologique nous avons montré l'existence de solutions stationnaires du modèle hydrodynamique. Par la suite, en injectant ces solutions dans notre modèle migratoire, nous avons établi l'existence de solutions en employant la théorie des semi-groupes, la méthode des caractéristiques et le théorème de J.-L. Lions. La positivité et des estimations a priori des densités biologiques avaient été fournies auparavant. Dans un second temps, nous présentons notre approche numérique. A l'aide des directions alternées et des pas fractionnaires dans un domaine réel de 30 km de long et de hauteur d'eau variable (bathymétrie réelle et influence de la marée) les résultats obtenus reproduisent bien qualitativement ce qui était attendu.
|
43 |
Assimilation de données lagrangiennes pour la simulation numérique en hydraulique fluvialeHonnorat, Marc 03 October 2007 (has links) (PDF)
Ce travail porte sur l'assimilation variationnelle de données lagrangiennes en hydraulique fluviale, pour l'identification de paramètres dans un modèle numérique de rivière basé sur les équations de Saint-Venant, mise oeuvre dans le logiciel Dassflow. Nous proposons de prendre en compte des observations de nature Lagrangienne, comme des trajectoires de particules transportées à la surface de l'écoulement, en plus des observations classiquement disponibles, parfois insuffisantes. L'intérêt de cette approche pour améliorer l'identification de certains paramètres est mis en évidence à travers une série d'expériences numériques utilisant soit des données synthétiques, soit des données réelles issues d'un écoulement en canal, où des trajectoires sont extraites d'une séquence vidéo.
|
44 |
Modélisation d'un film liquide cisaillé par un écoulement de gaz par une approche intégrale / Integral modeling of liquid films sheared by a gas flowLavalle, Gianluca 15 December 2014 (has links)
Dans de nombreuses applications aérospatiales, on peut trouver des films liquides cisaillés, c'est-à-dire une fine couche liquide qui ruisselle sur une paroi entrainée par le gaz. Par exemple, une couche de liquide peut se développer sur la voilure des avions, givrer et dégrader les performances. Des vagues peuvent se développer à l'interface liquide-gaz, et l'analyse correcte de ces instabilités devient très importante pour modéliser ce phénomène physique. En effet, la présence d'instabilités modifie les échanges liquide-gaz, notamment les transferts de masse et chaleur. Le but de cette thèse est de développer une technique permettant de coupler la phase gazeuse afin de reproduire les interactions à l'interface. La couche de liquide étant beaucoup plus mince que celle du gaz, une approche intégrale sur l'épaisseur est utilisée pour la modélisation. Enfin, deux cas d'un écoulement diphasique se développant dans une conduite confinée et dans une conduite plus large sont étudiés. les résultats sont ensuite comparés à des autres méthodes de référence, plus coûteuses en temps de calcul. / In many aerospace applications one can find liquid films sheared by a gas flow. In example, these liquid sheets can develop on aircraft wings, freeze and then destroy the aerodynamics performances. Waves can develop at the liquid-gas interface, and the correct analysis of such instabilities becomes very important to model this physical phenomenon. Indeed, instabilities mdify liquid-gas exchanges, such as mass and heat transfers. The aim of the present work consists in developing a technique to couple the liquid phase to the gas phase in order to reproduce the interactions at the interface. Since the liquid layer is much thinner then the gas, anintegral approach is used for modeling. Finally, two cases of a two-phase flow developing in a strictly confined channel and in a large channel are studied. Results are then compared to other reference methods which are more expensive in terms of computational cost.
|
45 |
Métrologie et modélisation des écoulements à forte pente autour d'obstacles : application au dimensionnement des passes naturelles / Metrology and modeling of large slope flow around obstacles : application to the dimensioning of natural passesTran, Dung Tien 11 December 2015 (has links)
Cette thèse est une partie du projet ONEMA pour le dimensionnement des passes à poissons et pour l’amélioration de la continuité écologique des cours d’eau. Ce travail s’est concentré sur les passes à poissons naturelles qui présentent des avantages de coût et paysager. Il s’agit d’un écoulement à forte pente autour des blocs (macro-rugosités) régulièrement repartis en quinconce avec des grands nombres de Froude. Les conditions hydrodynamiques sont alors très diverses, et peuvent être franchissables par un nombre élargi d’espèces de poisson. Ce mémoire présente les travaux réalisés à l’Institut de Mécanique des Fluides de Toulouse (IMFT). Afin d’étudier l’écoulement dans ces passes, on va mener des expériences sur des canaux réduits ainsi que des simulations numériques à l’aide du modèle Telemac 2D. L’objectif est de mieux connaître la structure de l’écoulement en fonction des conditions hydrauliques et géométriques comme le nombre, la forme et la taille des macro-rugosités. Plus particulièrement, la compréhension de l’interaction de phénomènes physiques généralement étudiés séparément, tels que le passage en régime torrentiel, l’interaction de sillage ou l’écoulement autour de macro-rugosités, a été recherchée. Des relations hauteur-débit ont été établies permettant une aider au dimensionnement des passes naturelles. Elles fournissent des critères de franchissement comme les vitesses maximales, la puissance dissipée ou la hauteur d’eau minimale. Pour atteindre une description plus locale de l’écoulement, des mesures de Vélocimétrie Acoustiques Doppler ont été conduites. Elles ont aussi permis de définir la plage de validité du modèle numérique 2D (Telemac). Ce modèle a alors était utilisé pour extrapoler les critères de franchissement pour des configurations non testées expérimentalement. Finalement, les connaissances sur l’écoulement ont été synthétisées pour définir des préconisations générales de dimensionnement. La précision des relations établies en laboratoire a pu aussi être vérifiée sur des passes réelles. L’hydrodynamique de ces passes est maintenant suffisamment connue pour savoir si un poisson peut remonter le courant et se reposer. Il restera à s’assurer que leur attractivité soit bonne et que des phénomènes liés aux échelles de longueurs de la turbulence ne présentent un obstacle au franchissement. / This thesis is supported by an ONEMA project for the design of fishways and improve ecological continuity of rivers. This work focused on nature-like fish passes that have cost and landscaped appearance advantages. There is a steep flow around the blocks (macro-roughness) regularly distributed in a staggered configuration with large Froude numbers. The hydrodynamic conditions are sufficiently different to be passable by an expanded number of fish species. This thesis presents the work carried out at the Institute of Fluid Mechanics of Toulouse (IMFT). To study the flow in these passes, experiments are conducted on physical models and numerical simulations using the Telemac 2D model. The goal is to better understand the flow structure based on hydraulic and geometric conditions such as the number, shape and size of macro-roughness. In particular, we considered the interaction of physical phenomena usually studied separately such that the passage in supercritical regime, the interaction of wake or flow around macro-roughness. The stage-discharge relationships were established to assist in the design of nature-like passes. They provide criteria useful for passability such as maximum speeds, power dissipation or minimal water height. To reach a local description of the flow measurements with an Acoustic Doppler Velocimeter were conducted. They also helped to define the valid range of the 2D model. This model was then used to extrapolate passability criteria for untested experimental configurations. Finally, the knowledge on flow has been synthesized to define general recommendations sizing. It has also been able to verify on real scale passes, the accuracy of the relations established in the laboratory. The hydrodynamics of these passes is now sufficiently described to know if a fish can swim upstream and rest. It will remain to ensure that their attractiveness is good and that phenomena related to the turbulence length scales do not present an obstacle to the fish passage.
|
46 |
Conservative characteristic-based schemes for shallow flowsMohammadian, Abdolmajid 12 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2005-2006 / Les équations en eaux peu profondes, encore appelées équations de Saint-Venant, sont utilisées dans de nombreux cas importants comme les fleuves, les lacs, les estuaires et les océans. La conservation de certaines quantités est une propriété importante qui est habituellement désirée pour assurer la précision des simulations à long terme et également pour le cas des écoulements complexes avec présence d'ondes de choc. Cette thèse examine tout d'abord la formulation de schémas semi-Lagrangiens, qui sont bien connus pour demeurer stables pour des nombres très élevés de CFL. Cependant, ces schémas perdent leur propriété de stabilité lorsque la conservation totale des quantités, qui est cruciale pour une simulation correcte les ondes de chocs, est imposée. Un schéma semi- Lagrangien entièrement conservatif est développé ici et ce dernier demeure stable pour des nombres élevés de CFL. L'approche proposée est ensuite étendue à la méthode des caractéristiques (MOC) et une version conservative du schéma MOC est développée. Contrairement au schéma MOC original, qui ne peut pas simuler correctement les ondes de choc à cause du manque de conservation, le schéma proposé les simule avec succès. De plus, le nouveau schéma présente des avantages sur le plan numérique, tant pour la diffusion et la dispersion que pour la stabilité. Le cas 2D est ensuite considéré, et la méthode de volume finie est utilisée à cause de son conservation inhérente. Le cas 2D est ensuite considéré, et la méthode de volumes finis est utilisée à cause de ses qualités inhérentes de conservation. La plupart des méthodes numériques disponibles sont sensibles au problème du déséquilibre entre les termes source et de flux, particulièrement en présence d'un maillage non structuré. D'autre part, la plupart des schémas numériques disponibles (par exemple les schémas HLL et ENO) induisent un niveau élevé de diffusion numérique en simulant des écoulements tourbillonnaires. Trois approches différentes, applicables sur des maillages non structurés sont développées ici. Elles peuvent simuler des conditions complexes d'écoulement comprenant les topographies variables, les écoulements tourbillonnaires, trans-critiques et discontinus. Finalement plusieurs méthodes de volumes finis upwind sont utilisées, via une analyse de type Fourier, pour évaluer le niveau d`amortissement des modes de Rossby. Contrairement aux bons résultats habituellement obtenus par les méthodes de volumes finis upwind dans iii le cas d'écoulements dominés par la convection, on remarque ici que les ondes de Rossby sont amorties de manière excessive. / Shallow water equations arise in many important cases such as in rivers, lakes, estuaries and oceans. Conservation is an important property which is usually desired to ensure the accuracy of the long term simulations and also for the case of complex flows with shockwaves. This thesis begins with semi-Lagrangian schemes, which are well known to remain stable for very high CFL numbers. However, they lose their high stability property when the fully conservative property, which is crucial for a correct simulation of shock waves, is imposed. An inherently fully conservative semi-Lagrangian scheme is developed here which remains stable for high CFL numbers. The proposed approach is then extended to the method of characteristics (MOC) and a conservative extension of MOC is developed. Contrary to the original MOC, which is unable to simulate shockwaves due to the lack of conservation, the proposed scheme easily simulates them. Further, the new scheme presents favorable features in terms of numerical diffusion and dispersion. The 2D case is then considered, and the finite volume method is employed due to its inherent conservation properties. Most available numerical methods face the problem of imbalance between the source and flux terms, particularly when unstructured grids are used. On the other hand, most available numerical schemes (such as the HLL and the ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. Three different approaches using unstructured grids are successfully developed here. The new schemes can simulate complex flow conditions including recirculating, trans-critical and discontinuous flows over variable topographies. Finally, the performance of the upwind finite volume schemes, for Rossby waves, is studied using a Fourier analysis approach. Contrary to the usual good results obtained for those schemes in the case of convection dominated flows, it is observed here that they lead to an excessive damping of the Rossby modes.
|
47 |
Méthodes de décomposition de domaine de type relaxation d'ondes pour des équations de l'océanographieMartin, Véronique 15 December 2003 (has links) (PDF)
L'objectif de ce travail est de développer des algorithmes de décomposition de domaine pour des équations de l'océanographie. Les méthodes de décomposition de domaine consistent à décomposer un domaine de calcul de grand taille en plusieurs sous-domaines plus petits. Elles s'appliquaient jusqu'à présent à des problèmes stationnaires, nous généralisons ici ce type de méthodes aux problèmes en temps ('Schwarz Waveform Relaxation Methods'). Le principal but de cette nouvelle approche est de simuler des problèmes multiphysiques pour lesquels il est intéressant d'avoir une discrétisation temporelle différente dans chaque sous-domaine. Nous généralisons aux équations d'évolution une méthode récente qui consiste à écrire les conditions transparentes (Conditions aux Limites Absorbantes) puis les approche par des opérateurs différentiels d'ordre 1 dans la direction normale à l'interface et d'ordre 0 ou 1 dans la direction tangentielle. Nous développons cette méthode premièrement pour l'équation de convection diffusion qui traduit notamment l'advection des traceurs (température, salinité, traceurs passifs) dans l'océan. Nous approchons les opérateurs exacts par développement de Taylor, ou par optimisation du taux de convergence. Nous démontrons que les problèmes aux limites introduits sont bien posés. Puis nous montrons la convergence des algorithmes correspondants. Des résultats numériques sont implémentés dans le cas avec ou sans recouvrement et mettent en évidence la réelle efficacité des méthodes optimisées. Nous faisons ensuite un premier pas vers le couplage d'équations en implémentant un algorithme de couplage de l'équation de convection avec l'équation de convection diffusion. Ensuite nous traitons les équations de Saint Venant, moyennes verticales des équations de Navier-Stokes en milieu tournant. Nous introduisons pour ce système un algorithme de décomposition de domaine avec des conditions d'interface qui s'obtiennent par des considérations physiques. Nous montrons que cet algorithme est bien posé puis nous en démontrons la convergence. Des résultats numériques concluants sont également exposés.
|
48 |
Compressible-incompressible transitions in fluid mechanics : waves-structures interaction and rotating fluids / Transitions compressible-incompressible en mécanique des fluides : interaction vagues-structures et fluides en rotationBocchi, Edoardo 23 September 2019 (has links)
Ce manuscrit porte sur les transitions compressible-incompressible dans les équations aux dérivées partielles de la mécanique des fluides. On s'intéresse à deux problèmes : les structures flottantes et les fluides en rotation. Dans le premier problème, l'introduction d'un objet flottant dans les vagues induit une contrainte sur le fluide et les équations gouvernant le mouvement acquièrent une structure compressible-incompressible. Dans le deuxième problème, le mouvement de fluides géophysiques compressibles est influencé par la rotation de la Terre. L'étude de la limite à rotation rapide montre que le champ vectoriel de vitesse tend vers une configuration horizontale et incompressible.Les structures flottantes constituent un exemple particulier d'interaction fluide-structure, où un solide partiellement immergé flotte à la surface du fluide. Ce problème mathématique modélise le mouvement de convertisseurs d'énergie marine. En particulier, on s'intéresse aux bouées pilonnantes, installées proche de la côte où les modèles asymptotiques en eaux peu profondes sont valables. On étudie les équations de Saint-Venant axisymétriques en dimension deux avec un objet flottant à murs verticaux se déplaçant seulement verticalement. Les hypothèses sur le solide permettent de supprimer le problème à bord libre associé avec la ligne de contact entre l'air, le fluide et le solide. Les équations pour le fluide dans le domaine extérieur au solide sont donc écrites comme un problème au bord quasi-linéaire hyperbolique. Celui-ci est couplé avec une EDO non-linéaire du second ordre qui est dérivée de l'équation de Newton pour le mouvement libre du solide. On montre le caractère bien posé localement en temps du système couplé lorsque que les données initiales satisfont des conditions de compatibilité afin de générer des solutions régulières.Ensuite on considère une configuration particulière: le retour à l'équilibre. Il s'agit de considérer un solide partiellement immergé dans un fluide initialement au repos et de le laisser retourner à sa position d'équilibre. Pour cela, on utilise un modèle hydrodynamique différent, où les équations sont linearisées dans le domaine extérieur, tandis que les effets non-linéaires sont considérés en dessous du solide. Le mouvement du solide est décrit par une équation intégro-différentielle non-linéaire du second ordre qui justifie rigoureusement l'équation de Cummins, utilisée par les ingénieurs pour les mouvements des objets flottants. L'équation que l'on dérive améliore l'approche linéaire de Cummins en tenant compte des effets non-linéaires. On montre l'existence et l'unicité globale de la solution pour des données petites en utilisant la conservation de l'énergie du système fluide-structure.Dans la deuxième partie du manuscrit, on étudie les fluides en rotation rapide. Ce problème mathématique modélise le mouvement des flots géophysiques à grandes échelles influencés par la rotation de la Terre. Le mouvement est aussi affecté par la gravité, ce qui donne lieu à une stratification de la densité dans les fluides compressibles. La rotation génère de l'anisotropie dans les flots visqueux et la viscosité turbulente verticale tend vers zéro dans la limite à rotation rapide. Notre interêt porte sur ce problème de limite singulière en tenant compte des effets gravitationnels et compressibles. On étudie les équations de Navier-Stokes-Coriolis anisotropes compressibles avec force gravitationnelle dans la bande infinie horizontale avec une condition au bord de non glissement. Celle-ci et la force de Coriolis donnent lieu à l'apparition des couches d'Ekman proche du bord. Dans ce travail on considère des données initiales bien préparées. On montre un résultat de stabilité des solutions faibles globales pour des lois de pression particulières. La dynamique limite est décrite par une équation quasi-géostrophique visqueuse en dimension deux avec un terme d'amortissement qui tient compte des couches limites. / This manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers.
|
49 |
Résolution numérique des équations des ondes longues dans un réseau de caractéristiquesChenin-Mordojovitch, Maria-Isabel 26 June 1980 (has links) (PDF)
.
|
50 |
Simulation numérique en volume finis, de problèmes d'écoulements multidimensionnels raides, par un schéma de flux à deux pasMOHAMED, Kamel 12 October 2005 (has links) (PDF)
Cette thèse est consacrée à la simulation numérique de problèmes d'écoulements de fluides raides régis par des systèmes de lois de bilan non homogènes, dans des configurations monodimensionnelles et bidimensionnelles. La méthode numérique utilisée est une extension d'un schéma à deux pas (SRNH), comportant un paramètre \alpha^n_(j+\frac(1)(2)) ajustable, proposé par le professeur F.Benkhaldoun dans un cadre monodimensionnel. Ainsi, en un premier temps on a introduit une variante SRNHR, obtenue en remplaçant la vitesse numérique (\frac(\Delta x)(\Delta t)) par la vitesse de Rusanov locale, en vue de l'extension du schéma au cas bidimensionnel. Par la suite, une analyse de stabilité du schéma, révèle que celui-ci peut être d'ordre 1 ou 2 selon la valeur du paramètre \alpha^n_(j+\frac(1)(2)). Une stratégie de variation de ce paramètre, basée sur la théorie des limiteurs a alors été adoptée. Le schéma peut ainsi être rendu d'ordre 1 dans les zones à forte variation de l'écoulement, et d'ordre 2, là où l'écoulement est régulier. Ensuite on a établi les conditions pour que ce schéma respecte la C-propriété exacte introduite par Bermùdez et Vazquez. Une étude d'implémentation des conditions aux limites, adaptée à ce schéma, a également été menée en se basant sur les invariants de Riemann. Dans la deuxième partie de la thèse, on a appliqué ce schéma à des systèmes monophasiques homogènes et non homogènes. Par exemple on a réalisé la simulation du problème de rupture de barrage sur une marche, pour des configurations 1D et 2D, en menant en particulier une étude de convergence numérique via la détermination des courbes d'erreurs. Enfin, on a utilisé le schéma pour la simulation numérique de systèmes diphasiques (Ransom 1D et 2D).
|
Page generated in 0.0815 seconds