31 |
Market completion and robust utility maximizationMüller, Matthias 28 September 2005 (has links)
Der erste Teil der Arbeit beschreibt eine Methode, Auszahlungen zu bewerten, die einem auf dem Finanzmarkt nicht absicherbaren Risiken ausgesetzt sind. Im zweiten Teil berechnen wir den maximalen Nutzen und optimale Handelsstrategien auf unvollständigen Märkten mit Hilfe von stochastischen Rückwärtsgleichungen. Wir betrachten Händler, deren Einkommen einer externen Risikoquelle ausgesetzt sind. Diese vervollständigen den Markt, indem sie entweder einen Bond schaffen oder gegenseitig Verträge schliessen. Eine andere Moeglichkeit ist eine Anleihe, die von einer Versicherung herausgegeben wird. Die Risikoquellen, die wir in Betracht ziehen, können Versicherungs-, Wetter-oder Klimarisiko sein. Aktienpreise sind exogen gegeben. Wir berechnen Preise für die zusätzlichen Anlagen so dass Angebot und Nachfrage dafür gleich sind. Wir haben partielle Markträumung. Die Präferenzen der Händler sind durch erwarteten Nutzen gegeben. In Kapitel 2 bis Kapitel 4 haben die Händler exponentielle Nutzenfunktionen. Um den Gleichgewichtspreis zu finden, wenden wir stochastische Rückwärtsgleichungen an. In Kapitel 5 beschreiben wir ein Einperiodenmodell mit Nutzenfunktionen, die die Inada-Bedingungen erfüllen. Der zweite Teil dieser Arbeit beschäftigt sich mit dem robusten Nutzenmaximierungsproblem auf einem unvollständigen Finanzmarkt. Entweder das Wahrscheinlichkeitsmass oder die Koeffizienten des Aktienmarktes sind ungewiss. Die Lösung der Rückwärtsgleichung beschreibt die nutzenmaximierende Handelsstrategie und das Wahrscheinlichkeitsmass, das in der Auswertung des robusten Nutzens benutzt wird. Für die exponentielle Nutzenfunktion berechnen wir Nutzenindifferenzpreise. Ausserdem wenden wir diese Techniken auf die Maximierung des erwarteten Nutzens bezüglich eines festen Wahrscheinlichkeitsmasses an. Dafür betrachten wir abgeschlossene, im allgemeinen nicht konvexe zulässige Mengen für die Handelsstrategien. / The first part of the thesis proposes a method to find prices and hedging strategies for risky claims exposed to a risk factor that is not hedgeable on a financial market. In the second part we calculate the maximal utility and optimal trading strategies on incomplete markets using Backward Stochastic Differential Equations. We consider agents with incomes exposed to a non-hedgeable external source of risk by creating either a bond or by signing contracts. The sources of risk we think of may be insurance, weather or climate risk. Stock prices are seen as exogenuosly given. We calculate prices for the additional securities such that supply is equal to demand, the market clears partially. The preferences of the agents are described by expected utility. In Chapter 2 through Chapter 4 the agents use exponential utility functions, the model is placed in a Brownian filtration. In order to find the equilibrium price, we use Backward Stochastic Differential Equations. Chapter 5 provides a one--period model where the agents use utility functions satisfying the Inada condition. The second part of this thesis considers the robust utility maximization problem on an incomplete financial market. Either the probability measure or drift and volatility of the stock price process are uncertain. We apply a martingale argument and solve a saddle point problem. The solution of a Backward Stochastic Differential Equation describes the maximizing trading strategy as well as the probability measure that is used in the robust utility. We consider the exponential, the power and the logarithmic utility functions. For the exponential utility function we calculate utility indifference prices of not perfectly hedgeable claims. Finally, we maximize the expected utility with respect to a single probability measure. We apply a martingale argument and solve maximization problems. This allows us to consider closed, in general non--convex constraints on the values of trading strategies.
|
32 |
Konjugation stochastischer und zufälliger stationärer Differentialgleichungen und eine Version des lokalen Satzes von Hartman-Grobman für stochastische DifferentialgleichungenLederer, Christian 10 October 2001 (has links)
Für zufällige dynamische Systeme mit stetiger Zeit existieren zwei wichtige Klassen von Generatoren: Zum einen stationäre zufällige ifferentialgleichungen, i.e. gewöhnliche Differentialgleichungen, die von einem stationärer zufälligen Vektorfeld getrieben werden, und zum anderen stochastische Stratonovichdifferentialgleichungen mit weißem Rauschen. Während die erste Klasse sich gut in den ergodentheoretischen Rahmen der Theorie der zufälligen dynamischen Systeme einfügt, widersetzte sich die zweite Klasse lange Zeit der dynamischen Untersuchung aufgrund des "Konflikts zwischen Ergodentheorie und stochastischer Analysis". In dieser Arbeit wird gezeigt, daß beide Klassen von zufälligen dynamischen Systemen nicht wesentlich verschieden sind, genauer: Zu jeder stochastischen Stratonovichdifferentialgleichung mit weißem Rauschen (unter den üblichen Regularitätsforderungen an die Vektorfelder, die die Existenz von Flüssen garantieren) existiert eine stationäre zufällige Differentialgleichung derart, daß die erzeugten zufälligen dynamischen Systeme konjugiert sind. Als Anwendung wird eine Version des lokalen Linearisierungssatzes von Hartman/Grobman für stochastische Stratonovichdifferentialgleichungen bewiesen. / For continuous time random dynamical systems there exist two important classes of generators: on the one hand stationary random differential quations, i.e. ordinary differential equations driven by a stationary random vector field, and on the other hand stochastic Stratonovich differential equations with white noise. While the first class fits well into the framework of the theory of random dynamical systems, the second class resisted for a long time the dynamical investigation due to the "conflict between ergodic theory and stochastic analysis". The main result of this thesis is that both classes of random dynamical systems are not essentially distinct, more precisely: For each stochastic Stratonovich differential equation with white noise (under usual regularity assumptions) there exists a stationary random differential equation such that the corresponding random dynamical systems are conjugate. As an application a version of the local Hartman/Grobman theorem for stochastic differential equations is proved.
|
33 |
Some recent simulation techniques of diffusion bridgeSekerci, Yadigar January 2009 (has links)
We apply some recent numerical solutions to diffusion bridges written in Iacus (2008). One is an approximate scheme from Bladt and S{\o}rensen (2007), another one, from Beskos et al (2006), is an algorithm which is exact: no numerical error at given grid points!
|
34 |
Theory of light-matter interactions in cascade and diamond type atomic ensemblesJen, Hsiang-Hua 09 November 2010 (has links)
In this thesis, we investigate the quantum mechanical interaction of light with matter in the form of a gas of ultracold atoms: the atomic ensemble. We present a theoretical analysis of two problems, which involve the interaction of quantized electromagnetic fields (called signal and idler) with the atomic ensemble (i) cascade two-photon emission in an atomic ladder configuration, and (ii) photon frequency conversion in an atomic diamond configuration. The motivation of these studies comes from potential applications in long-distance quantum communication where it is desirable to generate quantum correlations between telecommunication wavelength light fields and ground level atomic coherences. In the two systems of interest, the light field produced in the upper arm of an atomic Rb level scheme is chosen to lie in the telecom window. The other field, resonant on a ground level transition, is in the near-infrared region of the spectrum. Telecom light is useful as it minimizes losses in the optical fiber transmission links of any two long-distance quantum communication device.
We develop a theory of correlated signal-idler pair correlation. The analysis is complicated by the possible generation of multiple excitations in the atomic ensemble. An analytical treatment is given in the limit of a single excitation assuming adiabatic laser excitations. The analysis predicts superradiant timescales in the idler emission in agreement with experimental observation. To relax the restriction of a single excitation, we develop a different theory of cascade emission, which is solved by numerical simulation of classical stochastic differential equation using the theory of open quantum systems. The simulations are in good qualitative agreement with the analytical theory of superradiant timescales. We further analyze the feasibility of this two-photn source to realize the DLCZ protocol of the quantum repeater communication system.
We provide a quantum theory of near-infrared to telecom wavelength conversion in the diamond configuration. The system provides a crucial part of a quantum-repeater memory element, which enables a "stored" near-infrared photon to be converted to a telecom wavelength for transmission without the destruction of light-atom quantum correlation. We calculate the theoretical conversion efficiency, analyzing the role of optical depth of the ensemble, pulse length, and quantum fluctuations on the process.
|
35 |
Some recent simulation techniques of diffusion bridgeSekerci, Yadigar January 2009 (has links)
<p>We apply some recent numerical solutions to diffusion bridges written in Iacus (2008). One is an approximate scheme from Bladt and S{\o}rensen (2007), another one, from Beskos et al (2006), is an algorithm which is exact: no numerical error at given grid points!</p>
|
36 |
Apie stochastinių diferencialinių lygčių sprendinių Hursto indekso vertinimą / On estimation of the Hurst index of solutions of stochastic differential equationsMelichov, Dmitrij 28 December 2011 (has links)
Pagrindinė šios disertacijos tema - stochastinių diferencialinių lygčių (SDL), valdomų trupmeninio Brauno judesio (tBj), sprendinių Hursto indekso H vertinimas. Pirmiausia disertacijoje išnagrinėta SDL, valdomų tBj, sprendinių pirmos ir antros eilės kvadratinių variacijų ribinė elgsena. Iš šių rezultatų seka keli stipriai pagrįsti Hursto indekso H įvertiniai. Įrodyta, kad šie įvertiniai išlieka stipriai pagrįsti, jei tikra sprendinio trajektorija keičiama jos Milšteino aproksimacija. Taip pat išnagrinėtos pokyčių santykio (increment ratios) statistikos H įvertinio, gauto J. M. Bardeto ir D. Surgailio 2010 m., taikymo trupmeninio geometrinio Brauno judesio Hursto indekso vertinimui galimybės bei nustatytas modifikuoto Gladyševo H įvertinio konvergavimo į tikrąją parametro reikšmę greitis. Gauti įvertiniai palyginti su kai kuriais kitais žinomais Hursto indekso H įvertiniais: naiviais bei mažiausių kvadratų Gladyševo ir eta-sumavimo osciliacijos įvertiniais, variogramos įvertiniu ir pokyčių santykio statistikos įvertiniu. Įvertiniu elgsena buvo palyginta trupmeniniam Ornšteino-Ulenbeko (OU) procesui bei trupmeniniam geometriniam Brauno judesiui (gBj). Pradinės išvados buvo padarytos O-U procesui, kuris yra Gauso, o gBj procesas buvo naudojamas patikrinti, kaip šie įvertiniai elgiasi, kai procesas yra ne Gauso. Disertaciją sudaro įvadas, 3 pagrindiniai skyriai, išvados, literatūros sąrašas, autoriaus publikacijų disertacijos tema sąrašas ir du priedai. / The main topic of this dissertation is the estimation of the Hurst index H of the solutions of stochastic differential equations (SDEs) driven by the fractional Brownian motion (fBm). Firstly, the limit behavior of the first and second order quadratic variations of the solutions of SDEs driven by the fBm is analyzed. This yields several strongly consistent estimators of the Hurst index H. Secondly, it is proved that in case the solution of the SDE is replaced by its Milstein approximation, the estimators remain strongly consistent. Additionally, the possibilities of applying the increment ratios (IR) statistic based estimator of H originally obtained by J. M. Bardet and D. Surgailis in 2010 to the fractional geometric Brownian motion are examined. Furthermore, this dissertation derives the convergence rate of the modified Gladyshev's estimator of the Hurst index to its real value. The estimators obtained in the dissertation were compared with several other known estimators of the Hurst index H, namely the naive and ordinary least squares Gladyshev and eta-summing oscillation estimators, the variogram estimator and the IR estimator. The models chosen for comparison of these estimators were the fractional Ornstein-Uhlenbeck (O-U) process and the fractional geometric Brownian motion (gBm). The initial inference about the behavior of these estimators was drawn for the O-U process which is Gaussian, while the gBm process was used to check how the estimators behave in a... [to full text]
|
37 |
On estimation of the Hurst index of solutions of stochastic differential equations / Apie stochastinių diferencialinių lygčių sprendinių Hursto indekso vertinimąMelichov, Dmitrij 28 December 2011 (has links)
The main topic of this dissertation is the estimation of the Hurst index H of the solutions of stochastic differential equations (SDEs) driven by the fractional Brownian motion (fBm).
Firstly, the limit behavior of the first and second order quadratic variations of the solutions of SDEs driven by the fBm is analyzed. This yields several strongly consistent estimators of the Hurst index H. Secondly, it is proved that in case the solution of the SDE is replaced by its Milstein approximation, the estimators remain strongly consistent. Additionally, the possibilities of applying the increment ratios (IR) statistic based estimator of H originally obtained by J. M. Bardet and D. Surgailis in 2010 to the fractional geometric Brownian motion are examined.
Furthermore, this dissertation derives the convergence rate of the modified Gladyshev’s estimator of the Hurst index to its real value.
The estimators obtained in the dissertation were compared with several other known estimators of the Hurst index H, namely the naive and ordinary least squares Gladyshev and eta-summing oscillation estimators, the variogram estimator and the IR estimator. The models chosen for comparison of these estimators were the fractional Ornstein-Uhlenbeck (O-U) process and the fractional geometric Brownian motion (gBm). The initial inference about the behavior of these estimators was drawn for the O-U process which is Gaussian, while the gBm process was used to check how the estimators behave in a... [to full text] / Pagrindinė šios disertacijos tema – stochastinių diferencialinių lygčių (SDL), valdomų trupmeninio Brauno judesio (tBj), sprendinių Hursto indekso H vertinimas. Pirmiausia disertacijoje išnagrinėta SDL, valdomų tBj, sprendinių pirmos ir antros eilės kvadratinių variacijų ribinė elgsena. Iš šių rezultatų seka keli stipriai pagrįsti Hursto indekso H įvertiniai. Įrodyta, kad šie įvertiniai išlieka stipriai pagrįsti, jei tikra sprendinio trajektorija keičiama jos Milšteino aproksimacija. Taip pat išnagrinėtos pokyčių santykio (increment ratios) statistikos H įvertinio, gauto J. M. Bardeto ir D. Surgailio 2010 m., taikymo trupmeninio geometrinio Brauno judesio Hursto indekso vertinimui galimybės bei nustatytas modifikuoto Gladyševo H įvertinio konvergavimo i tikrąją parametro reikšme greitis. Gauti įvertiniai palyginti su kai kuriais kitais žinomais Hursto indekso H įvertiniais: naiviais bei mažiausių kvadratų Gladyševo ir eta-sumavimo osciliacijos įvertiniais, variogramos įvertiniu ir pokyčių santykio statistikos įvertiniu. Įvertinių elgsena buvo palyginta trupmeniniam Ornšteino-Ulenbeko (OU) procesui bei trupmeniniam geometriniam Brauno judesiui (gBj). Pradinės išvados buvo padarytos O-U procesui, kuris yra Gauso, o gBj procesas buvo naudojamas patikrinti, kaip šie įvertiniai elgiasi, kai procesas yra ne Gauso. Disertaciją sudaro įvadas, 3 pagrindiniai skyriai, išvados, literatūros sąrašas, autoriaus publikacijų disertacijos tema sąrašas ir du priedai.
|
38 |
Contributions to second order reflected backward stochastic differentials equations / Contribution aux équations différentielles stochastiques rétrogrades réfléchies du second ordreNoubiagain Chomchie, Fanny Larissa 20 September 2017 (has links)
Cette thèse traite des équations différentielles stochastiques rétrogrades réfléchies du second ordre dans une filtration générale . Nous avons traité tout d'abord la réflexion à une barrière inférieure puis nous avons étendu le résultat dans le cas d'une barrière supérieure. Notre contribution consiste à démontrer l'existence et l'unicité de la solution de ces équations dans le cadre d'une filtration générale sous des hypothèses faibles. Nous remplaçons la régularité uniforme par la régularité de type Borel. Le principe de programmation dynamique pour le problème de contrôle stochastique robuste est donc démontré sous les hypothèses faibles c'est à dire sans régularité sur le générateur, la condition terminal et la barrière. Dans le cadre des Équations Différentielles Stochastiques Rétrogrades (EDSRs ) standard, les problèmes de réflexions à barrières inférieures et supérieures sont symétriques. Par contre dans le cadre des EDSRs de second ordre, cette symétrie n'est plus valable à cause des la non linéarité de l'espérance sous laquelle est définie notre problème de contrôle stochastique robuste non dominé. Ensuite nous un schéma d'approximation numérique d'une classe d'EDSR de second ordre réfléchies. En particulier nous montrons la convergence de schéma et nous testons numériquement les résultats obtenus. / This thesis deals with the second-order reflected backward stochastic differential equations (2RBSDEs) in general filtration. In the first part , we consider the reflection with a lower obstacle and then extended the result in the case of an upper obstacle . Our main contribution consists in demonstrating the existence and the uniqueness of the solution of these equations defined in the general filtration under weak assumptions. We replace the uniform regularity by the Borel regularity(through analytic measurability). The dynamic programming principle for the robust stochastic control problem is thus demonstrated under weak assumptions, that is to say without regularity on the generator, the terminal condition and the obstacle. In the standard Backward Stochastic Differential Equations (BSDEs) framework, there is a symmetry between lower and upper obstacles reflection problem. On the contrary, in the context of second order BSDEs, this symmetry is no longer satisfy because of the nonlinearity of the expectation under which our robust stochastic non-dominated stochastic control problem is defined. In the second part , we get a numerical approximation scheme of a class of second-order reflected BSDEs. In particular we show the convergence of our scheme and we test numerically the results.
|
39 |
Pricing methods for Asian optionsMudzimbabwe, Walter January 2010 (has links)
>Magister Scientiae - MSc / We present various methods of pricing Asian options. The methods include Monte Carlo simulations designed using control and antithetic variates, numerical solution of partial differential equation and using lower bounds.The price of the Asian option is known to be a certain risk-neutral expectation. Using the Feynman-Kac theorem, we deduce that the problem of determining the expectation implies solving a linear parabolic partial differential equation. This partial differential equation does not admit explicit solutions due to the fact that the distribution of a sum of lognormal variables is not explicit. We then solve the partial differential equation numerically using finite difference and Monte Carlo methods.Our Monte Carlo approach is based on the pseudo random numbers and not deterministic sequence of numbers on which Quasi-Monte Carlo methods are designed. To make the Monte Carlo method more effective, two variance reduction techniques are discussed.Under the finite difference method, we consider explicit and the Crank-Nicholson’s schemes.
We demonstrate that the explicit method gives rise to extraneous solutions because the stability conditions are difficult to satisfy. On the other hand, the Crank-Nicholson method is unconditionally stable and provides correct solutions.
Finally, we apply the pricing methods to a similar problem of determining the price of a European-style arithmetic basket option under the Black-Scholes framework. We find the optimal lower bound, calculate it numerically and compare this with those obtained by the Monte Carlo and Moment Matching methods.Our presentation here includes some of the most recent advances on Asian options, and we contribute in particular by adding detail to the proofs and explanations. We also
contribute some novel numerical methods. Most significantly, we include an original
contribution on the use of very sharp lower bounds towards pricing European basket
options.
|
40 |
Modèles probabilistes de l'évolution d'une population dans un environnement variable / Probabilistic modeles of a population evolving in a changing environmentNassar, Elma 04 July 2016 (has links)
On étudie une équation différentielle stochastique animée par un processus ponctuel de Poisson, qui modélise un changement continu de lénvironnement d'une population et la fixation stochastique de mutations bénéfiques pour compenser ce changement. La probabilité de fixation d'une mutation augmente dès que le retard phénotypique $X_t$ entre la population et l'optimum augmente. On suppose que les mutations favorables se fixent instantanément induisant un saut adaptatif. En premier lieu, on a étudié le comportement à long terme de la solution de cette équation sachant qu'on ne considère qu'un seul trait phénotypique de la population et on a trouvé les conditions sous lesquelles $X_t$ est récurrent (possibilité de survie) ou transient (extinction inévitable). Ensuite, on a généralisé nos résultats en considérant un vecteur de traits phénotypiques de la population, essentiellement dans $mathbb R^2$. A la fin, on introduit une limite des petits sauts pour caractériser et comprendre le cas récurrent. / We study a stochastic differential equation driven by a Poisson point process, which models continuous changes in a population's environment, as well as the stochastic fixation of beneficial mutations that might compensate for this change. The fixation probability of a given mutation increases as the phenotypic lag $X_t$ between the population and the optimum grows larger, and successful mutations are assumed to fix instantaneously (leading to an adaptive jump). First, we study the large time behavior of the solution of this SDE taking into consideration one phenotypic trait of the population and we find the conditions under which $X_t$ is recurrent (possibility of survival) or transient (doomed to exctinction).Then we generalize our results to the case of a phenotypic traits vector, essentially in $R^2$. Finally, we introduce a small jumps limit to characterize and understand the recurrent case.
|
Page generated in 0.1561 seconds