1 |
Visualisering av APD-Plan med hjälp av 3D och BIM : En studie om utveckling av APD-visualisering i byggbranschen / Visualization of construction site planning by using 3D and BIM : A study about development of site layout visualization in construction processAlameri, Muhamed, Zaaroura, Mahmoud January 2021 (has links)
Trots den nytta som BIM har på ett projekt så finns det fortfarande företag som väljer att skapa sina APD-planer på det traditionella arbetssättet. Det traditionella arbetssättet innebär att APD-planen upprättas på den gamla metoden som vanligtvis görs med 2D. Anledningen bakom att det fortfarande finns företag som upprättar APD-planer på den traditionella arbetsmetoden är att de inte finns någon tillräcklig vilja eller kunskap att ändra arbetsmetod trots att metoden anses vara osäker och tidskrävande. Det har istället förekommit en ny arbetsmetod för att frambringa planer och ritningar som ska ersätta den traditionella arbetsmetoden. Denna arbetsmetod skapar modeller i 3D där de ingående byggkomponenterna även innehåller information. Denna arbetsmetod kallas för BIM som står för byggnadsinformationsmodellering. Modellen som upprättas med BIM och som innehåller information om de tillgängliga byggkomponenterna kallas för BIM-modell. BIM som arbetsmetod kan i sin tur användas för att skapa APD-planer med hjälp av stödjande verktyg som tex SketchUp och Revit vilket medför många fördelar. Denna studie syftar därför till att undersöka hur APD-plan visualiseras i dagens läge samt upplysa vilka faktorer som samtliga byggföretag ska beakta vid val av verktyg för visualisering av byggarbetsplatsen. Fördelar, nackdelar samt hinder kommer att lyftas fram i denna studie med hänsyn till 3D och BIM i syfte att undersöka vilken dimension det är som lämpar sig bäst för visualisering av APD-planen samt vilken dimension APD-planen visualiseras med i dagsläget. Ytterligare ett syfte är att undersöka var i byggprocessen som APD-Planen bör integreras. Fokus kommer ligga på att påvisa fördelarna med att utöka användandet av 3D respektive BIM-relaterade APD-visualiserings verktyg. Det som tas upp i frågeställningarna är vilka de olika fördelar respektive nackdelar samt hinder som finns med att tillämpa 3D och BIM vid visualisering av APD-plan. Dessutom görs två olika visualiseringar med 3D och BIM verktyg för att visa hur APD-planen visualiseras. Den mest användbara dimensionen vid visualisering av APD-planen är 2D där APD-planen upprättas med Bluebeam. Det finns vissa företag som har övergått till 3D vid visualisering men som kombinerar med 2D ritningar eller skisser. Att visualisera med BIM har inte varit aktuellt för de samtliga intervjuade företagen. Däremot används de färdigprojekterade BIM modellerna som en del av 3D visualiseringen i syfte att skapa en så verklighetsanpassad visualisering som möjligt. Fördelarna med att visualisera en APD-plan med 3D och BIM-verktyg är att det ger en förverkligad bild på hur byggarbetsplatsen kommer att se ut och att risker, möjligheter och problem som inte skulle kunna upptäckas med 2D-modellen blir upptäckbara. Nackdelen däremot med att visualisera en APD-plan med 3D eller BIM-verktyg är att filerna kan bli alltför tunga vilket leder i sin tur till verktyget blir svår hanterligt samt upplevs som hackigt. Det som dock hindrar många ifrån att implementera 3D och BIM-relaterade verktyg är den mänskliga faktorn som sätter stop för utvecklingen, där människans bekvämligheter och arbetsrutiner är avgörande för implementeringen av verktygen. De absolut viktigaste faktorer som ett företag bör beakta vid val av verktyg vid visualisering av APD-plan är Lönsamhet, användarupplevelse, kompatibilitet och support. / Despite the benefits that BIM has on a project, there are still companies that choose to create their APD plans in the traditional way. The reason why there are still companies that draw up APD plans on the traditional working method is that they do not have sufficient will or knowledge to change working method despite the method being considered uncertain and time consuming. Instead, there has been a new working method for producing plans and drawings that will replace the traditional working method. This working method creates models in 3D where the constituent building components also contain information. This working method is known as BIM as a wound for building information modeling. The model that is established with BIM and which contains information about the available building components is called the BIM model. BIM as a working method can in turn be used to create APD plans with the help of supporting tools such as SketchUp and Revit, which brings many benefits. This study therefore aims to investigate how APD plans are visualized in the current situation and to inform which factors all construction companies must take into account when choosing tools for visualization of the construction site. Advantages, disadvantages and obstacles will be highlighted in this study with regard to 3D and BIM in order to investigate which dimension is best suited for visualization of the APD plan and which dimension the APD plan is visualized with at present. Another purpose is to investigate where in the construction process the APD Plan should be integrated. The focus will be on demonstrating the benefits of expanding the use of 3D and BIM-related APD visualization tools, respectively. What is addressed in the issues is what are the different advantages and disadvantages as well as obstacles that exist with applying 3D and BIM when visualizing APD plans. In addition, two different visualizations are made with 3D and BIM tools to show how the APD plan is visualized. The most useful dimension in visualizing the APD plan is 2D where the APD plan is created with Bluebeam. There are some companies that have switched to 3D in visualization but which are combined with 2D drawings or sketches. Visualization with BIM has not been relevant for all the companies interviewed. On the other hand, the pre-designed BIM models are used as part of the 3D visualization in order to create as realistic a visualization as possible. The advantages of visualizing an APD plan with 3D and BIM tools are that it provides a realistic picture of what the construction site will look like and that risks, opportunities and problems that could not be detected with the 2D model become detectable. The disadvantage, however, of visualizing an APD plan with 3D or BIM tools is that the files can become too heavy, which in turn leads to the tool becoming difficult to handle and perceived as choppy. However, what prevents many from implementing 3D and BIM-related tools is the human factor that puts a stop to development, where human conveniences and work routines are crucial for the implementation of the tools. The most important factors that a company should consider when choosing tools when visualizing APD plans are Profitability, user experience, compatibility and support.
|
2 |
APD-planer i 3d : En studie om APD-planer i 3D för en ökad förståelse av byggarbetsplatsen / Construction site layout plans in 3d : A study on construction site layout plans in 3D for increased understanding of the construction siteHellsten, Ludwig, Meriloo, Gustav January 2024 (has links)
Byggbranschen står inför en ständig teknisk utveckling, en förändring där branschen ofta halkar efter. Studien syftar till att undersöka hur byggbranschen kan digitaliseras, med hänsyn till en vidareutveckling av dagens APD-planer i 2D till digitaliserade tredimensionella ritningar. Genom intervjuer och referenser till tidigare studier belyser arbetet både utmaningar och fördelar med att implementera denna 3D-teknik. För att besvara rapportens frågeställning används kvalitativa intervjuer, där elva personer från åtta olika företag med expertis inom ämnet intervjuas för att ge en mångsidig syn på marknaden. Med hjälp av en förbestämd lista med teman genomfördes semistrukturerade intervjuer för att säkerställa relevanta svar. För att ytterligare förstå processen av framtagande av APD-planer i 3D skapades en egen modell med hjälp av programmet SketchUp. Resultaten visar att det program som används mest till framtagande av tvådimensionella APD-planer är Bluebeam, medan SketchUp är det främsta vid 3D-modellering. Studien visar att den främsta fördelen med APD-planer i 3D är den visuella aspekten vid komplexa projekt för att tydligt beskriva byggarbetsplatsen. Trots att intresset för denna utveckling finns, saknas ofta resurser och initiativ för att ta steget dit. Slutligen visar studien att visualisering av byggarbetsplatsen i 3D ger entreprenören en större möjlighet att upptäcka hinder och krockar i förväg och kan på så sätt se till att det inte sker. Byggbranschen är traditionellt inriktad på att läsa 2D-ritningar och halkar ofta efter i den tekniska utvecklingen. Trots detta finns det ett klart intresse för APD-planer i 3D, men främst som ett komplement till dagens tvådimensionella APD-planer. / The construction industry is facing continuous technological advancements, a change where the industry often falls behind. This study aims to investigate how the construction industry can be digitalized, considering further development of the current construction site layout plans in 2D into more digitalized three-dimensional drawings. Through interviews and references to previous studies, the work highlights both challenges and advantages of implementing this 3D technology. To answer the report’s research questions, qualitative interviews are used, where eleven individuals from eight different companies with expertise in the subject are interviewed to provide a diverse perspective on the market. Semi-structured interviews were conducted using a predetermined list of themes to ensure relevant answers. To further understand the process of developing constructions site layout plans in 3D, a custom model was created using the program SketchUp. The results show that the program most used for creating two-dimensional construction site layout plans is Bluebeam, while SketchUp is the primary tool for 3D modeling. The study demonstrates that the main advantage of construction site layout plans in 3D is the visual aspect in complex projects to clearly describe the construction site. Despite the interest in this development, resources and initiatives to make the transition are often lacking. Finally, the study shows that visualizing the construction site in 3D gives the entrepreneur an opportunity to detect obstacles and clashes in advance and can thus ensure that they do not occur. The construction industry is traditionally focused on reading 2D drawings and often falls behind in technological advancements. Nevertheless, there is a clear interest in construction site layout plans in 3D, primarily as a complement to today’s two-dimensional plans.
|
3 |
Optimisation de l’aménagement d’un Chantier de Construction en Fonction des Risques Naturels et Technologiques, Utilisation du SIG / Construction Site Layout Optimization, Considering Risk of Natural or Technological Hazard Utilizing GISAbune'meh, Mohammed 24 May 2017 (has links)
Les chantiers de construction contiennent plusieurs installations. Celles-ci sont susceptibles d’être endommagées par des incidents liés aux risques naturels ou technologiques comme les incendies, les explosions, les ondes de souffles, etc. Ces incidents peuvent avoir des conséquences néfastes sur l’ensemble du processus de construction, ce qui pourrait entrainer des accidents graves ayant un impact majeur sur la productivité des employés, le temps global du projet, sa qualité et son budget. Par conséquent les gestionnaires et les planificateurs du projet doivent adopter et développer des approches novatrices capables de faire face aux risques naturels potentiels, de minimiser leurs conséquences et de faciliter l’évacuation du site en cas de danger. Une de ces approches consiste à optimiser l’aménagement des chantiers de construction. En général, la réduction des dommages résultants de risques naturels ou technologiques est encore un défi scientifique.Dans cette thèse, deux modèles (déterministe et probabiliste) sont développés pour minimiser les risques au sein d’un chantier. La méthode adoptée pour le développement de ces deux modèles consiste en :• La modélisation des éléments du chantier, par exemple : le générateur électrique, les bureaux et les entrepôts de matériaux, sont modélisés en 2D, pour agir en tant que source d’aléa et/ou cible vulnérable potentielle.• La modélisation de l’aléa : elle montre l’interaction des aléas entre les composants du chantier.• La modélisation de la vulnérabilité : elle représente la faiblesse potentielle des cibles sur l’aléa généré par chaque source.• La définition de la fonction d’utilité : elle vise à offrir une disposition optimisée avec un minimum de risque total sur le chantier. L’algorithme à évolution différentielle est adopté pour exécuter le processus d’optimisation.D’une part, dans le modèle déterministe, nous utilisons le principe de la syntaxe spatiale pour étudier l’impact des configurations spatiales dans l’évaluation du risque sur le chantier. Par conséquent, comme le processus d’évacuation est pris en compte dans l’estimation du risque, le risque réel est amplifié en utilisant le facteur de pénalité appelé « profondeur moyenne ». L’algorithme de Dijkstra est appliqué sur un modèle déterministe afin de trouver les chemins les plus sûrs (chemins de moindre risque) pour évacuer les sites à partir de chaque position sur le chantier vers les lieux sûrs afin de diminuer les pertes humaines et matérielles.D’autre part, le modèle probabiliste suppose que le risque est composé de la défaillance individuelle de chaque installation sur le chantier de construction. La simulation numérique est utilisée pour trouver la distribution de probabilités des défaillances pour l’ensemble du site.Les fonctionnalités d’un SIG (Système d’Information Géographique) ont été utilisées pour présenter les données sous forme de cartes, pour produire des cartes spatiales de risque sur le chantier de construction, pour mettre en œuvre l’algorithme de Dijkastra et pour l’analyse du coût le plus faible.A titre indicatif, les modèles proposés sont utilisés dans un cas d’étude comprenant plusieurs installations. Dans le modèle déterministe, toutes ces installations agissent comme des sources d’aléa et des cibles vulnérables, en même temps, dans le modèle probabiliste, quelques-unes de ces installations agissent comme des sources d’aléa et toutes comme des cibles vulnérables. Les résultats obtenus montrent que les modèles proposés sont efficaces en raison de leur capacité à générer une disposition optimale du site avec un environnement de travail plus sûr. En outre, les modèles obtenus sont capables de mettre en évidence les zones les plus risquées d’un chantier, de générer les chemins d’évacuation les moins risqués, ce qui permettra de minimiser les blessures graves et les victimes en cas d’urgence / Construction sites contain several supporting facilities that are required to complete construction activities. These facilities are susceptible to damage due to the occurrence of natural or technological hazards such as fire, explosion, blast wave, and so on. These may cause adverse consequences for the whole construction process, which in turn lead to fatal accidents that have a major impact on worker and employee productivity, project completion time, project quality and project budget. Therefore, project planners must adopt and develop innovative approaches able to face the occurrence of potential hazards, minimize their consequences, and facilitate the evacuation of the site in case of their occurrence. One of these approaches is optimizing construction site layout. In general, generating construction site layout able minimizing risk resulting from natural or technological hazards is still a scientific challenge.In the present research, two proposed model (deterministic and probabilistic) are developed to minimize the risks within a construction site. The common methodology adopted to develop these two models consists of:• Modeling construction site components, for instance; electric generator, offices and material storages, in a 2D layout, to act as either hazardous source or potential target or both at the same time.• Modeling hazard: it shows the hazard interaction among site components and the attenuation of hazard.• Modeling vulnerability: it represents the potential weakness of whole targets to the hazard generated from each source.• Defining the utility function: it aims to afford an optimized site layout with minimum total risk in the construction site. The differential evolution algorithm is adopted to run optimization process.Particularly, in the deterministic model, we use space syntax principle in order to realize the impact of space configurations in evaluating the risk in the construction site. Therefore, as the evacuation process is considered in estimating the risk, the actual risk is amplified by utilizing penalty factor called mean depth. Furthermore, Dijkstra’s algorithm is run on deterministic model to find the safest paths (least risk paths) for evacuating sites from any position on the construction site towards the safe places in order to diminish losses and fatalities. On the other hand, the framework utilized to develop a probabilistic model assumed that the risk is combined of the individual failure of each facility within a construction site. Moreover, the numerical simulation is performed to find the probabilistic distribution of failure for the whole site.Geographic information system (GIS) capabilities were exploited, in this research, to present data in maps format, generate the spatial risk map in the construction site, and implement the Dijkstra’s algorithm and least-cost path analysis.For illustration purposes, the proposed models are employed in a case study consisting of several facilities. In the deterministic model, all of these facilities act as hazardous sources and potential targets, at the same time, while, in a probabilistic model, only three of these facilities act as fire hazardous sources, whereas, all of them are potential targets. The results revealed that the proposed models are efficient due to their capability of generating site layout with the safer work environment. In addition, the model is capable of highlighting the riskiest areas within a construction site. Moreover, the proposed models are able to generate paths through least-risk zones, which will minimize the serious injuries and victims in cases of emergencies
|
4 |
APD-Planering i 3D och 4D : En verkligare bild av byggarbetsplatsen / Site layout planning in 3D and 4D : A more true representation of the construction siteLidberg, Samuel, Claeson, Gustav January 2024 (has links)
I projekteringsfasen utformas en arbetsplatsdispositionsplan (APD-plan), vilket fungerar som en översiktlig illustration av byggarbetsplatsen. Denna ritning visualiserar de byggnader som finns på plats och visar var bland annat upplagsytor för material, transportvägar och bodetablering kan identifieras. För närvarande är 2D-ritningar den dominerande och mest frekvent använda typen av APD-planer. Det finns ytterligare dimensioner som kan adderas på en APD-plan, i denna studie undersöks de nästkommande dimensionerna, volym (3D) samt tidsaspekten (4D). För att analysera de utmaningar, möjligheter och värdet som en APD-plan i 3D och 4D kan medföra samt hur kunskapen och tillgängligheten kan utvecklas för att kontribuera till ett ökande användande av en APD-planering i 3D och 4D. Denna studie har en kvalitativ ansats med sju djupingående intervjuer. Resultatet visar att APD-planering i 3D och 4D ger en tydlig verklighetsbild av byggarbetsplatsens utseende. Vilket möjliggör att risker och fel kan uppmärksammas i ett tidigt skede och genom en simulering kopplat till tidplanen, blir det ett effektivt diskussionsunderlag som kan användas till planering inom det aktuella projektet. För att en implementering och ett fortsatt arbete av 3D och 4D APD-planering ska lyckas, krävs det att organisationerna skapar sig rätt förutsättningar genom att lägga tid och resurser för att etablera en stark kompetens som kan forma ett arbetssätt med APD-planering i 3D och 4D. / During the design phase, a construction site layout plan (CSL-plan) is developed, serving as an overview illustration of the construction site. This plan visualizes the buildings on site and indicates where, among other things such as material storage areas, transport routes, and site offices are located. Currently, 2D drawings are the most frequently used type of CSL-plans. Additional dimensions can be incorporated into an CSL-plan; this study examines the subsequent dimensions: volume (3D) and time (4D). The aim is to analyze the challenges, opportunities, and value that a 3D and 4D APD-plan can offer, and how knowledge and accessibility can be enhanced to encourage greater use of 3D and 4D CSL-planning. This study employs a qualitative approach with seven in-depth interviews. The results suggest that 3D and 4D CSL-planning using various software tools provides a clear, realistic representation of the construction site. This allows risks and errors to be identified at an early stage. Through simulation linked to the schedule, it also becomes an effective discussion framework for project planning. For successful implementation and continued use of 3D and 4D CSL-planning, organizations must create the right conditions by investing time and resources to build strong competencies that can establish an effective workflow with 3D and 4D CSL-planning.
|
5 |
Stavebně technologický projekt Univerzity Tomáše Bati ve Zlíně / Construction Technology Project of University of Tomáš Baťa in ZlínKrištof, Marek January 2019 (has links)
The subject of my diploma thesis is selected parts of the construction technology project of Tomas Bata University in Zlín. The content of the work is mainly elaborated technological regulation for making the monolithic ceiling shell of the main aula of the building, processing of the control and test plan and drawings of the ceiling shell. Next, I worked on the design of suitable transport routes to the construction site, the processing of the studies of the implementation of the main technological stages, the design and the processing of the drawings of the construction site, which varies in time depending on the progress of the technological stages, the design and assessment of the lifting mechanisms and machines, time and financial plan, the timetable for the rough construction and the main technological stages, budget of the rough construction, health and safety at work.
|
6 |
Příprava a řízení stavební zakázky ve stavebním podniku / Construction Order Preparation and Management in Construction CompanyŽeliar, Marek January 2017 (has links)
This thesis explains a theme of construction order preparation an management in construction company. Introductory part o thesis is focused on general specification of construction projects and other related therms. Next part o my diploma thesis deals with construction order preparation. I paid the main attention to process of choosing subcontractors and managing of construction order, I applied my gained knowledge to particular construction site in practical part of thesis. I created all the necessary documents for proper construction preparation, including time schedule, oranizational plan, financial plan and construction site layout plan. The last part is the evaluation of the results and comparing them with real case.
|
7 |
Polyfunkční dům Brno - Štýřice - stavebně technologický projekt / The multi-functional centre Brno - Štýřice - construction technological projectKocian, Ondřej January 2014 (has links)
The final thesis deals with structural and technological background for the construction of multi-functional building in Brno-Štýřice. The aim is the optimal design of contruction progress and necessary resources. This thesis contains construction-technological report, technological instruction, construction site layout, machinery and lifting configuration, design of transport and supply routes, safety work organization, measures to protect environment, building costs, time schedule and inspectional-test plan.
|
8 |
Generative Design for Construction Site Layout PlanningRaj Pradip Birewar (10664183) 07 May 2021 (has links)
<p>The construction industry contributes significantly to the
GDP of the United States, attributing to its growth at an unprecedented rate.
Efficient planning on all stages of construction is the only way to combat
dynamic obstructions and deliver projects on time. The first element involved
in the planning phase deals with the layout of the Construction Site. It
significantly regulates the pace at which construction operations function and
directly affects the time, cost, and safety linked to the successful delivery
of the target project. Hence, it is paramount to ensure that every component of
the construction site maneuvers with the utmost productivity. One such
equipment that occupies significant attention while carrying out the CSLP
process is Tower Crane. Tower crane optimization is pivotal to ensure proper lifting and
handling of materials, and warrant conflict-free work zones. This research,
therefore, aims to optimize its position by maximizing the lift ability. To
achieve the goals, Generative Design- a paradigm that integrates the
constructive features of mathematical and visual optimization techniques, is
used to develop a relatively comprehensible prototype. The first part of the
research, thus, utilized Generative Design on two construction sites- one from
the United States and one from India. After implementing the visual programming
algorithm, an improvement of 40% was warranted in the lift score. A pool of
potential alternatives was explored and supplemented by the trade-off
illustrations. The concept of trade-off was substantiated by allowing a
framework for prioritization of lift cycles, and facilitating a holistic
decision-making process. To evaluate the usability, 12 participants were chosen
based on their previous experience with tower crane operations. The
participants witnessed a live demonstration of the algorithm, answered a Likert
scale questionnaire, and appeared for an open-ended interview to provide
feedback about the proposed Generative Design technique. After carrying out
narrative analysis for the usability aspect- it has been unanimously observed
that the technique has extreme efficiency of usage and can evidently prevent
the occurrence of errors. The study concludes by providing recommendations to
augment the significance and usability of Generative Design for tower crane
position optimization. </p><br>
|
9 |
A Middle Woodland House and Houselot: Evidence of Sedentism from the Patton Site (33AT990), the Hocking River Valley, Southeastern OhioWeaver, Sarah A. January 2009 (has links)
No description available.
|
10 |
Příprava realizace administrativních objektů Palmovka Park / Preparation for the implementation of administrative buildings Palmovka ParkBoucník, Jan January 2018 (has links)
The diploma thesis deals with the preparation of the construction of Palmovka Open Park III administrative building. It contains a technological regulation for drilled piles, technological regulation for reinforced concrete monolithic constructions, broader transport routes, study of the implementation of the main technological stages, design of building machines and mechanisms, control and testing plan for drilling piles and reinforced concrete constructions, risk and measures, time and financial plan, calculation according to THU, drawing of site equipment, cycle, timetable, item budget, selected technological details.
|
Page generated in 0.0359 seconds