• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 12
  • 12
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mécanismes et bases cérébrales du traitement des fréquences spatiales lors de la catégorisation de scènes visuelles / The neural bases of spatial frequency processing during visual scene categorization

Kauffmann, Louise 04 November 2015 (has links)
L'analyse visuelle de scènes débute par l'extraction en parallèle de l'information à différentes fréquences spatiales, en suivant un mode de traitement par défaut « coarse-to-fine ». L'analyse rapide de l'information grossière (« coarse ») en basses fréquences spatiales fournirait un aperçu global de la scène, qui serait ensuite affiné par l'analyse des détails de la scène (« fine ») en hautes fréquences spatiales. L'objectif de cette thèse a été de préciser les bases cérébrales du traitement des fréquences spatiales lors de la catégorisation de scènes. A travers deux études comportementales, nous avons tout d'abord montré qu'une analyse « coarse-to-fine » est plus avantageuse pour la catégorisation rapide de scènes, et ce, indépendamment de la valeur de contraste de luminance associée aux différentes fréquences spatiales (Expériences 1 et 2). Des études en IRMf nous ont par la suite permis de mettre en évidence l'implication d'un large réseau cérébral lors de l'analyse « coarse-to-fine » des scènes, incluant les aires visuelles primaires et occipito-temporales, mais également le cortex frontal inférieur (Expérience 3). Une analyse de la connectivité a révélé que lors de cette analyse, le cortex frontal inférieur exercerait une influence « top-down » sur le cortex visuel primaire et les gyri fusiforme et parahippocampique au sein du cortex occipito-temporal. Ces résultats soulignent le rôle du cortex visuel primaire comme région intégrative, codant à la fois les afférences rétino-thalamiques et les influences « top-down » de régions supérieures. Nous avons également observé que le gyrus frontal inférieur et le gyrus fusiforme participaient activement à l'intégration de l'information sémantique contenue dans les basses et hautes fréquences spatiales d'une scène (Expérience 4). Enfin, nous avons spécifiquement étudié le traitement des fréquences spatiales au sein de régions occipito-temporales sélectives aux scènes : la « parahippocampal place area » (PPA), le cortex retrosplenial et l'« occipital place area ». Nous avons montré que ces trois régions participent de façon distincte au traitement des fréquences spatiales dans les scènes (Expérience 5) et qu'une stratégie d'analyse « coarse-to-fine » serait privilégiée par la PPA (Expérience 6). Les résultats de ces travaux nous permettent de conforter et de préciser les modèles actuels de la catégorisation visuelle de scènes basés sur un traitement fréquentiel de l'information visuelle. / Visual analysis begins with the parallel extraction of different attributes at different spatial frequencies following a predominantly coarse-to-fine default processing sequence. Rapid processing of low spatial frequency information would permit a coarse parsing of the visual input, prior to the detailed analysis of fine information in high spatial frequencies. Our aim was to further address the neural bases of spatial frequency processing during scene categorization. We first demonstrated in two behavioral studies that a coarse-to-fine processing is indeed an advantageous strategy for rapid scene categorization, and is independent of the luminance contrast values associated with the different spatial frequencies (Experiments 1 and 2). In two fMRI studies, we showed first the involvement of a large cerebral network during coarse-to-fine processing of scenes, including early visual and occipito-temporal areas, but also the inferior frontal cortex. Effective connectivity analysis revealed that the inferior frontal gyrus exerts top-down influence on the early visual cortex as well as on the parahippocampal and fusiform gyri in the occipito-temporal cortex (Experiment 3). These results highlight the role of the primary visual cortex in integrating top-down influences from frontal areas to retino-thalamic incoming signals. We also evidenced that the inferior frontal and fusiform gyri actively participate to the integration of the semantic information contained in low and high spatial frequency (Experiment 4). Finally, we specifically investigated the spatial frequency processing of scenes within scene-selective areas of the occipito-temporal cortex: the parahippocampal place area (PPA), the retrosplenial cortex, and the occipital place area. We demonstrated that these regions participate differently in the spatial frequency processing of scenes (Experiment 5) and that a coarse-to-fine processing is favored within the PPA (Experiment 6). Overall, results allow us to refine current model of visual scene categorization based on a spatial frequency analysis.
12

Le rôle de l'information visuelle dans la catégorisation émotionnelle au sein de deux psychopathologies / no title available

Devaux, Damien 09 December 2013 (has links)
Un contenu visuel flou peut-il être efficace pour traiter de l’information émotionnelle ? Récemment, les travaux psychologiques en traitement émotionnel de l’information visuelle font état d’un lien particulier avec l’information de basses fréquences spatiales (BFS), grossière et floue mais rapide, qui permettrait la transmission très rapide de signaux au système émotionnel par rapport à une information de hautes fréquences spatiales (HFS) plus complexe et détaillée. En outre, l’information BFS serait primordiale dans la détection d’un danger potentiel de l’environnement et par conséquent envers des émotions à valence négative. Ces deux types d’informations visuelles emprunteraient des voies neuronales différentes conduisant à une segmentation de cette information visuelle dans le cerveau. Au niveau psychopathologique, des troubles neurologiques comme la maladie de Gilles de la Tourette ou encore la dépression majeure résistante sont connues pour entraîner un déficit des interactions sociales pour lesquelles les traitements émotionnels sont indispensables. Les dysfonctionnements neurologiques et psychobiologiques accompagnant ces troubles impliquent des structures spécifiques et localisées en périphéries ou enfouies dans le cerveau liées à la dichotomie fonctionnelle de l’information visuelle. Un des moyens simples pour appréhender ces traitements est la catégorisation des visages émotionnels. Cette recherche a examiné au niveau théorique et appliqué dans quelle mesure l’information visuelle autrement appelée la résolution en fréquences spatiales (FS) jouerait un rôle dans la catégorisation des expressions faciales émotionnelles (EFEs). Ainsi tant au niveau de la détection visuelle de danger qu’au niveau de l’identification des EFEs dans la maladie Gilles de la Tourette et dans la dépression majeure résistante, nous avons étudié les réponses comportementales dans les premières étapes de décryptage de l’information visuelle convoyant des indices émotionnels. Une comparaison avec une population contrôle a permis de cerner plus précisément les effets d’un filtrage en FS dans les processus de catégorisation avec la prédiction d’un bénéfice à traiter des contenus flous (BFS) par rapport à des contenus détaillés (HFS) pour des EFEs problématiques à classer en fonction de la pathologie. Nos résultats ont suggéré une meilleure identification de certaines EFEs filtrées en BFS par rapport à celles filtrées en HFS ou résolues. Nos données empiriques ont été discutées dans la perspective d’une segmentation de l’information visuelle dans le cerveau sollicitant des circuits neuronaux spécifiques favorisant l’accès de l’information visuelle aux centres émotionnels. En regard des structures cérébrales impliquées et des activités neuronales connus dans les troubles étudiées, l’activité dopaminergique des neurones sollicités pourraient expliquées en partie nos données factuelles. / What can be the efficiency of coarse scales in emotional information processing? Recently, psychological findings about emotional processing of visual information reported a particular link with low spatial frequencies (LSF), coarse and blurred but rapid, which might offer a very fast signal to emotional system compared to high spatial frequencies (HSF) more intricate and detailed. Plus, LSF information might be essential in danger detection and consequently in negative emotions classification. These two types of visual information would take different neural pathways driving to visual information segmentation in the brain. In psychopathological view, neurological disorders as Tourette syndrome or treatment-resistant depression are well known to produce social interaction troubles in which emotions are obligatory. Neurological and psychobiological dysfunctions belonging to these diseases implicate specific neural structures located at peripheral or inside the brain that are bind to functional dichotomy of visual information. One of the simplest ways to examine that processing is the categorization of emotion faces. This research has investigated according to theoretical and practical aspects the extent to which visual information or spatial frequency scaling (SF) might be implicated in categorization of emotional facial expressions (EFE). Thus, both in danger detection and EFE classification, among Tourette syndrome and treatment-resistant depression, we have studied behavioural responses during the first steps of visual information interpretation providing emotional cues. A comparison with healthy control population has given more precise effects of FS filtering in categorization processing with the hypothesis of a benefice to process coarse scales (LSF) compared to detailed signals (HSF) for the identification of difficult EFE in respect with the disorder. Our results have suggested a best identification of specific EFE filtered in LFS compared to HSF or intact images called broad spatial frequencies (BSF). Our empirical findings were argued in the perspective of visual information segmentation in the brain requesting specific neuronal circuits favouring visual information access to emotional complex. Given implicated brain areas and neuronal activities regarding studied disorders, dopaminergic innervation might explain our factual data.
13

Etude du traitement visuel rétinotopique des fréquences spatiales de scènes et plasticité cérébrale au cours du vieillissement normal et pathologique / Study of retinotopic spatial frequency processing of scenes and cerebral plasticity in normal and pathological aging.

Ramanoël, Stephen 04 December 2015 (has links)
L'analyse visuelle de scènes débute par l'extraction en parallèle de différentes caractéristiques visuelles élémentaires à différentes fréquences spatiales. L'objectif de cette thèse a été de préciser les mécanismes et les bases cérébrales du traitement des fréquences spatiales lors de la catégorisation de scènes et leur évolution au cours du vieillissement normal et pathologique. Nous avons tout d'abord mené deux études en Imagerie par Résonance Magnétique fonctionnelle (IRMf) sur des adultes jeunes avec une vision normale afin de proposer un outil de cartographie rétinotopique des aires visuelles permettant une localisation fine des activations cérébrales qui soit à la fois rapide et précis (Expériences 1 et 2). Dans un second temps, nous avons étudié via IRMf les bases cérébrales du traitement des fréquences spatiales lors de la catégorisation de scènes chez de jeunes adultes avec vision normale(Expérience 3). Nous avons également étudié l'influence de la normalisation RMS (« root mean square ») du contraste de luminance des scènes filtrées. Au sein du cortex occipital, nous avons montré une organisation rétinotopique du traitement des fréquences spatiales contenues dans de larges scènes visuelles. Au sein du cortex occipito-temporal, nous avons montré que les régions sélectives aux scènes (la « parahippocampal place area », le cortex retrosplenial et l'« occipital place area ») participent de façon distincte au traitement des fréquences spatiales. Enfin, nous avons montré que la normalisation du contraste de luminance modifiait l'intensité et l'étendue des activations cérébrales. Dans un dernier temps, nous avons ensuite étudié le traitement des fréquences spatiales au cours du vieillissement normal et pathologique. Nous avons tout d'abord montré, dans le cas du vieillissement normal (Expérience 4), un déficit spécifique de la catégorisation de scènes en hautes fréquences spatiales (HFS), associé à une hypo activation du cortex occipital et des régions sélectives aux scènes. Dans le cas de la perte de la vision centrale consécutive à une dégénérescence maculaire liée à l'âge (patients DMLA, Expériences 5 et 6), nous avons mis en évidence un déficit du traitement des HFS encore plus marqué que celui observé au cours du vieillissement normal. De façon intéressante pour l'aide aux patients DMLA, l'augmentation du contraste de luminance des scènes en HFS améliorait significativement leur catégorisation des scènes en HFS. Les résultats de ces travaux nous permettent de mieux comprendre les mécanismes neuro-fonctionnels impliqués dans la perception visuelle de scènes et de différencier les changements au niveau cortical liés au vieillissement normal de ceux résultant d'une pathologie visuelle.Mots clés : Scènes visuelles, Fréquences spatiales, IRMf, Cortex visuel, Rétinotopie, Régions sélectives aux scènes, Vieillissement normal, DMLA. / Visual analysis begins with the parallel extraction of different attributes at different spatial frequencies. The aim of this thesis was to investigatethe mechanisms and the cerebral basis of spatial frequencies processing during scene categorization and their evolution during normal and pathological aging. As a first step, we performed two functional Magnetic Resonance Imaging (fMRI) studies on young adults with normal vision in order to design a retinotopic mapping tool that allows to localize cerebral activations, which is both fast and accurate (studies 1 and 2). As a second step, we studied via fMRI (study 3) the cerebral basis involved in spatial frequencies processing during scenes categorization in young adults with normal vision (study 3). We also assessedthe influence of RMS luminance contrast (“root mean square”) normalization of filtered scenes. Within the occipital cortex, we showed a retinotopic organization of spatial frequencies processing for large visual scenes. Within the occipito-temporal cortex, we showed that scenes-selective regions (the parahippocampal place area, retrosplenial cortex and occipital place area) are specifically involved in spatial frequencies processing. Also, we highlighted the factthat luminance contrast normalization changesboth the intensity and the size of cerebral activations. As a last step, we studiedspatial frequencies processing in normal and pathological aging. We first highlighted in normal aging (study 4) a specific deficit in the ability to categorize scenes with high spatial frequencies (HSF); this deficit was associated with a decrease of activation within the occipital cortex and scenes selective regions. In patients suffering from a loss in central vision due to Age-Related Macular Degeneration (AMD patients, studies 5 and 6), we showed an even more pronounced deficit of HSF processing than observed in normal aging. Interestingly, with respect to the assistance of AMD patients, we observed that increasing the contrast luminance of HSF scenes significantly improved their ability to categorize such scenes. In the end, these results allow us to better understand the neurofunctional mechanisms involved in the visual perception of scenes and to distinguish the cortical changes related to normal aging from those resulting from a visual pathology.Keywords: Visual scenes, Spatial frequencies, fMRI, Visual cortex, Retinotopy, Scene-selective regions, Normal aging, AMD.
14

Caractérisation du traitement visuel de scènes naturelles émotionnelles : évaluations comportementales et en imagerie par résonance magnétique fonctionnelle / Characterization of emotional processing of visual information : behavioral and fMRI assessments

Fradcourt, Benoît 24 February 2014 (has links)
Le cerveau humain et les nombreuses fonctions qu'il sous-tend sont le fruit de multiples héritages évolutifs. Parmi ceux-ci, les mécanismes émotionnels qui nous permettent d'identifier les événements néfastes ou bénéfiques de notre environnement et d'y réagir, semblent primordiaux pour notre survie. Pour cela, ces mécanismes sont en étroite interaction avec toutes les modalités sensorielles ainsi qu'avec le système moteur. L'objectif de ce travail de thèse a été de mieux comprendre (1) les interactions qui peuvent exister entre un des systèmes perceptifs le plus sollicité chez l'humain : la vision, et le traitement émotionnel, et (2) le lien entre la dimension émotionnelle et motrice associée aux stimuli visuels. Par ailleurs, de nombreuses études sur le système visuel humain précisent que l'information en fréquences spatiales est cruciale dans la perception visuelle. Par conséquent, dans un premier objectif de recherche, nous avons cherché à comprendre dans quelle mesure les propriétés fréquentielles de l'information visuelle peuvent être utiles à la perception des stimuli émotionnels. Dans la littérature, cette problématique a été principalement étudiée pour la perception de visages expressifs. Dans cette thèse, nous avons travaillé avec des scènes émotionnelles complexes afin d'estimer dans quelle mesure les précédentes conclusions peuvent être généralisées à tous les stimuli émotionnels. Notre première étude en imagerie par résonnance magnétique fonctionnelle (IRMf) a montré que, comme pour les visages expressifs, l'information grossière en basses fréquences spatiales est cruciale lors de la perception de scènes émotionnelles. Toutefois, la perception n'est qu'une étape dans le traitement de l'information ; nous sommes, en effet, habituellement amenés à évaluer les situations de notre environnement et à y réagir. C'est pourquoi, dans un second objectif de recherche, nous avons cherché à comprendre les interactions qui peuvent également exister entre les propriétés fréquentielles du système visuel et deux grandes évaluations affectives explicites : l'évaluation du ressenti émotionnel et celle de la tendance à agir. Deux nouvelles études, l'une comportementale, l'autre en IRMf, nous ont permis de montrer que l'ensemble de l'information en fréquences spatiales semble utile pour l'évaluation du ressenti émotionnel alors que l'information en hautes fréquences spatiales semble cruciale pour l'évaluation de la tendance à l'action. L'ensemble de ces travaux suggère l'existence d'une flexibilité dans l'utilisation de l'information en fréquences spatiales qui serait dépendante du type de traitement réalisé sur l'information émotionnelle. / The human brain and the numerous cognitive functions associated to it are the product of several evolutionary heritages. Among these, the emotional mechanisms, which enable us to identify and react to harmful or beneficial events, seem to be essential to survive. In order to do so, these mechanisms closely interact with all sensory modalities, as well as with the motor system. The aim of this work was to better understand (1) the interactions between one of most important sensory systems for human beings –eyesight- and the emotional processing, as well as (2) the link between the emotional and the motor charactersitics associated with the emotional stimuli. Moreover, numerous studies on the human visual system specify that the spatial frequency information is crucial to visual perception. Therefore, as the primary objective of this research, we sought to assess to what extent the frequency properties of visual information may be useful to the perception of emotional stimuli. In the scientific literature, this issue has mainly been studied through the perception of emotional faces. For this thesis, we have worked with complex emotional scenes so as to check to what extent previous conclusions concerning emotional faces can be extended to all emotional stimuli. Our first study in functional Magnetic Resonance Imaging (fMRI) showed that, as for emotional faces, coarse information in low spatial frequencies is essential for the perception of emotional scenes. However, perception is only one step in the processing of information. Indeed, we are usually made to assess events taking place in our environment and to react to them. That is why, as the second objective of this research, we sought to understand the interactions between the frequency properties of the visual system and two major explicit affective assessments – emotional and motivational appraisal. Two new studies - one in behavioral studies and the other one in fMRI - made it possible for us to show that the full range of spatial frequency information seems useful to assess emotional appraisal, whereas high spatial frequencies information seems crucial for motivational appraisal. This work suggests the existence of a flexible use of spatial frequency information depending on the emotional processing involved.
15

Le décodage des expressions faciales émotionnelles à travers différentes bandes de fréquences spatiales et ses interactions avec l’anxiété

Harel, Yann 08 1900 (has links)
Le décodage des expressions faciales émotionnelles (EFE) est une fonction clé du système visuel humain puisqu’il est à la base de la communication non-verbale sur laquelle reposent les interactions sociales. De nombreuses études suggèrent un traitement différentiel des attributs diagnostiques du visage au sein des basses et des hautes fréquences spatiales (FS), respectivement sous-tendu par les voies magno- et parvocellulaires. En outre, des conditions telles que l’anxiété sociale sont susceptibles d’affecter ce traitement et d’entrainer une modulation des potentiels reliés aux évènements (PRE). Cette étude explore la possibilité de prédire le niveau d’anxiété social des individus à partir des corrélats électrophysiologiques du décodage d’EFE dans différentes bandes de FS. À cette fin, les PRE de 26 participants (âge moyen = 23.7 ± 4.7) ont été enregistrés lors de la présentation visuelle d’expressions neutres, de joie ou de colère filtrées pour ne retenir que les basses, moyennes ou hautes FS. L’anxiété sociale a été évaluée par l’administration préalable du questionnaire LSAS. Les latences et pics d’amplitude de la P100, N170, du complexe N2b/P3a et de la P3b ont été analysés statistiquement et utilisés pour entrainer différents algorithmes de classification. L’amplitude de la P100 était reliée au contenu en FS. La N170 a montré un effet des EFE. Le complexe N2b/P3a était plus ample pour les EFE et plus précoce pour les hautes FS. La P3b était moins ample pour les visages neutres, qui étaient aussi plus souvent omis. L’analyse discriminante linéaire a montré une précision de décodage d’en moyenne 56.11% au sein des attributs significatifs. La nature de ces attributs et leur sensibilité à l’anxiété sociale sera discutée. / The decoding of emotional facial expressions (EFE) is a key function of the human visual system since it lays at the basis of non-verbal communication that allows social interactions. Numerous studies suggests that the processing of faces diagnostic features may take place differently for low and high spatial frequencies (SF), respectively in the magno- and parvocellular pathways. Moreover, conditions such as social anxiety are supposed to influence this processing and the associated event-related potentials (ERP). This study explores the feasibility of predicting social anxiety levels using electrophysiological correlates of EFE processing across various SF bands. To this end, ERP from 26 participants (mean age = 23.7 ± 4.7) years old were recorded during visual presentation of neutral, angry and happy facial expressions, filtered to retain only low, medium or high SF. Social anxiety was previously assessed using the LSAS questionnary. Peak latencies and amplitudes of the P100, N170, N2b/P3a complex and P3b components were statistically analyzed and used to feed supervised machine learning algorithms. P100 amplitude was linked to SF content. N170 was effected by EFE. N2b/P3a complex was larger for EFE and earlier for high SF. P3b was lower for neutral faces, which were also more often omitted. The linear discriminant analysis showed a decoding accuracy across significant features with a mean of 56.11%. The nature of these features and their sensitivity to social anxiety will be discussed.
16

Latéralisation hémisphérique et lecture : l’utilisation de l’information visuelle disponible en reconnaissance de mots par chaque hémisphère cérébral

Tadros, Karine 05 1900 (has links)
Dans le cadre de cette thèse, nous investiguons la capacité de chaque hémisphère cérébral à utiliser l’information visuelle disponible lors de la reconnaissance de mots. Il est généralement convenu que l’hémisphère gauche (HG) est mieux outillé pour la lecture que l’hémisphère droit (HD). De fait, les mécanismes visuoperceptifs utilisés en reconnaissance de mots se situent principalement dans l’HG (Cohen, Martinaud, Lemer et al., 2003). Puisque les lecteurs normaux utilisent optimalement des fréquences spatiales moyennes (environ 2,5 - 3 cycles par degré d’angle visuel) pour reconnaître les lettres, il est possible que l’HG les traite mieux que l’HD (Fiset, Gosselin, Blais et Arguin, 2006). Par ailleurs, les études portant sur la latéralisation hémisphérique utilisent habituellement un paradigme de présentation en périphérie visuelle. Il a été proposé que l’effet de l’excentricité visuelle sur la reconnaissance de mots soit inégal entre les hémichamps. Notamment, la première lettre est celle qui porte habituellement le plus d’information pour l’identification d’un mot. C’est aussi la plus excentrique lorsque le mot est présenté à l’hémichamp visuel gauche (HVG), ce qui peut nuire à son identification indépendamment des capacités de lecture de l’HD. L’objectif de la première étude est de déterminer le spectre de fréquences spatiales utilisé par l’HG et l’HD en reconnaissance de mots. Celui de la deuxième étude est d’explorer les biais créés par l’excentricité et la valeur informative des lettres lors de présentation en champs divisés. Premièrement, nous découvrons que le spectre de fréquences spatiales utilisé par les deux hémisphères en reconnaissance de mots est globalement similaire, même si l’HG requière moins d’information visuelle que l’HD pour atteindre le même niveau de performance. Étonnament toutefois, l’HD utilise de plus hautes fréquences spatiales pour identifier des mots plus longs. Deuxièmement, lors de présentation à l’HVG, nous trouvons que la 1re lettre, c’est à dire la plus excentrique, est parmi les mieux identifiées même lorsqu’elle a une plus grande valeur informative. Ceci est à l’encontre de l’hypothèse voulant que l’excentricité des lettres exerce un biais négatif pour les mots présentés à l’HVG. De façon intéressante, nos résultats suggèrent la présence d’une stratégie de traitement spécifique au lexique. / In this thesis, we investigate the cerebral hemispheres’ ability to use the available visual information for word recognition in lateral periphery. It is generally acknowledged that the left hemisphere (LH) is more able at reading than the right (RH). Accordingly, the visuoperceptual mechanisms of the brain for word recognition are primarily localized in the LH (Cohen, Martinaud, Lemer et al., 2003). As normal readers use medium spatial frequencies (about 2,5 – 3 cycles per degree of visual angle) to recognize words, it is possible that the LH is better tuned for processing these spatial frequencies than the RH (Fiset, Gosselin, Blais et Arguin, 2006). Furthermore, studies concerned with reading abilities in the cerebral hemispheres commonly present words in visual periphery. However, the effect of visual eccentricity on word recognition is thought to be unequal between hemifields, notably because the first letter in a word usually carries the most information for its accurate identification. It is also the most eccentric letter when a word is presented in the LVF, which may cause a negative bias for the identification of words presented to the LVF regardless of the actual reading capacities of the RH. The main objective of the first study is to determine the spatial frequency tuning functions of the LH and RH for word recognition. The goal of our second study is to explore letter identification biases for words presented to the left and right visual fields as a function of eccentricity by varying the information value of letter positions. Firstly, we discover that the spatial frequency tuning of both hemispheres is globally similar, even though the LH requires less visual information than the RH to reach the same level of performance. Surprisingly however, the RH requires higher spatial frequencies to identify longer words. Secondly, we find that for LVF displays, the first letter, i.e. the most eccentric, is among the most accurately identified, even when it has a greater information value. This argues against the hypothesis that letter eccentricity exerts a negative bias for words presented to the LVF. Interestingly, our findings also suggest a lexical-specific processing strategy.
17

Latéralisation hémisphérique et lecture : l’utilisation de l’information visuelle disponible en reconnaissance de mots par chaque hémisphère cérébral

Tadros, Karine 05 1900 (has links)
Dans le cadre de cette thèse, nous investiguons la capacité de chaque hémisphère cérébral à utiliser l’information visuelle disponible lors de la reconnaissance de mots. Il est généralement convenu que l’hémisphère gauche (HG) est mieux outillé pour la lecture que l’hémisphère droit (HD). De fait, les mécanismes visuoperceptifs utilisés en reconnaissance de mots se situent principalement dans l’HG (Cohen, Martinaud, Lemer et al., 2003). Puisque les lecteurs normaux utilisent optimalement des fréquences spatiales moyennes (environ 2,5 - 3 cycles par degré d’angle visuel) pour reconnaître les lettres, il est possible que l’HG les traite mieux que l’HD (Fiset, Gosselin, Blais et Arguin, 2006). Par ailleurs, les études portant sur la latéralisation hémisphérique utilisent habituellement un paradigme de présentation en périphérie visuelle. Il a été proposé que l’effet de l’excentricité visuelle sur la reconnaissance de mots soit inégal entre les hémichamps. Notamment, la première lettre est celle qui porte habituellement le plus d’information pour l’identification d’un mot. C’est aussi la plus excentrique lorsque le mot est présenté à l’hémichamp visuel gauche (HVG), ce qui peut nuire à son identification indépendamment des capacités de lecture de l’HD. L’objectif de la première étude est de déterminer le spectre de fréquences spatiales utilisé par l’HG et l’HD en reconnaissance de mots. Celui de la deuxième étude est d’explorer les biais créés par l’excentricité et la valeur informative des lettres lors de présentation en champs divisés. Premièrement, nous découvrons que le spectre de fréquences spatiales utilisé par les deux hémisphères en reconnaissance de mots est globalement similaire, même si l’HG requière moins d’information visuelle que l’HD pour atteindre le même niveau de performance. Étonnament toutefois, l’HD utilise de plus hautes fréquences spatiales pour identifier des mots plus longs. Deuxièmement, lors de présentation à l’HVG, nous trouvons que la 1re lettre, c’est à dire la plus excentrique, est parmi les mieux identifiées même lorsqu’elle a une plus grande valeur informative. Ceci est à l’encontre de l’hypothèse voulant que l’excentricité des lettres exerce un biais négatif pour les mots présentés à l’HVG. De façon intéressante, nos résultats suggèrent la présence d’une stratégie de traitement spécifique au lexique. / In this thesis, we investigate the cerebral hemispheres’ ability to use the available visual information for word recognition in lateral periphery. It is generally acknowledged that the left hemisphere (LH) is more able at reading than the right (RH). Accordingly, the visuoperceptual mechanisms of the brain for word recognition are primarily localized in the LH (Cohen, Martinaud, Lemer et al., 2003). As normal readers use medium spatial frequencies (about 2,5 – 3 cycles per degree of visual angle) to recognize words, it is possible that the LH is better tuned for processing these spatial frequencies than the RH (Fiset, Gosselin, Blais et Arguin, 2006). Furthermore, studies concerned with reading abilities in the cerebral hemispheres commonly present words in visual periphery. However, the effect of visual eccentricity on word recognition is thought to be unequal between hemifields, notably because the first letter in a word usually carries the most information for its accurate identification. It is also the most eccentric letter when a word is presented in the LVF, which may cause a negative bias for the identification of words presented to the LVF regardless of the actual reading capacities of the RH. The main objective of the first study is to determine the spatial frequency tuning functions of the LH and RH for word recognition. The goal of our second study is to explore letter identification biases for words presented to the left and right visual fields as a function of eccentricity by varying the information value of letter positions. Firstly, we discover that the spatial frequency tuning of both hemispheres is globally similar, even though the LH requires less visual information than the RH to reach the same level of performance. Surprisingly however, the RH requires higher spatial frequencies to identify longer words. Secondly, we find that for LVF displays, the first letter, i.e. the most eccentric, is among the most accurately identified, even when it has a greater information value. This argues against the hypothesis that letter eccentricity exerts a negative bias for words presented to the LVF. Interestingly, our findings also suggest a lexical-specific processing strategy.
18

La reconnaissance visuelle à travers le temps : attentes, échantillonnage et traitement

Caplette, Laurent 08 1900 (has links)
La reconnaissance visuelle est un processus temporel : d’abord, l’information visuelle est reçue sur notre rétine de manière continue à travers le temps; ensuite, le traitement de l’information visuelle par notre cerveau prend un certain temps à s’effectuer; finalement, notre perception est toujours fonction autant des expériences acquises dans le passé que de l’input sensoriel présent. Les interactions entre ces aspects temporels de la reconnaissance sont rarement abordées dans la littérature. Dans cette thèse, nous évaluons l’échantillonnage de l’information visuelle à travers le temps pendant une tâche de reconnaissance, comment il se traduit dans le cerveau et comment il est modulé par des attentes spécifiques. Plusieurs études indiquent que nos attentes modulent notre perception. Comment l’attente d’un objet spécifique influence nos représentations internes demeure cependant largement inconnu. Dans le premier article de cette thèse, nous utilisons une variante de la technique Bubbles pour retrouver avec précision le décours temporel de l’utilisation d’information visuelle pendant la reconnaissance d’objets, lorsque les observateurs s’attendent à voir un objet spécifique ou non. Nous observons que les attentes affectent la représentation de différents attributs différemment et qu’elles ont un effet distinct à différents moments pendant la réception d’information visuelle. Dans le deuxième article, nous utilisons une technique similaire en conjonction avec l’électroencéphalographie (EEG) afin de révéler pour la première fois le traitement, à travers le temps, de l’information reçue à un moment spécifique pendant une fixation oculaire. Nous démontrons que l’information visuelle n’est pas traitée de la même manière selon le moment auquel elle est reçue sur la rétine, que ces différences ne sont pas explicables par l’adaptation ou l’amorçage, qu’elles sont d’origine au moins partiellement descendante et qu’elles corrèlent avec le comportement. Finalement, dans le troisième article, nous approfondissons cette investigation en utilisant la magnétoencéphalographie (MEG) et en examinant l’activité dans différentes régions cérébrales. Nous démontrons que l’échantillonnage de l’information visuelle est hautement variable selon le moment d’arrivée de l’information sur la rétine dans de larges parties des lobes occipitaux et pariétaux. De plus, nous démontrons que cet échantillonnage est rythmique, oscillant à diverses fréquences entre 7 et 30 Hz, et que ces oscillations varient en fréquences selon l’attribut échantillonné. / Visual recognition is a temporal process: first, visual information is continuously received through time on our retina; second, the processing of visual information by our brain takes time; third, our perception is function of both the present sensory input and our past experiences. Interactions between these temporal aspects have rarely been discussed in the literature. In this thesis, we assess the sampling of visual information through time during recognition tasks, how it is translated in the brain, and how it is modulated by expectations of specific objects. Several studies report that expectations modulate perception. However, how the expectation of a specific object modulates our internal representations remains largely unknown. In the first article of this thesis, we use a variant of the Bubbles technique to uncover the precise time course of visual information use during object recognition when specific objects are expected or not. We show that expectations modulate the representations of different features differently, and that they have distinct effects at distinct moments throughout the reception of visual information. In the second article, we use a similar method in conjunction with electroencephalography (EEG) to reveal for the first time the processing, through time, of information received at a specific moment during an eye fixation. We show that visual information is not processed in the same way depending on the moment at which it is received on the retina, that these differences cannot be explained by simple adaptation or repetition priming, that they are of at least partly top- down origin, and that they correlate with behavior. Finally, in a third article, we push this investigation further by using magnetoencephalography (MEG) and examining brain activity in different brain regions. We show that the sampling of visual information is highly variable depending on the moment at which information arrives on the retina in large parts of the occipital and parietal lobes. Furthermore, we show that this sampling is rhythmic, oscillating at multiple frequencies between 7 and 30 Hz, and that these oscillations vary according to the sampled feature.
19

Différences individuelles et traitement visuel des fréquences spatiales

Tardif, Jessica 10 1900 (has links)
La courbe de sensibilité au contraste – la façon selon laquelle la sensibilité diffère selon les fréquences spatiale – a été mesurée pour la première fois en 1956 (Schade, 1956). Elle diffère d’individu en individu et, quoiqu’elle ait été observée pour la première fois il y a plus de 60 ans, certains facteurs ayant un impact sur ces différences individuelles sont mal compris. La figure de Campbell-Robson est une grille sinusoïdale dont la fréquence spatiale varie sur l’axe des x et le contraste varie sur l’axe des y, de sorte que l’observateur perçoit une courbe directement sur la figure. Si cette figure contenait de l’information sur la courbe de sensibilité au contraste d’un individu, elle aurait pu être utilisée pour développer une méthode rapide permettant de mesurer la courbe de sensibilité au contraste. Or, les résultats de l’article 1 montrent qu’il n’existe que peu d’information à propos de la courbe de sensibilité au contraste dans la figure de Campbell-Robson. La maturation de la sensibilité au contraste n’est pas bien comprise. Puisque les études antérieures ont utilisé, entre autres, des méthodes et des tâches différentes, les résultats rapportés par ces études sont contradictoires. Nous nous sommes penchés sur la question dans l’article 2 en utilisant une méthode objective pour mesurer la sensibilité au contraste pour une grande étendue de fréquences spatiales (0.5 à 30 cycles par degré) et une grande étendue d’âges (4 à 27 ans). Au lieu d’utiliser l’âge comme variable catégorielle en séparant les participants en groupes, nous avons utilisé une méthode de régression locale (LOESS) pour utiliser l’âge comme variable continue et ainsi obtenir plus de précision sur l’âge de maturation. Les résultats montrent que la sensibilité devient semblable à celle d’un adulte autour de 12 ans pour les fréquences spatiales basses et hautes, et autour de 17 ans pour les fréquences spatiales moyennes. Après l’âge, la culture dans laquelle une personne grandit est un autre facteur pouvant avoir un impact sur la sensibilité au contraste. Dans l’article 3, nous avons vérifié l’effet de la culture sur la courbe de sensibilité au contraste en la mesurant de deux manières différentes chez des participant.es chinois.es et canadien.nes. Les résultats montrent que la courbe de sensibilité au contraste ne semble pas être différente chez les deux cultures. Compte tenu de différences interculturelles dans les fixations oculaires sur les visages, nous avons vérifié s’il existe des différences dans les fréquences spatiales contenues dans la représentation interne des visages chez les deux cultures. Nos résultats montrent que les participant.es chinois.es utilisent de plus basses fréquences spatiales et les participant.es canadien.nes utilisent de plus hautes fréquences spatiales pour reconnaître les visages. En somme, les résultats présentés dans cette thèse permettent de mieux comprendre les différences individuelles dans la sensibilité au contraste. / The contrast sensitivity function – the curve defining the way in which sensitivity differs according to spatial frequencies – was first measured in 1956 (Schade, 1956). The contrast sensitivity function differs from person to person and, although it was observed over 60 years ago, some factors which have an impact on these individual differences are not well understood. The Campbell-Robson figure is a sinusoidal grating on which the spatial frequency varies on the x axis and contrast varies on the y axis, resulting in a perceived curve, between the grating and the perceived gray area of the grating, directly on the figure. If this figure contained information on the contrast sensitivity function, it would have been useful to develop a quick method to measure it. However, the results of article 1 show that there is little information on the contrast sensitivity function contained in the Campbell-Robson chart. The way in which contrast sensitivity matures is not well understood. Because anterior studies used, among other things, different methods and tasks, the results they report vary greatly and are often contradictory. We have studied the question in article 2, using an objective method to measure contrast sensitivity for a large array of spatial frequencies (0.5 to 30 cycles per degree) and a large span of ages (4 to 27 years). Instead of using age as a categorial variable by separating the participants in age bins, we used a local regression technique (LOESS) in order to use age as a continuous variable and obtain a more precise estimate of the maturation age of contrast sensitivity. Results show that sensitivity becomes similar to an adult’s around 12 years old for low and high spatial frequencies, and around 17 years old for mid-range spatial frequencies. Other than age, the culture in which a person grows up is another factor that could have an impact on contrast sensitivity. In article 3, we verified the effect of culture on the contrast sensitivity function by measuring it using two different methods in Chinese and Canadian participants. Results don’t show that the contrast sensitivity function differs between the two cultures. Because of intercultural differences in ocular fixations on faces, we further verified if there are differences in the spatial frequencies contained in the internal representations of faces in the two cultures. Our results show that Chinese participants use lower spatial frequencies and Canadian participants use higher spatial frequencies when identifying faces. In sum, the results presented in this thesis help better understand individual differences in contrast sensitivity.
20

Vývoj biofyzikální interpretace dat kvantitativního fázového zobrazování / Development of Biophysical Interpretation of Quantitative Phase Image Data

Křížová, Aneta January 2019 (has links)
This doctoral thesis deals with biophysical interpretation of quantitative phase imaging (QPI) gained with coherence-controlled holographic microscope (CCHM). In the first part methods evaluating information from QPI such as analysis of shape and dynamical characteristics of segmented objects as well as evaluation of the phase information itself are described. In addition, a method of dynamic phase differences (DPD) is designed to allow more detailed monitoring of cell mass translocations. All of these methods are used in biological applications. In an extensive study of various types of cell death, QPI information is compared with flow cytometry data, and preferably a combination of QPI and fluorescence microscopy is used. The DPD method is used to study mass translocations inside the cell during osmotic events. The simplified DPD method is applied to investigate the mechanism of tumor cell movement in collagen gels.

Page generated in 0.1547 seconds