Spelling suggestions: "subject:"surfaceenhanced"" "subject:"surfacemechanical""
201 |
Spectroscopie Raman et microfluidique : application à la diffusion Raman exaltée de surfaceDelhaye, Caroline 17 December 2009 (has links)
Ce mémoire porte sur la mise au point de plateforme microfluidique couplée à la microscopie Raman confocale, utilisée dans des conditions d’excitation de la diffusion Raman (diffusion Raman exaltée de surface), dans le but d’obtenir une détection de très haute sensibilité d’espèces moléculaires sous écoulement dans des canaux de dimensions micrométriques. Ce travail a pour ambition de démontrer la faisabilité d’un couplage microscopie Raman/microfluidique en vue de la caractérisation in-situ et locale, des espèces et des réactions mises en jeu dans les fluides en écoulement dans les microcanaux. Nous avons utilisé un microcanal de géométrie T, fabriqué par lithographie douce, dans lequel sont injectées, à vitesse constante, des nanoparticules métalliques d’or ou d’argent dans une des deux branches du canal et une solution de pyridine ou de péfloxacine dans l’autre branche. La laminarité et la stationnarité du processus nous ont permis de cartographier la zone de mélange et de mettre en évidence l’exaltation du signal de diffusion Raman de la pyridine et de la péfloxacine, obtenue grâce aux nanoparticules métalliques, dans cette zone d’interdiffusion. L’enregistrement successif de la bande d’absorption des nanoparticules d’argent (bande plasmon) et du signal de diffusion Raman de la péfloxacine, en écoulement dans un microcanal, nous a permis d’établir un lien entre la morphologie des nanostructures métalliques, et plus précisément l’état d’agrégation des nanoparticules d’argent, et l’exaltation du signal Raman de la péfloxacine observé. Nous avons alors modifié la géométrie du canal afin d’y introduire une solution d’électrolyte (NaCl et NaNO3) et de modifier localement la charge de surface des colloïdes d’argent en écoulement. Nous avons ainsi confirmé que la modification de l’état d’agrégation des nanoparticules d’argent, induite par l’ajout contrôlé de solutions d’électrolytes, permet d’amplifier le signal SERS de la péfloxacine et d’optimiser la détection en microfluidique. Enfin, nous avons développé une seconde approche qui consistait à mettre en place une structuration métallisée des parois d’un microcanal. Nous avons ainsi démontré que la fonctionnalisation chimique de surface via un organosilane (APTES) permettait de tapisser le canal avec des nanoparticules d’argent et d’amplifier le signal Raman des espèces en écoulement dans ce même microcanal. / This thesis focuses on the development of a microfluidic platform coupled with confocal Raman microscopy, used in excitation conditions of Raman scattering (Surface enhanced Raman scattering, SERS) in order to gain in the detection sensitivity of molecular species flowing in channels of micrometer dimensions. This work aims to demonstrate the feasibility of coupling Raman microscopy / microfluidics for the in situ and local characterization of species and reactions taking place in the fluid flowing in microchannels. We used a T-shaped microchannel, made by soft lithography, in which gold or silver nanoparticles injected at constant speed, in one of the two branches of the channel and a solution of pyridine or pefloxacin in the other one. The laminar flow and the stationarity of the process allowed us to map the mixing zone and highlight the enhancement of the Raman signal of pyridine and pefloxacin, due to the metallic nanoparticles, in the interdiffusion zone. The recording of the both absorption band of the silver nanoparticles (plasmon band) and the Raman signal of pefloxacin, flowing in microchannel, allowed us to establish a link between the shape of the metallic nanostructure, and more precisely the silver nanoparticle aggregation state, and the enhancement of the Raman signal of pefloxacin observed. We then changed the channel geometry to introduce an electrolyte solution (NaCl and NaNO3) and locally modify the surface charge of the colloids. We have put in evidence that the change of the silver nanoparticle aggregation state, induced by the controlled addition of electrolyte solutions, could amplify the SERS signal of pefloxacin and thus optimizing the detection in microfluidics. At last, we established second a approach that consists in the metallic structuring of microchannel walls. This has shown that the surface chemical functionalization through organosilanes (APTES) allowed the pasting of the channel with silver nanoparticles, thus amplifying the Raman signal of the species flowing within the same microchannel.
|
202 |
Infrarotellipsometrische Untersuchungen zur oberflächenverstärkten InfrarotabsorptionBuskühl, Martin 23 June 2003 (has links)
Auf dielektrische Substrate wurden Schichten aus Gold thermisch aufgedampft. Die Schichten wurden neben anderen Methoden wie AFM oder der Messung der Schichtleitfähigkeiten hauptsächlich mit Hilfe der spektroskopischen IR-Ellipsometrie (SIRE) in einem Schichtdickenbereich von 4 bis 60 nm systematisch untersucht. Aus den primär ermittelten ellipsometrischen Parametern tan(Psi) und Delta lassen sich der Brechungsindex n und der Absorptionsindex k bestimmen und auch weitere Größen wie z.B. der elektrische Widerstand bzw. die elektrische Leitfähigkeit errechnen. Die untersuchten Schichten lassen sich anhand der optischen, topographischen und elektrischen Eigenschaften in drei Gruppen einteilen: Dielektrische, aus isolierten Goldinseln bestehende Filme (4 bis 6 nm), Schichten in einem Übergangsbereich (8 bis ca. 16 nm), metallische Schichten (ab ca. 16 nm). Die dielektrischen Goldinselfilme zeigen optische Eigenschaften, die bislang für keine anderen Proben beschrieben worden sind. Der Brechungsindex n ist hoch (4 bis 9 bei 2400/cm) und der Absorptionsindex k klein (0 bis 4 bei 2400/cm). Beide Indizes sind spektral weitgehend konstant. Daß diese Filme dielektrische Eigenschaften besitzen, steht in direktem Widerspruch zur allgemeinen SEIRA-Literatur. Die Inselstruktur der dielektrischen Filme verursacht einen Verstärkungseffekt, der als Oberflächenverstärkte Infrarotabsorption (surface-enhanced infrared absorption - SEIRA) bekannt ist. Es zeigte sich, daß die optischen Konstanten der Filme einen erheblichen Einfluß auf die SEIRA-Verstärkung ausüben. Um Inselfilme mit reproduzierbaren optischen Eigenschaften herstellen zu können, wurde ein lithographisches Verfahren entwickelt. Auf einer geschlossenen, homogenen Goldschicht wurden monodisperse Nanopartikel aus Polystyrol (PS) in einer Monolage deponiert. Die PS-Nanopartikel dienten in einem trockenen Ätzprozeß im Ar-Plasma als lithographische Maske, um die darunterliegende Au-Schicht zu strukturieren. / Thin films were produced on dielectric substrates by thermal evaporation of gold in a high vacuum chamber. These films were investigated systematically in a range between 4 and 60 nm thickness. The method mainly applied was the spectroscopic IR-ellipsometry (SIRE), in addition to other methods like AFM or sheet resistance measurement. The primary results are the ellipsometric parameters tan(Psi) and Delta. They were used to determine the refractive index n and the absorption index k. Electrical parameters can also be calculated. Depending on the optical, topographical and electrical properties the population of different layers can be divided into three parts: dielectric films with isolated gold islands (4 to 6 nm), layers in a transient area (8 to ca. 16 nm), metal films (ca. 16 to 60 nm). The optical properties shown by dielectric gold island films were never before described for other samples. The refractive index n is high (4 to 9 at 2400/cm) and the absorption index small (0 to 4 at 2400/cm). Both indices are nearly constant in the spectral range. Directly in contrast to the SEIRA-literature the island films show dielectric properties. The island structure of the dielectric films gives rise to an enhancement effect called surface-enhanced infrared absorption (SEIRA). It could be shown that the optical constants of the island films have a considerable influence on the enhancement factors. A lithographic method was developed in order to find a way for manufacturing island films with reproducible optical properties. Monodispers polystyrene nanoparticles were deposited in a monolayer on a dense gold layer on a dielectric substrate. The layer of nanoparticles was used as a mask for a dry etch process in a reactive Ar-plasma.
|
203 |
Nonlocal and Nonlinear Properties of Plasmonic Nanostructures Within the Hydrodynamic Drude ModelMoeferdt, Matthias 03 August 2017 (has links)
In dieser Arbeit werden die nichtlokalen sowie nichtlinearen Eigenschaften plasmonischer Nanopartikel behandelt, wie sie im hydrodynamischen Modell enthalten sind. Das hydrodynamische Materialmodell stellt eine Erweiterung des Drude Modells dar, in der Korrekturen in der Beschreibung des Elektronenplasmas berücksichtigt werden. Einer ausführlichen Einführung des Materialmodells folgt eine analytische Diskussion der Auswirkungen der Nichtlokalität am Beispiel eines einzelnen Zylinders. Hierbei werden die durch die Nichtlokalität herbeigeführten Frequenzverschiebungen in den Streu- und Absorptionsspektren quantifiziert und asymptotisch behandelt. Des Weiteren wird mit Hilfe einer konformen Abbildung das Problem eines zylindrischen Dimers in der Elektrostatischen Näherung gelöst und die Moden der Struktur bestimmt. Diese Untersuchungen dienen als maßgebliche Grundlage für weiterführende numerische Studien die mit der diskontinuierlichen Galerkin Zeitraummethode durchgeführt werden. Die durch die analytischen Betrachtungen gewonnene Kenntnis der Moden ermöglicht es, im Zusammenhang mit gruppentheoretischen Betrachtungen und numerischen Untersuchungen, rigorose Auswahlregeln für die Anregung der Moden durch lineare und nichtlineare Prozesse aufzustellen. In weiterführenden numerischen Simulationen werden außerdem Strukturen niedrigerer Symmetrie, auf die sich die Auswahlregeln übertragen lassen, untersucht. Zudem werden numerische Studien präsentiert in denen der Einfluss der Nichtlokalität auf Feldüberhöhungen in Dimeren und doppel-resonantes Verhalten (es liegt sowohl bei der Frequenz des eingestrahlten Lichtes als auch bei der zweiten harmonischen eine Resonanz vor) untersucht werden. / This thesis deals with the nonlocal and nonlinear properties of plasmonic nanoparticles, as described by the hydrodynamic model. The hydrodynamic material model represents an extension of the Drude model that contains corrections to the descriptions of the electron plasma. After a thorough derivation of the material model, analytical discussions of nonlocality are presented for the example of a single cylinder. The frequency shifts in the scattering and absorption spectra are quantified and treated asymptotically. Furthermore, by applying a conformal map, the problem of a cylindrical dimer is solved in the electrostatic limit and the modes of the structure are determined. These investigations lay the foundations for numerical investigations which are performed employing the discontinuous Galerkin time domain method. The analytical knowledge of the modes, in conjunction with group theoretical considerations and numerical analysis, enables the formulation of rigorous selection rules for the excitation of modes by linear and nonlinear processes. In further numerical studies, the influence of nonlocality on the field enhancement in dimer structures and double-resonant behavior (a resonance is found at the frequency of the incoming light and at the second harmonic) are investigated.
|
204 |
Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors / Synthèse localisée et contrôlée de polymères à empreintes moléculaires pour capteurs chimiquesKaya, Zeynep 05 November 2015 (has links)
Les polymères à empreintes moléculaires (MIP), également appelés "anticorps en plastique", sont des récepteurs biomimétiques synthétiques qui sont capables de reconnaître et lier une molécule cible avec une affinité et une spécificité comparables à celles des récepteurs naturels tels que des enzymes ou des anticorps. En effet, les MIP sont utilisés comme éléments de reconnaissance synthétiques dans les biocapteurs et biopuces pour la détection de petits analytes et les protéines. La technique d'impression moléculaire est basée sur la formation de cavités de reconnaissance spécifiques dans des matrices polymères par un procédé de moulage à l'échelle moléculaire. Pour la conception de capteurs et biopuces, une cinétique d'adsorption et une réponse du capteur rapide, l'intégration des polymères avec des transducteurs, et une haute sensibilité de détection sont parmi les principaux défis. Dans cette thèse, ces problèmes ont été abordés par le développement de nanocomposites MIP / d'or via le greffage du MIP sur les surfaces en utilisant des techniques de polymérisation dédiées comme l'ATRP qui est une technique de polymérisation radicalaire contrôlée (CRP). Ces techniques CRP sophistiquées sont en mesure d'améliorer considérablement les matériaux polymères. L'utilisation de l'ATRP dans le domaine de MIP a été limitée jusqu'à présent en raison de son incompatibilité inhérente avec des monomères acides comme l'acide méthacrylique (MAA), qui est de loin le monomère fonctionnel le plus largement utilisé dans les MIP. Ici, un nouveau procédé est décrit pour la synthèse de MIP par ATRP photo-initiée utilisant fac-[Ir(Ppy)3] comme catalyseur. La synthèse est possible à température ambiante et est compatible avec des monomères acides. Cette étude élargit considérablement la gamme de monomères fonctionnels et de molécules empreintes qui peuvent être utilisés lors de la synthèse de MIP par ATRP. La méthode proposée a été utilisée pour la fabrication de nanocomposites hiérarchiquement organisés sur des surfaces métalliques nanostructurés avec des nano-trous et nano-ilots, présentant des effets plasmoniques pour l'amplification du signal. La synthèse de films de MIP à l'échelle du nanomètre localisés sur la surface d'or a été démontrée. Des méthodes de transduction optiques, à savoir la résonance de plasmons de surface localisée (LSPR) et la spectroscopie Raman exaltée par effet de surface (SERS) ont été exploitées. Ces techniques se sont montrées prometteuses pour l'amélioration de la limite de détection dans la détection d'analytes biologiquement pertinents, y compris les protéines et le médicament propranolol. / Molecularly imprinted polymers (MIPs), also referred to as plastic antibodies, are synthetic biomimetic receptors that are able to bind target molecules with similar affinity and specificity as natural receptors such as enzymes or antibodies. Indeed, MIPs are used as synthetic recognition elements in biosensors and biochips for the detection of small analytes and proteins. The molecular imprinting technique is based on the formation of specific recognition cavities in polymer matrices by a templating process at the molecular level. For sensor and biochip development, fast binding kinetics of the MIP for a rapid sensor response, the integration of the polymers with transducers, and a high sensitivity of detection are among the main challenges. In this thesis, the above issues are addressed by developing MIP/gold nanocomposites by grafting MIPs on surfaces, using dedicated techniques like atom transfer radical polymerization (ATRP) which is a versatile controlled radical polymerization (CRP) technique. Theses ophisticated CRP techniques, are able to greatly improve the polymeric materials. The use of ATRP in the MIP field has been limited so far due to its inherent incompatibility with acidic monomers like methacrylic acid (MAA), which is by far the most widely used functional monomer. Herein, a new method is described for the MIP synthesis through photo-initiated ATRP using fac-[Ir(ppy)3] as ATRP catalyst. The synthesis is possible at room temperature and is compatible with acidic monomers. This study considerably widens the range of functional monomers and thus molecular templates that can be used when MIPs are synthesized by ATRP. The proposed method was used for fabrication of hierarchically organised nanocomposites based on MIPs and nanostructured metal surfaces containing nanoholes or nanoislands, exhibiting plasmonic effects for signal amplification. The fabrication of nanometer scale MIP coatings localized on gold surface was demonstrated. Optical transduction methods, namely Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) were exploited and shown that they hold great promise for enhancing the limit of detection in sensing of biologically relevant analytes including proteins and the drug propranolol.
|
205 |
Fabrication and Optimization of a Nanoplasmonic Chip for DiagnosticsSegervald, Jonas January 2019 (has links)
To increase the survival rate from infectious- and noncommunicable diseases, reliable diagnostic during the preliminary stages of a disease onset is of vital importance. This is not trivial to achieve, a highly sensitive and selective detection system is needed for measuring the low concentrations of biomarkers available. One possible route to achieve this is through biosensing based on plasmonic nanostructures, which during the last decade have demonstrated impressive diagnostic capabilities. These nanoplasmonic surfaces have the ability to significantly enhance fluorescence- and Raman signals through localized hotspots, where a stronger then normal electric field is present. By further utilizing a periodic sub-wavelength nanohole array the extraordinary optical transmission phenomena is supported, which open up new ways for miniaturization. In this study a nanoplasmonic chip (NPC) composed of a nanohole array —with lateral size on the order of hundreds of nanometer— covered in a thin layer of gold is created. The nanohole array is fabricated using soft nanoimprint lithography on two resists, hydroxypropyl cellulose (HPC) and polymethyl methacrylate (PMMA). An in depth analysis of the effect of thickness is done, where the transmittance and Raman scattering (using rhodamine 6G) are measured for varying gold layers from 5 to 21 nm. The thickness was proved to be of great importance for optimizing the Raman enhancement, where a maximum was found at 13 nm. The nanohole array were also in general found beneficial for additionally enhancing the Raman signal. A transmittance minima and maxima were found in the region 200-1000 nm for the NPCs, where the minima redshifted as the thickness increased. The extraordinary transmission phenomena was however not observed at these thin gold layers. Oxygen plasma treatment further proved an effective treatment method to reduce the hydrophobic properties of the NPCs. Care needs be taken when using thin layers of gold with a PMMA base, as the PMMA structure could get severely damaged by the plasma. HPC also proved inadequate for this projects purpose, as water-based fluids easily damaged the surface despite a deposited gold layer on top.
|
206 |
Formation of Porous Metallic Nanostructures Electrocatalytic Studies on Self-Assembled Au@Pt Nanoparticulate Films, and SERS Activity of Inkjet Printed Silver SubstratesBanerjee, Ipshita January 2013 (has links) (PDF)
Porous, conductive metallic nanostructures are required in several fields, such as energy conversion, low-cost sensors etc. This thesis reports on the development of an electrocatalytically active and conductive membrane for use in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and fabrication of low-cost substrates for Surface Enhanced Raman Spectroscopy (SERS).
One of the main challenges facing large-scale deployment of PEMFCs currently is to fabricate a catalyst layer that minimizes platinum loading, maximizes eletrocatalytically active area, and maximizes tolerance to CO in the feed stream. Modeling the kinetics of platinum catalyzed half cell reactions occurring in a PEMFC using the kinetic theory of gases and incorporating appropriate sticking coefficients provides a revealing insight that there is scope for an order of magnitude increase in maximum current density achievable from PEMFCs. To accomplish this, losses due to concentration polarization in gas diffusion layers, which occur at high current densities, need to be eliminated. A novel catalyst design, based on a porous metallic nanostructure, which aims to overcome the limitations of concentration polarization as well as minimize the amount of platinum loading in PEMFCs is proposed. Fabrication steps involving controlled in-plane fusion of self-assembled arrays of core-shell gold-platinum nanoparticles (Au@Pt) is envisioned. The key steps involved being the development of a facile synthesis route to form Au@Pt nanoparticles with tunable platinum shell thicknesses in the 5 nm size range, the formation of large-scale 2D arrays of Au@Pt nanoparticles using guided self-assembly, and optimization of an RF plasma process to promote in-plane fusion of the nanoparticles to form porous, electrocatalytically active and electrically conductive membranes.
This thesis consists of seven chapters. The first chapter provides an introduction into the topic of PEMFCs, some perspective on the current status of research and development of PEMFCs, and an outline of the thesis. The second chapter provides an overview on the methods used, characterization techniques employed and protocols followed for sample preparation. The third chapter describes the modelling of a PEMFC using the Kinetic theory of gases to arrive at an estimate of the maximum feasible current density, based on the kinetics of the electrocatalytic reactions. The fourth chapter presents the development of a simple protocol for synthesizing Au@Pt nanoparticles with control over platinum shell thicknesses from the sub monolayer coverage onwards. The results of spectroscopic and microscopic characterization establish the uniformity of coating and the absence of secondary nucleation. Chapter five describes the formation of a nanoporous, electrocatalytically active membrane by self-assembly to form bilayers of 2D arrays of Au@Pt nanoparticles and subsequent fusion using an RF plasma based process. The evolution of the electrocatalytic activity and electrical conductivity as a function of the duration of RF plasma treatment is monitored for Au@Pt nanoparticles with various extent of platinum coating. Spectroscopic, microscopic, electrical and cyclic voltammetry characterization of the samples at various stages were used to understand the structural evolution with RF plasma treatment duration and discussed. Next durability studies were carried out on the nanoporous, Au@Pt bilayer nanoparticle array with an optimum composition of Pt/Au atomic ratio of 0.88 treated to 16 minutes of argon plasma exposure. After this the novel catalyst membrane design of PEM fuel cell is revisited. Two different techniques are proposed so that the thin, nanoporous, metallic catalyst membrane achieves horizontal electronic resistance equivalent to that of the conventional gas diffusion layer with catalyst layer. The first technique proposes the introduction of gold coated polymeric mesh in between the thin, nanoporous, metallic catalyst membrane and bipolar plate and discusses the advantages. Later the gold coated polymeric mesh is introduced in a conventional membrane electrode assembly and efficiency of the polarization curves probed with and without the introduction of gold coated polymeric mesh. The second technique describes the results of fabrication of a nanoporous metallic membrane using multiple layers of 2D Au@Pt nanoparticle arrays at an optimum composition of Pt/Au atomic ratio of 0.88 to reduce the horizontal electronic resistance. Preliminary studies on the permeability of water through such membranes supported on a porous polycarbonate filter membrane are also presented.
In chapter six, a simple reactive inkjet printing process for fabricating SERS active silver nanostructures on paper is presented. The process adapts a simple room temperature protocol, using tannic acid as the reducing agent, developed earlier in our group to fabricate porous silver nanostructures on paper using a commercial office inkjet printer. The results of SERS characterization, spectroscopic and microscopic characterizations of the samples and the comparison of the substrate’s long-term performance with respect to a substrate fabricated using sodium borohydride as the reducing agent is discussed. Preliminary findings on attempts to fabricate a conductive silver network using RF plasma induced fusion area also presented. Chapter seven provides a summary of the results, draws conclusions and a perspective on work required to accomplish the goals of incorporating the porous metallic nanostructures into PEMFCs.
|
207 |
Electrocatalytic Studies on Layer-type Ternary Phosphochalcogenides and on the Formation of Nitride PhasesSarkar, Sujoy January 2014 (has links) (PDF)
Research on new, environment-friendly, clean and efficient energy sources have contributed immensely to the development of new technologies for the generation and storage of electrical energy. Heterogeneous ‘electrocatalysis’ involves catalysis of redox reactions where the electrode material, termed as ‘electrocatalyst’ reduces the overpotential and maximizes the current for the processes occurring at the electrode/electrolyte interface. Efficient catalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are of paramount importance for electrochemical energy generation and storage applications in water splitting, fuel cells and batteries. However, high cost of Pt catalysts that are commonly used for such applications restricts their commercial viability. In addition, there are issues related to poisoning of the surface under certain conditions. One particular case of direct methanol fuel cells involves problems of methanol tolerance as well. Hence, the on-going search in this direction, is to search for alternate catalysts that can match the performance of Pt. There is a quest for the development of stable and durable electrocatalysts/ supports for various electrochemical redox reactions particularly based on energy storage and conversion.
The present thesis is structured in exploring the multi-functional aspects of ternary palladium phosphochalcogenides (PdPS and PdPSe) that possess layer-type structure with high crystallinity. They are semiconducting in nature and possess favorable electrochemical, electrical and optical properties. The chalcogenide compounds crystallize in orthorhombic symmetry with an indirect band gap close to 1.5 eV. The current study shows the versatility of ternary phosphochalcogenides in the bulk phase as well as in small sizes. The electrocatalytic activities of the chalcoenides are found to be dramatically improved by increasing the electrical conductivity by way of forming composites with reduced graphene oxide (rGO). The average crystallite size of the PdPS and PdPSe are 30 μm ±10 μm (figure 1). The composites are prepared by simple hydrothermal methods without use of any reducing agent and are characterized using various physico-chemical techniques.
Figure 1. FESEM images of (a) PdPSe and (b) PdPS.
In the present investigations, PdPS and its reduced graphene oxide composite (rGO-PdPS) are shown to be very efficient hydrogen evolution electrocatalysts (figure 2a). The bulk form of PdPS is found to be very active and the composite of PdPS with reduced graphene oxide improves the hydrogen evolution performance dramatically, even superior to state of the art, MoS2-based catalysts.
Figure 2. (a) Linear sweep voltammograms of rGO, bulk PdPS, rGO-PdPS composite and 40 % Pt-C in 0.5 M H2SO4 solution (pH 0.8). Scan rate used is 1 mV s-1. (b) Tafel plots for PdPS, rGO, rGO-PdPS and 40 wt% Pt-C in 0.5 M H2SO4 at 1 mVs-1 scan rate.
The Tafel slope and the exchange current density values associated with hydrogen evolution reaction are 46 mV dec-1 and 1.4 x 10-4 A cm-2 respectively (figure 2b). The stability of the PdPS-based catalyst is found to be excellent retaining same current densities even after thousand cycles. Moreover, post-HER characterization reveals the durability of the material even after cycling for a long time. Preliminary spectroelectrochemical investigations are attempted to gain further insight in to the HER.
Subsequently, the PdPS and its composite are explored as ORR catalysts in alkaline medium. The composite of PdPS with rGO is formed to enhance the catalytic activity of pure PdPS and the electron transfer kinetics is found to be very favorable. The kinetics of the oxygen reduction reactions are followed by RDE/RRDE measurements. It is experimentally verified that the composite eletrocatalyst is very stable, efficient and methanol tolerant in alkaline medium. The characteristics of the composite catalyst are comparable with widely used standard Pt-C for ORR (figure 3a). Moreover, ternary phophochalcogenide, PdPS, combined with rGO shows good catalytic activity towards OER and it affords a current density of 10 mA cm-2 at an overpotential of η = 570 mV (figure 3b).
Figure 3. (a) Comparative voltammograms for rGO, bulk PdPS, rGO-PdPS and 40 % Pt-C in 1M KOH at 1600 rpm. The potential is swept at a rate of 5 mVs-1. (b) Linear sweep voltammograms of oxygen evolution reaction on rGO-PdPS, PdPS and 40 % Pt-C in 1 M KOH electrolyte. Scan rate 5 mV s-1.
Apart from its tri-functional electrocatalytic behavior, PdPS and its rGO composite act as an anode material for Li-ion batteries showing high storage capacity of lithium (figure 4). The capacity fading of bulk PdPS is analyzed using XRD and SEM. The introduction of rGO, a well-known conducting matrix, improves the performance.
Palladium phosphorous selenide (PdPSe) and its composite with rGO (rGO-PdPSe) are also explored as electrocatalysts for HER, ORR and OER. They show the tri¬functional electrocatalytic behavior as well.
Figure 4. Discharge capacity as a function of number of cycles for PdPS, rGO rGO-PdPS electrode at current density of 35 mAg-1 in rechargeable lithium ion battery.
The next chapter deals with single or few layer PdPS where layer-type PdPS is exfoliated by several methods such as ultra-sonication and solvent exfoliation. Various microscopic and spectroscopic techniques have been used to characterize the material. These sheets show significantly improved electrocatalytic activity towards ORR and HER with notably low onset potential and low Tafel slopes. The charge storage capacity also increases by an order from its bulk counterpart. The catalyst shows excellent stability for HER and good methanol tolerance behavior towards ORR is also observed. This opens up possibilities for applications of few-layer ternary phosphosulphides in energy conversion and storage. However, one should be cautious since the exfoliation results in a slightly different composition of the material.
Different aspects of electrodeposition of gallium nanoparticles on exfoliated graphite surfaces from aqueous acidic solution forms part of the next study. The electrodeposited surface is characterized by various microscopic and spectroscopic techniques. The presence of surface plasmon peak in the visible region has led us to explore the use of Ga on EG for SERS studies. This preliminary work shows that the Raman signal of R6G is enhanced in the presence of Ga deposited on EG surface.
The research work presented in the next part of the thesis deals with the preparation, physicochemical, spectroscopic characterization of room temperature molten electrolytes based on amides. Room temperature ternary molten electrolyte involving a combination of acetamide, urea and gallium nitrate salt is prepared and the molten eutectic is characterized. An electrochemical process is developed for depositing gallium nitride from the ternary molten electrolyte on Au electrode. Gallium ion is reduced at low potentials while nitrate ion is reduced to produce atomic nitrogen, forming gallium nitride under certain conditions. Au coated TEM grid is used for patterning gallium nitride (figure 5). The deposited gallium nitride is further annealed at high temperature to increase the crystalinity and improve the stoichiometry of gallium nitride.
Figure 5. The FESEM image of patterned gallium nitride deposited on Au coated TEM grid. Elemental mapping of Ga and N from the same region is given.
The last chapter explores the prepration and uses of textured GaN tubes synthesized from GaOOH rod-like morphology. The precursor material is prepared by simple hydrothermal technique, maintaining certain value for the pH of the solution. The thermal treatment under ammonia atmosphere leads to highly crystalline, single phase textured tube- like morphology. The as-prepared material is explored as photoanodes in photoelectrochemical water splitting, dye sensitized solar cells and active substrate for SERS. The appendix-I discusses the Na-ion storage capacity by rGO-PdPS composite whereas appendix-II deals with the synthesis of InN and FeN from ternary molten electrolyte.
(For figures pl refer the abstract pdf file)
|
208 |
Label-free surface-enhanced Raman spectroscopy-linked immunosensor assay (SLISA) for environmental surveillancebhardwaj, vinay 02 October 2015 (has links)
The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression of genomic and proteomic biomarkers in response to toxins allows monitoring of known as well as unknown toxins using Polymerase Chain Reaction and Enzyme Linked Immunosensor Assays. However, these molecular assays allow only the endpoint (extracellular) detection and use labels such as fluorometric, colorimetric and radioactive, which increase chances of uncertainty in detection. Additionally, they are time, labor and cost intensive. These technical limitations are unfavorable towards the development of a biosensor technology for continuous detection of toxins. Federal agencies including the Departments of Homeland Security, Agriculture, Defense and others have urged the development of a detect-to-protect class of advanced biosensors, which enable environmental surveillance of toxins in resource-limited settings.
In this study a Surface-Enhanced Raman Spectroscopy (SERS) immunosensor, aka a SERS-linked immunosensor assay (SLISA), has been developed. Colloidal silver nanoparticles (Ag NPs) were used to design a flexible SERS immunosensor. The SLISA proof-of-concept biosensor was validated by the measurement of a dose dependent expression of RAD54 and HSP70 proteins in response to H2O2 and UV. A prototype microchip, best suited for SERS acquisition, was fabricated using an on-chip SLISA to detect RAD54 expression in response to H2O2. A dose-response relationship between H2O2 and RAD54 is established and correlated with EPA databases, which are established for human health risk assessment in the events of chemical exposure. SLISA outperformed ELISA by allowing RISE (rapid, inexpensive, simple and effective) detection of proteins within 2 hours and 3 steps. It did not require any label and provided qualitative information on antigen-antibody binding. SLISA can easily be translated to a portable assay using a handheld Raman spectrometer and it can be used in resource-limited settings. Additionally, this is the first report to deliver Ag NPs using TATHA2, a fusogenic peptide with cell permeability and endosomal rupture release properties, for rapid and high levels of Ag NPs uptake into yeast without significant toxicity, prerequisites for the development of the first intracellular SERS immunosensor.
|
209 |
Advanced Raman, SERS, and ROA studies of biomedical and pharmaceutical compounds in solutionLevene, Clare January 2012 (has links)
The primary purpose of this study was to investigate the combination of experimental and computational methods in the search for reproducible colloidal surface-enhanced Raman scattering of pharmaceutical compounds. In the search for optimal experimental conditions for colloidal surface-enhance Raman scattering, the amphipathic β-blocker propranolol was used as the target molecule. Fractional factorial designs of experiments were performed and a multiobjective evolutionary algorithm was used to find acceptable solutions, from the results, that were Pareto ranked. The multiobjective evolutionary algorithm suggested solutions outside of the fractional factorial design and the experiments were then performed in the laboratory. The results observed from the suggested solutions agreed with the solutions that were found on the Pareto front. One of the experimental conditions observed on the Pareto front was then used to determine the practical limit of detection of propranolol. The experimental conditions that were chosen for the limit of detection took into account reproducibility and enhancement, the two most important parameters for analytical detection using surface-enhanced Raman scattering. The principal conclusion to this study was that the combination of computational and experimental methods can reduce the need for experiments by > 96% and then selecting solutions from the Pareto front improved limit of detection by a factor of 24.5 when it was compared to the previously reported limit of detection for propranolol. Using the same experimental conditions that were used for the limit of detection, these experiments were extended to plasma spiked with propranolol in order to test detection of this pharmaceutical in biofluids. Concentrations of propranolol were prepared using plasma as the solvent and measured for detection using colloidal surface-enhanced Raman scattering. Detection was determined as <130 ng/mL, within physiological concentrations, previously achieved using separation techniques. The second part of this thesis also involved a combination of experimental and computational methods. Raman optical activity was utilized to investigate secondary structure of amino acids and diamino acid peptides in combination with density functional theory calculations. Amino acids are important biological molecules that have vital functions in the biological system. They have been recognized as neurotransmitters and implicated in neurodegenerative diseases. Raman and Raman optical activity experimental results were compared to determine site-specific acetylation, marker bands for constitutional isomers and identification of functional groups that interact with the solvent. The experimental spectra were then compared to those from the density functional theory calculations. The results indicated that; constitutional isomers cannot be distinguished from the Raman spectra but can be distinguished from the Raman optical activity spectra, site-specific acetylation can be identified from the Raman spectra, however, Raman optical activity provides more structural information in relation to acetylation. When the results were compared to the density functional theory calculations for the diamino acid peptides the results agreed reasonably well, however, agreement was not as good for the monoamino acids because diamino acid peptides support fewer conformations due to the peptide bond whereas monoamino acids can adopt a far greater number of conformations. Combined computational and experimental techniques have developed the ability to detect and characterize biomedical compounds, a significant move in the advancement of Raman spectroscopies.
|
210 |
Využití kovové sondy pro ovládání optických procesů a zobrazování v blízkém poli / Applications of metallic probe for the control of optical processes and near-field imagingGallina, Pavel January 2018 (has links)
Hlavním předmětem této diplomové práce jsou elektromagnetické simulace pomocí metody konečných prvků (FEM) k vyšetření vlivu grafenu na hrotem zesílenou Ramanovu spektroskopii (TERS) a povrchem zesílenou infračervenou absorpční spektroskopii (SEIRA) a k prozkoumání citlivosti sondy skenovacího optického mikroskopu blízkého pole (SNOM) ke složkám elektromagnetického pole v závislosti na parametrech sondy (průměru apertury v pokovení). Nejprve je proveden výpočet TERS systému složeného ze stříbrného hrotu nacházejícího se nad zlatým substrátem s tenkou vrstvou molekul, jehož účelem je porozumění principů TERS. Poté je na molekuly přidána grafenová vrstva, aby se prozkoumal její vliv ve viditelné (TERS) a infračervené (SEIRA) oblasti spektra. Druhá část práce se zabývá výpočty energiového toku SNOM hrotem složeným z pokoveného skleněného vlákna interagujícím s blízkým polem povrchových plasmonových polaritonů. Zde uvažujeme zlatou vrstvu se čtyřmi štěrbinami uspořádanými do čtverce na skleněném substrátu sloužícími jako zdroj stojatého vlnění povrchových plasmonů s prostorově oddělenými maximy složek elektrického pole orientovanými rovnoběžně či kolmo na vzorek. Ve výpočtech hrotem zesílené spektroskopie zjišťujeme, že grafen přispívá pouze malým dílem k zesílení pole ve viditelné oblasti spektra, ovšem v infračervené oblasti má grafen vliv pro záření s energií menší než dvojnásobek Fermiho energie grafenu, pro kterou je hodnota zesílení pole větší než v případě výpočtu bez grafenu. Avšak pro velmi vysoké vlnové délky zesílení pole v přítomnosti grafenu klesá pod (konstantní) hodnotu pro případ bez grafenu. Při studiu citlivosti SNOM hrotu k jednotlivým složkám pole shledáváme, že pro hrot se zlatým pokovením je energiový tok skleněným jádrem hrotu kombinací příspěvků energie prošlé aperturou a periodické výměny energie mezi povrchovým plasmonem šířícím se po vnějším okraji pokovení a mody propagujícími se v jádře. Dále zjišťujeme, že hroty s malou aperturou (či bez apertury) jsou více citlivé na složku elektrického pole orientovanou kolmo ke vzorku (rovnoběžně s osou hrotu), zatímco hroty s velkou aperturou sbírají spíše signál ze složky rovnoběžné s povrchem vzorku. V případě hrotu s hliníkovým pokovením jsou hroty citlivější ke složce pole rovnoběžné s povrchem, což je způsobeno slabším průnikem pole skrze pokovení.
|
Page generated in 0.0441 seconds