51 |
Séparation des représentations des groupes de Lie par des ensembles moments / Separation of Lie group representations with moment setsZergane, Amel 17 December 2011 (has links)
Si (π, H) est une représentation unitaire irréductible d'un groupe de Lie G, on sait lui associer son application moment Ψπ. La fermeture de l'image de Ψπ s'appelle l'ensemble moment de π. Généralement, cet ensemble est Conv(Oπ), si Oπ est l'orbite coadjointe associée à π. Mais il ne caractérise pas π : deux orbites distinctes peuvent avoir la même enveloppe convexe fermée. On peut contourner cette non séparation en considérant un surgroupe G+ de G et une application non linéaire ø de g* dans (g+)* telle que, pour les orbites générique, ø(O) est une orbite et Conv (ø(O)) caractérise O. Dans cette thèse, on montre que l'on peut choisir le couple (G+, ø), avec ø de degré ≤ 2 pour tous les groupes nilpotents de dimension ≤ 6, à une exception près, tous les groupes résolubles de dimension ≤ 4, et pour un exemple de groupe de déplacements. Ensuite, on étudie le cas des groupes G = SL(n, R). Pour ces groupes, il existe un tel couple avec ø de degré n, mais il n'en existe pas avec ø de degré 2 si n>2, il n'en existe pas avec ø de degré 3 si n=4. Enfin, on montre que l'application moment Ψπ est celle d'une action fortement hamiltonienne de G sur la variété de Fréchet symplectique PH∞. On construit un foncteur qui associe à tout G un surgroupe de Lie Fréchet G̃, de dimension infinie et, à tout π de G, une action π̃ fortement hamiltonienne, dont l'ensemble moment caractérise π / To a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
|
52 |
Analytical methods and field theory for disordered systems / Méthodes analytiques et théorie des champs pour les systèmes désordonnésThiery, Thimothée 05 September 2016 (has links)
Cette thèse présente plusieurs aspects de la physique des systèmes élastiques désordonnés et des méthodes analytiques utilisées pour les étudier. On s’intéressera d’une part aux propriétés universelles des processus d’avalanches statiques et dynamiques (à la transition de dépiégeage) d’interfaces élastiques de dimension arbitraire en milieu aléatoire à température nulle. Pour étudier ces questions nous utiliserons le groupe de renormalisation fonctionnel. Après une revue de ces aspects,nous présenterons plus particulièrement les résultats obtenus pendant la thèse sur (i) la structure spatiale des avalanches et (ii) les corrélations entre avalanches.On s’intéressera d’autre part aux propriétés statiques à température finie de polymères dirigés en dimension 1+1, et en particulier aux observables liées à la classe d’universalité KPZ. Dans ce contexte l’étude de modèles exactement solubles a récemment permis de grands progrès. Après une revue de ces aspects, nous nous intéresserons plus particulièrement aux modèles exactement solubles de polymère dirigé sur le réseau carré, et présenterons les résultats obtenus pendantla thèse dans cette voie: (i) classification des modèles à température finie sur le réseau carré exactement solubles par ansatz de Bethe; (ii) universalité KPZ pour les modèles Log-Gamma et Inverse-Beta; (iii) universalité et nonuniversalitéKPZ pour le modèle Beta; (iv) mesures stationnaires du modèle Inverse-Beta et des modèles à température nulle associés. / This thesis presents several aspects of the physics of disordered elastic systems and of the analytical methods used for their study.On one hand we will be interested in universal properties of avalanche processes in the statics and dynamics (at the depinning transition) of elastic interfaces of arbitrary dimension in disordered media at zero temperature. To study these questions we will use the functional renormalization group. After a review of these aspects we will more particularly present the results obtained during the thesis on (i) the spatial structure of avalanches and (ii) the correlations between avalanches.On the other hand we will be interested in static properties of directed polymers in 1+1 dimension, and in particular in observables related to the KPZ universality class. In this context the study of exactly solvable models has recently led to important progress. After a review of these aspects we will be more particularly interested in exactly solvable models of directed polymer on the square lattice and present the results obtained during the thesis in this direction: (i) classification ofBethe ansatz exactly solvable models of directed polymer at finite temperature on the square lattice; (ii) KPZ universality for the Log-Gamma and Inverse-Beta models; (iii) KPZ universality and non-universality for the Beta model; (iv) stationary measures of the Inverse- Beta model and of related zero temperature models.
|
53 |
On irreducible, infinite, non-affine coxeter groupsQi, Dongwen 30 July 2007 (has links)
No description available.
|
54 |
On the length of group lawsSchneider, Jakob 07 December 2019 (has links)
Let C be the class of finite nilpotent, solvable, symmetric, simple or semi-simple groups and n be a positive integer. We discuss the following question on group laws: What is the length of the shortest non-trivial law holding for all finite groups from the class C of order less than or equal to n?:Introduction
0 Essentials from group theory
1 The two main tools
1.1 The commutator lemma
1.2 The extension lemma
2 Nilpotent and solvable groups
2.1 Definitions and basic properties
2.2 Short non-trivial words in the derived series of F_2
2.3 Short non-trivial words in the lower central series of F_2
2.4 Laws for finite nilpotent groups
2.5 Laws for finite solvable groups
3 Semi-simple groups
3.1 Definitions and basic facts
3.2 Laws for the symmetric group S_n
3.3 Laws for simple groups
3.4 Laws for finite linear groups
3.5 Returning to semi-simple groups
4 The final conclusion
Index
Bibliography / Sei C die Klasse der endlichen nilpotenten, auflösbaren, symmetrischen oder halbeinfachen Gruppen und n eine positive ganze Zahl. We diskutieren die folgende Frage über Gruppengesetze: Was ist die Länge des kürzesten nicht-trivialen Gesetzes, das für alle endlichen Gruppen der Klasse C gilt, welche die Ordnung höchstens n haben?:Introduction
0 Essentials from group theory
1 The two main tools
1.1 The commutator lemma
1.2 The extension lemma
2 Nilpotent and solvable groups
2.1 Definitions and basic properties
2.2 Short non-trivial words in the derived series of F_2
2.3 Short non-trivial words in the lower central series of F_2
2.4 Laws for finite nilpotent groups
2.5 Laws for finite solvable groups
3 Semi-simple groups
3.1 Definitions and basic facts
3.2 Laws for the symmetric group S_n
3.3 Laws for simple groups
3.4 Laws for finite linear groups
3.5 Returning to semi-simple groups
4 The final conclusion
Index
Bibliography
|
55 |
Algebraic and multilinear-algebraic techniques for fast matrix multiplicationGouaya, Guy Mathias January 2015 (has links)
This dissertation reviews the theory of fast matrix multiplication from a multilinear-algebraic point of view, as
well as recent fast matrix multiplication algorithms based on discrete Fourier transforms over nite groups.
To this end, the algebraic approach is described in terms of group algebras over groups satisfying the triple
product Property, and the construction of such groups via uniquely solvable puzzles.
The higher order singular value decomposition is an important decomposition of tensors that retains some of
the properties of the singular value decomposition of matrices. However, we have proven a novel negative result
which demonstrates that the higher order singular value decomposition yields a matrix multiplication algorithm
that is no better than the standard algorithm. / Mathematical Sciences / M. Sc. (Applied Mathematics)
|
56 |
Solitons et comportement asymptotique des solutions en grand temps pour l'équation de Novikov-VeselovKazeykina, Anna 03 December 2012 (has links) (PDF)
Ce travail est consacré à l'étude de l'équation de Novikov-Veselov, un analogue ( 2 + 1 )-dimensionnel de l'équation renommée de Korteweg-de Vries, intégrable via la transformée de la diffusion inverse pour l'équation de Schrödinger stationnaire en dimension 2 à énergie fixe. Nous commençons par étudier une classe spéciale de solutions rationnelles non singulières de l'équation de Novikov-Veselov à énergie positive, construites par Grinevich et Zakharov, et nous démontrons que ces solutions sont multisolitons. Les solutions de Grinevich-Zakharov sont localisées comme $ O( | x |^{ -2 } ) $, $ | x | \to \infty $, et dans le travail présent, nous prouvons que cette localisation est presque la plus forte possible pour les solitons de l'équation de Novikov-Veselov: nous montrons que l'équation de Novikov-Veselov à énergie non nulle ne possède pas de solitons localisés plus fort que $ O ( | x |^{ - 3 } ) $, $ | x | \to \infty $. Pour le cas d'énergie zéro, nous montrons que si les solitons de l'équation de Novikov-Veselov appartiennent à l'image des solutions de l'équation de Novikov-Veselov modifiée sous la transformation de Miura, dans ce cas, la localisation plus forte que $ O( | x |^{ -2 } ) $ n'est pas possible. Dans le travail présent, nous étudions également la question du comportement asymptotique des solutions du problème de Cauchy pour l'équation de Novikov-Veselov à énergie non nulle (pour le cas d'énergie positive, les solutions transparentes ou " reflectionless " sont considérées). Sous l'hypothèse de non singularité des données de diffusion des solutions nous obtenons que ces solutions décroissent avec le temps de façon uniforme comme $ O( t^{ -1 } ) $, $ t \to +\infty $, dans le cas d'énergie positive et comme $ O( t^{ -3/4 } ) $, $ t \to +\infty $, dans le cas d'énergie négative; dans ce dernier cas, nous démontrons également que l'estimation obtenue est optimale.
|
57 |
Algebraic and multilinear-algebraic techniques for fast matrix multiplicationGouaya, Guy Mathias January 2015 (has links)
This dissertation reviews the theory of fast matrix multiplication from a multilinear-algebraic point of view, as
well as recent fast matrix multiplication algorithms based on discrete Fourier transforms over nite groups.
To this end, the algebraic approach is described in terms of group algebras over groups satisfying the triple
product Property, and the construction of such groups via uniquely solvable puzzles.
The higher order singular value decomposition is an important decomposition of tensors that retains some of
the properties of the singular value decomposition of matrices. However, we have proven a novel negative result
which demonstrates that the higher order singular value decomposition yields a matrix multiplication algorithm
that is no better than the standard algorithm. / Mathematical Sciences / M. Sc. (Applied Mathematics)
|
58 |
Thermalisation and Relaxation of Quantum Systems / Thermalisation et relaxation des systèmes quantiquesWald, Sascha Sebastian 28 September 2017 (has links)
Cette thèse traite la dynamique hors équilibre des systèmes quantiques ouverts couplés à un réservoir externe. Un modèle spécifique exactement soluble, le modèle sphérique, sert comme exemple paradigmatique. Ce modèle se résout exactement en toute dimension spatiale et pour des interactions très générales. Malgré sa simplicité technique, ce modèle est intéressant car ni son comportement critique d’équilibre ni celui hors équilibre est du genre champ moyen. La présentation débute avec une revue sur la mécanique statistique des transitions de phases classique et quantique, et sur les propriétés du modèle sphérique. Sa dynamique quantique ne se décrit point à l’aide d’une équation de Langevin phénoménologique. Une description plus complète à l’aide de la théorie de l’équation de Lindblad est nécessaire. Les équations de Lindblad décrivent la relaxation d’un système quantique vers son état d’équilibre. En tant que premier exemple, le diagramme de phases dynamique d’un seul spin sphérique quantique est étudié. Réinterprétant cette solution en tant qu’une approximation champ moyen d’un problème de N corps, le diagramme de phases quantique est établi et un effet « congeler en réchauffant » quantique est démontré. Ensuite, le formalisme de Lindblad est généralisé au modèle sphérique quantique de N particules: primo, la forme précise de l’équation de Lindblad est obtenue des conditions que (i) l’état quantique d’équilibre exacte est une solution stationnaire de l’équation de Lindblad et (ii) dans le limite classique, l’équation Langevin de mouvement est retrouvée. Secundo, le modèle sphérique permet la réduction exacte du problème de N particules à une seule équation intégro-différentielle pour le paramètre sphérique. Tertio, en résolvant pour le comportement asymptotique des temps longs de cette équation, nous démontrons que dans la limite semi-classique, la dynamique quantique effective redevient équivalente à une dynamique classique, à une renormalisation quantique de la température T près. Quarto, pour une trempe quantique profonde dans la phase ordonnée, nous démontrons que la dynamique quantique dépend d’une manière non triviale de la dimension spatiale. L’émergence du comportement d’échelle dynamique et des corrections logarithmiques est discutée en détail. Les outils mathématiques de cette analyse sont des nouveaux résultats sur le comportement asymptotique de certaines fonctions hypergéométriques confluentes en deux variables / This study deals with the dynamic properties of open quantum systems far from equilibrium in d dimensions. The focus is on a special, exactly solvable model, the spherical model (SM), which is technically simple. The analysis is of interest, since the critical behaviour in and far from equilibrium not of mean-field type. We begin with a résumé of the statistical mechanics of phase transitions and treat especially the quantum version of the SM. The quantum dynamics (QD) of the model cannot be described by phenomenological Langevin equation and must be formulated with Lindblad equations.First we examine the dynamic phase diagram of a single spherical quantum spin and interpret the solution as a mean-field approximation of the N-body problem. Hereby, we find a quantum mechanical ‘freezing by heating’ effect. After that, we extend the formalism to the N-body problem, determining first the form of the Lindblad equation from consistency conditions. The SM then allows the reduction to a single integro-differential equation whose asymptotic solution shows, that the effective QD in the semi-classical limit is fully classical. For a deep quench in the ordered phase, we show that the QD strongly and non-trivially depends on d and derive the dynamic scaling behaviour and its corrections. The mathematical tools for this analysis are new results on the asymptotic behaviour of certain confluent hypergeometric functions in two variables
|
59 |
Polynômes orthogonaux : processus limites et modèles exactement résolublesLemay, Jean-Michel 06 1900 (has links)
Cette thèse porte sur l’étude des familles de polynômes orthogonaux et leurs liens avec les modèles
exactement résolubles. Elle se décline en deux parties. Dans la première, on caractérise quatre
nouvelles familles de polynômes orthogonaux à l’aide de processus limites appliqués à des familles
appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singulières des polynômes de
Wilson et d’Askey-Wilson sont considérées. Deux premières extensions bivariées de polynômes
appartenant au tableau de Bannai-Ito sont également introduites. La deuxième partie présente
quatre modèles exactement résolubles en lien avec la théorie des polynômes orthogonaux. Les
propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modèle de
chaîne de spin XX dont les couplage sont liés aux polynômes de para-Racah sont examinées. Deux
modèles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions
sont obtenues et leurs symétries s’encodent respectivement dans l’algèbre de Bannai-Ito de rang
deux et de rang arbitraire ce qui mène à conjecturer l’apparition des polynômes de Bannai-Ito
multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la
superalgèbre osp(1|2), deux identités de convolution pour des familles de polynômes du tableau de
Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit à une fonction
génératrice bilinéaire pour les polynômes de Big −1 Jacobi. / This thesis is concerned with the study of families of orthogonal polynomials and their connection
to exactly solvable models. It comprises two parts. In the first one, four novel families of orthogonal
polynomials are caracterized through limit processes applied to families belonging to the Askey
and Bannai-Ito schemes. Singular truncations of the Wilson and Askey-Wilson polynomials are
considered. The first two bivariate extensions of families of the Bannai-Ito tableau are also
introduced. The second part presents four exactly solvable models connected to the theory of
orthogonal polynomials. The perfect transfer of quantum information and entanglement generation
properties of an XX spin chain model whose couplings are linked to the para-Racah polynomials are
examined. Two superintegrable models containing reflexion operators are proposed. Their solutions
are obtained and their symmetries are encoded respectively in the rank two and arbitrary rank
Bannai-Ito algebra which leads to conjecture the apparition of multivariate Bannai-Ito polynomials
as overlaps. Finally, via the representation theory of the osp(1|2) Lie superalgebra, two convolution
identities for families of orthogonal polynomials of the Bannai-Ito tableau are offered. Realizations
in terms of Dunkl operators lead to a bilinear generating function for the Big −1 Jacobi polynomials.
|
60 |
Mécanique quantique supersymétrique et opérateurs d’échelle pour le système de Rosen-MorseGarneau-Desroches, Simon 07 1900 (has links)
Le présent mémoire est dédié à l’étude du rôle de la mécanique quantique supersymétrique dans la construction d’opérateurs d’échelle et de leurs applications pour le système quantique de Rosen-Morse. L’aboutissement de ces travaux est contenu dans un article qui constitue le dernier chapitre du mémoire. Précisément, on motive l’échec de la réalisation des opérateurs d’échelle comme opérateurs différentiels pour le potentiel de Rosen-Morse avec les méthodes traditionnelles. On exploite la propriété d’invariance de forme dans le contexte de la mécanique quantique supersymétrique comme un outil alternatif pour offrir une première approche quantique à la réalisation des opérateurs d’échelle pour la version hyperbolique de ce potentiel. On utilise cette réalisation pour obtenir celle d’opérateurs d’échelle pour une classe particulière d’extensions rationnelles du potentiel de Rosen-Morse hyperbolique avec des techniques issues de la supersymétrie. Des états cohérents sont construits à partir des réalisations obtenues pour les différents systèmes. Certaines de leurs propriétés sont analysées et mises en comparaison. En parallèle, on utilise une transformation canonique ponctuelle pour déduire une première réalisation des opérateurs d’échelle comme opérateurs différentiels pour le système de Rosen-Morse trigonométrique. De cette réalisation sont construits des états cohérents pour lesquels des propriétés sont similairement analysées. / This master thesis is dedicated to the study of the role of supersymmetric quantum mechanics in the construction of ladder operators and of their applications for the quantum Rosen-Morse system. The results of this work are presented in an article that constitutes the last chapter of the thesis. Precisely, we motivate the failure of traditional methods in providing a realization for the Rosen-Morse ladder operators as differential operators. We provide a first quantum-based solution to this problem by using the shape invariance property in supersymmetric quantum mechanics as a tool in the construction of the ladder operators for the hyperbolic version of this potential. We use the latter realization to obtain that of a specific class of rational extensions of the hyperbolic Rosen-Morse system by means of supersymmetric techniques. Coherent states are constructed from the ladder operators obtained for the different systems. Some properties are analyzed and compared. In addition, we make use of a point canonical transformation in the derivation of the first realization of the ladder operators of the trigonometric Rosen-Morse system as differential operators. From this realization, we construct coherent states for which some properties are similarly analyzed.
|
Page generated in 0.0426 seconds