• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 11
  • 8
  • 4
  • Tagged with
  • 60
  • 23
  • 22
  • 16
  • 15
  • 15
  • 15
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Sachschließung - wir müssen sie (uns) leisten!

Hermes, Hans-Joachim, Lorenz, Bernd 06 December 2004 (has links)
The ensuing lectures were part of the 28th annual conference of the German Classification Society held March 9.-11th 2004 at the University of Dortmund, Germany. In the branch "Subject indexing and librarian science" the main topics read subject indexing and cutting costs, mainly by automatic procedures. Main speaker was Dr. Bernhard Eversberg, Braunschweig. His main point was "Subject-Indexing: We can't do without" which was likewise the overall-topic for the meeting of the librarians. / Die hier wiedergegebenen Vorträge waren Teil der 28. Jahrestagung der Gesellschaft für Klassifikation an der Universität Dortmund, 9.-11 März 2004. Im bibliothekarischen Zweig Sacherschließung und Bibliothekswissenschaft ging es diesmal um Inhaltserschließung und Kosten, insbesondere um Einsparungen durch automatische Verfahren. Das Leitreferat hielt Dr. Bernhard Eversberg, Braunschweig. Die Kern-Feststellung lautete: Sachschließung - wir müssen sie (uns) leisten! Und das war zugleich das Thema der Dortmunder Veranstaltung.
52

Die Usability suchmaschinenbasierter Bibliothekskataloge

Berges, Vanessa 18 March 2013 (has links)
Der Fokus der Arbeit liegt auf der Frage, inwieweit suchmaschinenbasierte Rechercheinstrumente in ihrer Funktionalität den Anforderungen und Erwartungen der heutigen Nutzer tatsächlich entsprechen. Zu diesem Zweck ist beispielhaft ein Usability-Test an dem suchmaschinenbasierten Katalog der Universitätsbibliothek Leipzig durchgeführt worden. Im Kontext der Forschungsfrage müssen verschiedene Themen betrachtet werden: Zunächst wird das Rechercheverhalten der heutigen Nutzer beleuchtet. In diesem Zusammenhang wird auf die alten und neuen bibliothekarischen Rechercheinstrumente eingegangen. Dabei verläuft die Betrachtung vom Allgemeinen zum Speziellen: Die Rahmenbedingungen und Veränderungen bezüglich suchmaschinenbasierter Bibliothekskataloge an der Universitätsbibliothek Leipzig werden dargestellt. Da der Katalog durch einen Usability-Testes evaluiert wird, werden auch der Begriff Usability und verschiedene Methoden der Usability-Evaluation vorgestellt, um eine passende Methode auszuwählen. Der genaue Aufbau des Testes und seine Ergebnisse werden anschließend ausführlich präsentiert und ausgewertet, um die übergeordnete Forschungsfrage zu beantworten. Es kann festgehalten werden, dass die suchmaschinenbasierten Rechercheinstrumente den Anforderungen und Erwartungen der derzeitigen Nutzer entsprechen. In einem abschließenden Fazit wird der Aufbau und die Durchführung des Tests kritisch reflektiert. Die vorliegende Ausgabe der Masterarbeit für die Schriftenreihe Wiborada online weicht von der eingereichten Arbeit ab. Einige Teile des Anhangs (z.B. die Transkriptionen der Usability-Tests) wurden herausgenommen, da sie für die Nachvollziehbarkeit der Inhalte und Ergebnisse nicht sind entscheidend sind. Des Weiteren wurden die Abbildungen für eine bessere Lesbarkeit teilweise vergrößert.
53

Brillante Erweiterung des Horizonts

Bonte, Achim, Glass, Robert, Mittelbach, Jens 19 December 2011 (has links) (PDF)
Mit der Einführung ihres neuen SLUB-Katalogs auf der Basis der Discovery-Software Primo der Firma Ex Libris hat die Sächsische Landesbibliothek – Staats- und Universitätsbibliothek Dresden (SLUB) im Dezember 2010 die zunehmend unzulängliche Welt der traditionellen elektronischen Bibliothekskataloge hinter sich gelassen. Innerhalb von neun Monaten entstand ein übergreifendes Katalogfrontend, das auf älteren Systemen aufsetzt (zum Zweck des Data Harvesting oder auch zur Inanspruchnahme der lokalen Benutzerverwaltung), zugleich aber davon weitgehend unabhängig ist. Eine besondere Herausforderung bedeutete der Anspruch, Primo nicht „out of the box“, das heißt als gesichtsloses Fertigprodukt einzusetzen, sondern als Herzstück des gesamten Informationsangebots individuell zu gestalten und weitgehend in die allgemeinen Webseiten zu integrieren. Auch die Ausleihbenutzerverwaltung sollte möglichst bruchlos in das Gesamtkonzept finden. Der SLUB-Katalog bietet heute unter einer attraktiven Benutzeroberfläche ein sehr gutes Trefferranking, Rechtschreibkorrektur, vielfältiges Drilldown, flexible Sortieralgorithmen und weitere, von Suchmaschinen gewohnte Funktionen.
54

Brillante Erweiterung des Horizonts: Eine multilinguale semantische Suche für den SLUB-Katalog

Bonte, Achim, Glass, Robert, Mittelbach, Jens 19 December 2011 (has links)
Mit der Einführung ihres neuen SLUB-Katalogs auf der Basis der Discovery-Software Primo der Firma Ex Libris hat die Sächsische Landesbibliothek – Staats- und Universitätsbibliothek Dresden (SLUB) im Dezember 2010 die zunehmend unzulängliche Welt der traditionellen elektronischen Bibliothekskataloge hinter sich gelassen. Innerhalb von neun Monaten entstand ein übergreifendes Katalogfrontend, das auf älteren Systemen aufsetzt (zum Zweck des Data Harvesting oder auch zur Inanspruchnahme der lokalen Benutzerverwaltung), zugleich aber davon weitgehend unabhängig ist. Eine besondere Herausforderung bedeutete der Anspruch, Primo nicht „out of the box“, das heißt als gesichtsloses Fertigprodukt einzusetzen, sondern als Herzstück des gesamten Informationsangebots individuell zu gestalten und weitgehend in die allgemeinen Webseiten zu integrieren. Auch die Ausleihbenutzerverwaltung sollte möglichst bruchlos in das Gesamtkonzept finden. Der SLUB-Katalog bietet heute unter einer attraktiven Benutzeroberfläche ein sehr gutes Trefferranking, Rechtschreibkorrektur, vielfältiges Drilldown, flexible Sortieralgorithmen und weitere, von Suchmaschinen gewohnte Funktionen.
55

GoWeb: Semantic Search and Browsing for the Life Sciences

Dietze, Heiko 21 December 2010 (has links) (PDF)
Searching is a fundamental task to support research. Current search engines are keyword-based. Semantic technologies promise a next generation of semantic search engines, which will be able to answer questions. Current approaches either apply natural language processing to unstructured text or they assume the existence of structured statements over which they can reason. This work provides a system for combining the classical keyword-based search engines with semantic annotation. Conventional search results are annotated using a customized annotation algorithm, which takes the textual properties and requirements such as speed and scalability into account. The biomedical background knowledge consists of the GeneOntology and Medical Subject Headings and other related entities, e.g. proteins/gene names and person names. Together they provide the relevant semantic context for a search engine for the life sciences. We develop the system GoWeb for semantic web search and evaluate it using three benchmarks. It is shown that GoWeb is able to aid question answering with success rates up to 79%. Furthermore, the system also includes semantic hyperlinks that enable semantic browsing of the knowledge space. The semantic hyperlinks facilitate the use of the eScience infrastructure, even complex workflows of composed web services. To complement the web search of GoWeb, other data source and more specialized information needs are tested in different prototypes. This includes patents and intranet search. Semantic search is applicable for these usage scenarios, but the developed systems also show limits of the semantic approach. That is the size, applicability and completeness of the integrated ontologies, as well as technical issues of text-extraction and meta-data information gathering. Additionally, semantic indexing as an alternative approach to implement semantic search is implemented and evaluated with a question answering benchmark. A semantic index can help to answer questions and address some limitations of GoWeb. Still the maintenance and optimization of such an index is a challenge, whereas GoWeb provides a straightforward system.
56

GoWeb: Semantic Search and Browsing for the Life Sciences

Dietze, Heiko 20 October 2010 (has links)
Searching is a fundamental task to support research. Current search engines are keyword-based. Semantic technologies promise a next generation of semantic search engines, which will be able to answer questions. Current approaches either apply natural language processing to unstructured text or they assume the existence of structured statements over which they can reason. This work provides a system for combining the classical keyword-based search engines with semantic annotation. Conventional search results are annotated using a customized annotation algorithm, which takes the textual properties and requirements such as speed and scalability into account. The biomedical background knowledge consists of the GeneOntology and Medical Subject Headings and other related entities, e.g. proteins/gene names and person names. Together they provide the relevant semantic context for a search engine for the life sciences. We develop the system GoWeb for semantic web search and evaluate it using three benchmarks. It is shown that GoWeb is able to aid question answering with success rates up to 79%. Furthermore, the system also includes semantic hyperlinks that enable semantic browsing of the knowledge space. The semantic hyperlinks facilitate the use of the eScience infrastructure, even complex workflows of composed web services. To complement the web search of GoWeb, other data source and more specialized information needs are tested in different prototypes. This includes patents and intranet search. Semantic search is applicable for these usage scenarios, but the developed systems also show limits of the semantic approach. That is the size, applicability and completeness of the integrated ontologies, as well as technical issues of text-extraction and meta-data information gathering. Additionally, semantic indexing as an alternative approach to implement semantic search is implemented and evaluated with a question answering benchmark. A semantic index can help to answer questions and address some limitations of GoWeb. Still the maintenance and optimization of such an index is a challenge, whereas GoWeb provides a straightforward system.
57

Semi-automated Ontology Generation for Biocuration and Semantic Search

Wächter, Thomas 01 February 2011 (has links) (PDF)
Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org.
58

Semi-automated Ontology Generation for Biocuration and Semantic Search

Wächter, Thomas 27 October 2010 (has links)
Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org.
59

Search Interaction Optimization / Search Interaction Optimization : Ein nutzerzentrierter Design-Ansatz

Speicher, Maximilian 20 September 2016 (has links) (PDF)
Over the past 25 years, search engines have become one of the most important, if not the entry point of the World Wide Web. This development has been primarily due to the continuously increasing amount of available documents, which are highly unstructured. Moreover, the general trend is towards classifying search results into categories and presenting them in terms of semantic information that answer users' queries without having to leave the search engine. With the growing amount of documents and technological enhancements, the needs of users as well as search engines are continuously evolving. Users want to be presented with increasingly sophisticated results and interfaces while companies have to place advertisements and make revenue to be able to offer their services for free. To address the above needs, it is more and more important to provide highly usable and optimized search engine results pages (SERPs). Yet, existing approaches to usability evaluation are often costly or time-consuming and mostly rely on explicit feedback. They are either not efficient or not effective while SERP interfaces are commonly optimized primarily from a company's point of view. Moreover, existing approaches to predicting search result relevance, which are mostly based on clicks, are not tailored to the evolving kinds of SERPs. For instance, they fail if queries are answered directly on a SERP and no clicks need to happen. Applying Human-Centered Design principles, we propose a solution to the above in terms of a holistic approach that intends to satisfy both, searchers and developers. It provides novel means to counteract exclusively company-centric design and to make use of implicit user feedback for efficient and effective evaluation and optimization of usability and, in particular, relevance. We define personas and scenarios from which we infer unsolved problems and a set of well-defined requirements. Based on these requirements, we design and develop the Search Interaction Optimization toolkit. Using a bottom-up approach, we moreover define an eponymous, higher-level methodology. The Search Interaction Optimization toolkit comprises a total of six components. We start with INUIT [1], which is a novel minimal usability instrument specifically aiming at meaningful correlations with implicit user feedback in terms of client-side interactions. Hence, it serves as a basis for deriving usability scores directly from user behavior. INUIT has been designed based on reviews of established usability standards and guidelines as well as interviews with nine dedicated usability experts. Its feasibility and effectiveness have been investigated in a user study. Also, a confirmatory factor analysis shows that the instrument can reasonably well describe real-world perceptions of usability. Subsequently, we introduce WaPPU [2], which is a context-aware A/B testing tool based on INUIT. WaPPU implements the novel concept of Usability-based Split Testing and enables automatic usability evaluation of arbitrary SERP interfaces based on a quantitative score that is derived directly from user interactions. For this, usability models are automatically trained and applied based on machine learning techniques. In particular, the tool is not restricted to evaluating SERPs, but can be used with any web interface. Building on the above, we introduce S.O.S., the SERP Optimization Suite [3], which comprises WaPPU as well as a catalog of best practices [4]. Once it has been detected that an investigated SERP's usability is suboptimal based on scores delivered by WaPPU, corresponding optimizations are automatically proposed based on the catalog of best practices. This catalog has been compiled in a three-step process involving reviews of existing SERP interfaces and contributions by 20 dedicated usability experts. While the above focus on the general usability of SERPs, presenting the most relevant results is specifically important for search engines. Hence, our toolkit contains TellMyRelevance! (TMR) [5] — the first end-to-end pipeline for predicting search result relevance based on users’ interactions beyond clicks. TMR is a fully automatic approach that collects necessary information on the client, processes it on the server side and trains corresponding relevance models based on machine learning techniques. Predictions made by these models can then be fed back into the ranking process of the search engine, which improves result quality and hence also usability. StreamMyRelevance! (SMR) [6] takes the concept of TMR one step further by providing a streaming-based version. That is, SMR collects and processes interaction data and trains relevance models in near real-time. Based on a user study and large-scale log analysis involving real-world search engines, we have evaluated the components of the Search Interaction Optimization toolkit as a whole—also to demonstrate the interplay of the different components. S.O.S., WaPPU and INUIT have been engaged in the evaluation and optimization of a real-world SERP interface. Results show that our tools are able to correctly identify even subtle differences in usability. Moreover, optimizations proposed by S.O.S. significantly improved the usability of the investigated and redesigned SERP. TMR and SMR have been evaluated in a GB-scale interaction log analysis as well using data from real-world search engines. Our findings indicate that they are able to yield predictions that are better than those of competing state-of-the-art systems considering clicks only. Also, a comparison of SMR to existing solutions shows its superiority in terms of efficiency, robustness and scalability. The thesis concludes with a discussion of the potential and limitations of the above contributions and provides an overview of potential future work. / Im Laufe der vergangenen 25 Jahre haben sich Suchmaschinen zu einem der wichtigsten, wenn nicht gar dem wichtigsten Zugangspunkt zum World Wide Web (WWW) entwickelt. Diese Entwicklung resultiert vor allem aus der kontinuierlich steigenden Zahl an Dokumenten, welche im WWW verfügbar, jedoch sehr unstrukturiert organisiert sind. Überdies werden Suchergebnisse immer häufiger in Kategorien klassifiziert und in Form semantischer Informationen bereitgestellt, die direkt in der Suchmaschine konsumiert werden können. Dies spiegelt einen allgemeinen Trend wider. Durch die wachsende Zahl an Dokumenten und technologischen Neuerungen wandeln sich die Bedürfnisse von sowohl Nutzern als auch Suchmaschinen ständig. Nutzer wollen mit immer besseren Suchergebnissen und Interfaces versorgt werden, während Suchmaschinen-Unternehmen Werbung platzieren und Gewinn machen müssen, um ihre Dienste kostenlos anbieten zu können. Damit geht die Notwendigkeit einher, in hohem Maße benutzbare und optimierte Suchergebnisseiten – sogenannte SERPs (search engine results pages) – für Nutzer bereitzustellen. Gängige Methoden zur Evaluierung und Optimierung von Usability sind jedoch größtenteils kostspielig oder zeitaufwändig und basieren meist auf explizitem Feedback. Sie sind somit entweder nicht effizient oder nicht effektiv, weshalb Optimierungen an Suchmaschinen-Schnittstellen häufig primär aus dem Unternehmensblickwinkel heraus durchgeführt werden. Des Weiteren sind bestehende Methoden zur Vorhersage der Relevanz von Suchergebnissen, welche größtenteils auf der Auswertung von Klicks basieren, nicht auf neuartige SERPs zugeschnitten. Zum Beispiel versagen diese, wenn Suchanfragen direkt auf der Suchergebnisseite beantwortet werden und der Nutzer nicht klicken muss. Basierend auf den Prinzipien des nutzerzentrierten Designs entwickeln wir eine Lösung in Form eines ganzheitlichen Ansatzes für die oben beschriebenen Probleme. Dieser Ansatz orientiert sich sowohl an Nutzern als auch an Entwicklern. Unsere Lösung stellt automatische Methoden bereit, um unternehmenszentriertem Design entgegenzuwirken und implizites Nutzerfeedback für die effizienteund effektive Evaluierung und Optimierung von Usability und insbesondere Ergebnisrelevanz nutzen zu können. Wir definieren Personas und Szenarien, aus denen wir ungelöste Probleme und konkrete Anforderungen ableiten. Basierend auf diesen Anforderungen entwickeln wir einen entsprechenden Werkzeugkasten, das Search Interaction Optimization Toolkit. Mittels eines Bottom-up-Ansatzes definieren wir zudem eine gleichnamige Methodik auf einem höheren Abstraktionsniveau. Das Search Interaction Optimization Toolkit besteht aus insgesamt sechs Komponenten. Zunächst präsentieren wir INUIT [1], ein neuartiges, minimales Instrument zur Bestimmung von Usability, welches speziell auf sinnvolle Korrelationen mit implizitem Nutzerfeedback in Form Client-seitiger Interaktionen abzielt. Aus diesem Grund dient es als Basis für die direkte Herleitung quantitativer Usability-Bewertungen aus dem Verhalten von Nutzern. Das Instrument wurde basierend auf Untersuchungen etablierter Usability-Standards und -Richtlinien sowie Experteninterviews entworfen. Die Machbarkeit und Effektivität der Benutzung von INUIT wurden in einer Nutzerstudie untersucht und darüber hinaus durch eine konfirmatorische Faktorenanalyse bestätigt. Im Anschluss beschreiben wir WaPPU [2], welches ein kontextsensitives, auf INUIT basierendes Tool zur Durchführung von A/B-Tests ist. Es implementiert das neuartige Konzept des Usability-based Split Testing und ermöglicht die automatische Evaluierung der Usability beliebiger SERPs basierend auf den bereits zuvor angesprochenen quantitativen Bewertungen, welche direkt aus Nutzerinteraktionen abgeleitet werden. Hierzu werden Techniken des maschinellen Lernens angewendet, um automatisch entsprechende Usability-Modelle generieren und anwenden zu können. WaPPU ist insbesondere nicht auf die Evaluierung von Suchergebnisseiten beschränkt, sondern kann auf jede beliebige Web-Schnittstelle in Form einer Webseite angewendet werden. Darauf aufbauend beschreiben wir S.O.S., die SERP Optimization Suite [3], welche das Tool WaPPU sowie einen neuartigen Katalog von „Best Practices“ [4] umfasst. Sobald eine durch WaPPU gemessene, suboptimale Usability-Bewertung festgestellt wird, werden – basierend auf dem Katalog von „Best Practices“ – automatisch entsprechende Gegenmaßnahmen und Optimierungen für die untersuchte Suchergebnisseite vorgeschlagen. Der Katalog wurde in einem dreistufigen Prozess erarbeitet, welcher die Untersuchung bestehender Suchergebnisseiten sowie eine Anpassung und Verifikation durch 20 Usability-Experten beinhaltete. Die bisher angesprochenen Tools fokussieren auf die generelle Usability von SERPs, jedoch ist insbesondere die Darstellung der für den Nutzer relevantesten Ergebnisse eminent wichtig für eine Suchmaschine. Da Relevanz eine Untermenge von Usability ist, beinhaltet unser Werkzeugkasten daher das Tool TellMyRelevance! (TMR) [5], die erste End-to-End-Lösung zur Vorhersage von Suchergebnisrelevanz basierend auf Client-seitigen Nutzerinteraktionen. TMR ist einvollautomatischer Ansatz, welcher die benötigten Daten auf dem Client abgreift, sie auf dem Server verarbeitet und entsprechende Relevanzmodelle bereitstellt. Die von diesen Modellen getroffenen Vorhersagen können wiederum in den Ranking-Prozess der Suchmaschine eingepflegt werden, was schlussendlich zu einer Verbesserung der Usability führt. StreamMyRelevance! (SMR) [6] erweitert das Konzept von TMR, indem es einen Streaming-basierten Ansatz bereitstellt. Hierbei geschieht die Sammlung und Verarbeitung der Daten sowie die Bereitstellung der Relevanzmodelle in Nahe-Echtzeit. Basierend auf umfangreichen Nutzerstudien mit echten Suchmaschinen haben wir den entwickelten Werkzeugkasten als Ganzes evaluiert, auch, um das Zusammenspiel der einzelnen Komponenten zu demonstrieren. S.O.S., WaPPU und INUIT wurden zur Evaluierung und Optimierung einer realen Suchergebnisseite herangezogen. Die Ergebnisse zeigen, dass unsere Tools in der Lage sind, auch kleine Abweichungen in der Usability korrekt zu identifizieren. Zudem haben die von S.O.S.vorgeschlagenen Optimierungen zu einer signifikanten Verbesserung der Usability der untersuchten und überarbeiteten Suchergebnisseite geführt. TMR und SMR wurden mit Datenmengen im zweistelligen Gigabyte-Bereich evaluiert, welche von zwei realen Hotelbuchungsportalen stammen. Beide zeigen das Potential, bessere Vorhersagen zu liefern als konkurrierende Systeme, welche lediglich Klicks auf Ergebnissen betrachten. SMR zeigt gegenüber allen anderen untersuchten Systemen zudem deutliche Vorteile bei Effizienz, Robustheit und Skalierbarkeit. Die Dissertation schließt mit einer Diskussion des Potentials und der Limitierungen der erarbeiteten Forschungsbeiträge und gibt einen Überblick über potentielle weiterführende und zukünftige Forschungsarbeiten.
60

Search Interaction Optimization: A Human-Centered Design Approach

Speicher, Maximilian 20 September 2016 (has links)
Over the past 25 years, search engines have become one of the most important, if not the entry point of the World Wide Web. This development has been primarily due to the continuously increasing amount of available documents, which are highly unstructured. Moreover, the general trend is towards classifying search results into categories and presenting them in terms of semantic information that answer users' queries without having to leave the search engine. With the growing amount of documents and technological enhancements, the needs of users as well as search engines are continuously evolving. Users want to be presented with increasingly sophisticated results and interfaces while companies have to place advertisements and make revenue to be able to offer their services for free. To address the above needs, it is more and more important to provide highly usable and optimized search engine results pages (SERPs). Yet, existing approaches to usability evaluation are often costly or time-consuming and mostly rely on explicit feedback. They are either not efficient or not effective while SERP interfaces are commonly optimized primarily from a company's point of view. Moreover, existing approaches to predicting search result relevance, which are mostly based on clicks, are not tailored to the evolving kinds of SERPs. For instance, they fail if queries are answered directly on a SERP and no clicks need to happen. Applying Human-Centered Design principles, we propose a solution to the above in terms of a holistic approach that intends to satisfy both, searchers and developers. It provides novel means to counteract exclusively company-centric design and to make use of implicit user feedback for efficient and effective evaluation and optimization of usability and, in particular, relevance. We define personas and scenarios from which we infer unsolved problems and a set of well-defined requirements. Based on these requirements, we design and develop the Search Interaction Optimization toolkit. Using a bottom-up approach, we moreover define an eponymous, higher-level methodology. The Search Interaction Optimization toolkit comprises a total of six components. We start with INUIT [1], which is a novel minimal usability instrument specifically aiming at meaningful correlations with implicit user feedback in terms of client-side interactions. Hence, it serves as a basis for deriving usability scores directly from user behavior. INUIT has been designed based on reviews of established usability standards and guidelines as well as interviews with nine dedicated usability experts. Its feasibility and effectiveness have been investigated in a user study. Also, a confirmatory factor analysis shows that the instrument can reasonably well describe real-world perceptions of usability. Subsequently, we introduce WaPPU [2], which is a context-aware A/B testing tool based on INUIT. WaPPU implements the novel concept of Usability-based Split Testing and enables automatic usability evaluation of arbitrary SERP interfaces based on a quantitative score that is derived directly from user interactions. For this, usability models are automatically trained and applied based on machine learning techniques. In particular, the tool is not restricted to evaluating SERPs, but can be used with any web interface. Building on the above, we introduce S.O.S., the SERP Optimization Suite [3], which comprises WaPPU as well as a catalog of best practices [4]. Once it has been detected that an investigated SERP's usability is suboptimal based on scores delivered by WaPPU, corresponding optimizations are automatically proposed based on the catalog of best practices. This catalog has been compiled in a three-step process involving reviews of existing SERP interfaces and contributions by 20 dedicated usability experts. While the above focus on the general usability of SERPs, presenting the most relevant results is specifically important for search engines. Hence, our toolkit contains TellMyRelevance! (TMR) [5] — the first end-to-end pipeline for predicting search result relevance based on users’ interactions beyond clicks. TMR is a fully automatic approach that collects necessary information on the client, processes it on the server side and trains corresponding relevance models based on machine learning techniques. Predictions made by these models can then be fed back into the ranking process of the search engine, which improves result quality and hence also usability. StreamMyRelevance! (SMR) [6] takes the concept of TMR one step further by providing a streaming-based version. That is, SMR collects and processes interaction data and trains relevance models in near real-time. Based on a user study and large-scale log analysis involving real-world search engines, we have evaluated the components of the Search Interaction Optimization toolkit as a whole—also to demonstrate the interplay of the different components. S.O.S., WaPPU and INUIT have been engaged in the evaluation and optimization of a real-world SERP interface. Results show that our tools are able to correctly identify even subtle differences in usability. Moreover, optimizations proposed by S.O.S. significantly improved the usability of the investigated and redesigned SERP. TMR and SMR have been evaluated in a GB-scale interaction log analysis as well using data from real-world search engines. Our findings indicate that they are able to yield predictions that are better than those of competing state-of-the-art systems considering clicks only. Also, a comparison of SMR to existing solutions shows its superiority in terms of efficiency, robustness and scalability. The thesis concludes with a discussion of the potential and limitations of the above contributions and provides an overview of potential future work. / Im Laufe der vergangenen 25 Jahre haben sich Suchmaschinen zu einem der wichtigsten, wenn nicht gar dem wichtigsten Zugangspunkt zum World Wide Web (WWW) entwickelt. Diese Entwicklung resultiert vor allem aus der kontinuierlich steigenden Zahl an Dokumenten, welche im WWW verfügbar, jedoch sehr unstrukturiert organisiert sind. Überdies werden Suchergebnisse immer häufiger in Kategorien klassifiziert und in Form semantischer Informationen bereitgestellt, die direkt in der Suchmaschine konsumiert werden können. Dies spiegelt einen allgemeinen Trend wider. Durch die wachsende Zahl an Dokumenten und technologischen Neuerungen wandeln sich die Bedürfnisse von sowohl Nutzern als auch Suchmaschinen ständig. Nutzer wollen mit immer besseren Suchergebnissen und Interfaces versorgt werden, während Suchmaschinen-Unternehmen Werbung platzieren und Gewinn machen müssen, um ihre Dienste kostenlos anbieten zu können. Damit geht die Notwendigkeit einher, in hohem Maße benutzbare und optimierte Suchergebnisseiten – sogenannte SERPs (search engine results pages) – für Nutzer bereitzustellen. Gängige Methoden zur Evaluierung und Optimierung von Usability sind jedoch größtenteils kostspielig oder zeitaufwändig und basieren meist auf explizitem Feedback. Sie sind somit entweder nicht effizient oder nicht effektiv, weshalb Optimierungen an Suchmaschinen-Schnittstellen häufig primär aus dem Unternehmensblickwinkel heraus durchgeführt werden. Des Weiteren sind bestehende Methoden zur Vorhersage der Relevanz von Suchergebnissen, welche größtenteils auf der Auswertung von Klicks basieren, nicht auf neuartige SERPs zugeschnitten. Zum Beispiel versagen diese, wenn Suchanfragen direkt auf der Suchergebnisseite beantwortet werden und der Nutzer nicht klicken muss. Basierend auf den Prinzipien des nutzerzentrierten Designs entwickeln wir eine Lösung in Form eines ganzheitlichen Ansatzes für die oben beschriebenen Probleme. Dieser Ansatz orientiert sich sowohl an Nutzern als auch an Entwicklern. Unsere Lösung stellt automatische Methoden bereit, um unternehmenszentriertem Design entgegenzuwirken und implizites Nutzerfeedback für die effizienteund effektive Evaluierung und Optimierung von Usability und insbesondere Ergebnisrelevanz nutzen zu können. Wir definieren Personas und Szenarien, aus denen wir ungelöste Probleme und konkrete Anforderungen ableiten. Basierend auf diesen Anforderungen entwickeln wir einen entsprechenden Werkzeugkasten, das Search Interaction Optimization Toolkit. Mittels eines Bottom-up-Ansatzes definieren wir zudem eine gleichnamige Methodik auf einem höheren Abstraktionsniveau. Das Search Interaction Optimization Toolkit besteht aus insgesamt sechs Komponenten. Zunächst präsentieren wir INUIT [1], ein neuartiges, minimales Instrument zur Bestimmung von Usability, welches speziell auf sinnvolle Korrelationen mit implizitem Nutzerfeedback in Form Client-seitiger Interaktionen abzielt. Aus diesem Grund dient es als Basis für die direkte Herleitung quantitativer Usability-Bewertungen aus dem Verhalten von Nutzern. Das Instrument wurde basierend auf Untersuchungen etablierter Usability-Standards und -Richtlinien sowie Experteninterviews entworfen. Die Machbarkeit und Effektivität der Benutzung von INUIT wurden in einer Nutzerstudie untersucht und darüber hinaus durch eine konfirmatorische Faktorenanalyse bestätigt. Im Anschluss beschreiben wir WaPPU [2], welches ein kontextsensitives, auf INUIT basierendes Tool zur Durchführung von A/B-Tests ist. Es implementiert das neuartige Konzept des Usability-based Split Testing und ermöglicht die automatische Evaluierung der Usability beliebiger SERPs basierend auf den bereits zuvor angesprochenen quantitativen Bewertungen, welche direkt aus Nutzerinteraktionen abgeleitet werden. Hierzu werden Techniken des maschinellen Lernens angewendet, um automatisch entsprechende Usability-Modelle generieren und anwenden zu können. WaPPU ist insbesondere nicht auf die Evaluierung von Suchergebnisseiten beschränkt, sondern kann auf jede beliebige Web-Schnittstelle in Form einer Webseite angewendet werden. Darauf aufbauend beschreiben wir S.O.S., die SERP Optimization Suite [3], welche das Tool WaPPU sowie einen neuartigen Katalog von „Best Practices“ [4] umfasst. Sobald eine durch WaPPU gemessene, suboptimale Usability-Bewertung festgestellt wird, werden – basierend auf dem Katalog von „Best Practices“ – automatisch entsprechende Gegenmaßnahmen und Optimierungen für die untersuchte Suchergebnisseite vorgeschlagen. Der Katalog wurde in einem dreistufigen Prozess erarbeitet, welcher die Untersuchung bestehender Suchergebnisseiten sowie eine Anpassung und Verifikation durch 20 Usability-Experten beinhaltete. Die bisher angesprochenen Tools fokussieren auf die generelle Usability von SERPs, jedoch ist insbesondere die Darstellung der für den Nutzer relevantesten Ergebnisse eminent wichtig für eine Suchmaschine. Da Relevanz eine Untermenge von Usability ist, beinhaltet unser Werkzeugkasten daher das Tool TellMyRelevance! (TMR) [5], die erste End-to-End-Lösung zur Vorhersage von Suchergebnisrelevanz basierend auf Client-seitigen Nutzerinteraktionen. TMR ist einvollautomatischer Ansatz, welcher die benötigten Daten auf dem Client abgreift, sie auf dem Server verarbeitet und entsprechende Relevanzmodelle bereitstellt. Die von diesen Modellen getroffenen Vorhersagen können wiederum in den Ranking-Prozess der Suchmaschine eingepflegt werden, was schlussendlich zu einer Verbesserung der Usability führt. StreamMyRelevance! (SMR) [6] erweitert das Konzept von TMR, indem es einen Streaming-basierten Ansatz bereitstellt. Hierbei geschieht die Sammlung und Verarbeitung der Daten sowie die Bereitstellung der Relevanzmodelle in Nahe-Echtzeit. Basierend auf umfangreichen Nutzerstudien mit echten Suchmaschinen haben wir den entwickelten Werkzeugkasten als Ganzes evaluiert, auch, um das Zusammenspiel der einzelnen Komponenten zu demonstrieren. S.O.S., WaPPU und INUIT wurden zur Evaluierung und Optimierung einer realen Suchergebnisseite herangezogen. Die Ergebnisse zeigen, dass unsere Tools in der Lage sind, auch kleine Abweichungen in der Usability korrekt zu identifizieren. Zudem haben die von S.O.S.vorgeschlagenen Optimierungen zu einer signifikanten Verbesserung der Usability der untersuchten und überarbeiteten Suchergebnisseite geführt. TMR und SMR wurden mit Datenmengen im zweistelligen Gigabyte-Bereich evaluiert, welche von zwei realen Hotelbuchungsportalen stammen. Beide zeigen das Potential, bessere Vorhersagen zu liefern als konkurrierende Systeme, welche lediglich Klicks auf Ergebnissen betrachten. SMR zeigt gegenüber allen anderen untersuchten Systemen zudem deutliche Vorteile bei Effizienz, Robustheit und Skalierbarkeit. Die Dissertation schließt mit einer Diskussion des Potentials und der Limitierungen der erarbeiteten Forschungsbeiträge und gibt einen Überblick über potentielle weiterführende und zukünftige Forschungsarbeiten.

Page generated in 0.0625 seconds