• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1481
  • 344
  • 136
  • 4
  • 1
  • 1
  • Tagged with
  • 1947
  • 824
  • 523
  • 371
  • 296
  • 275
  • 208
  • 197
  • 172
  • 162
  • 152
  • 146
  • 143
  • 129
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Contribution à l'évaluation in situ des performances d'isolation thermique de l'enveloppe des bâtiments / In situ assessment of the thermal insulation performance of building envelopes

Thébault, Simon Romain 27 January 2017 (has links)
Dans un contexte d’économie d’énergie et de réduction des émissions de gaz à effet de serre, de nombreux efforts ont été réalisés en France pour renforcer l’isolation de l’enveloppe des bâtiments afin de contribuer à réduire les consommations de chauffage. Toutefois, il arrive souvent que la performance thermique calculée avant construction ou rénovation ne soit pas atteinte sur le terrain (erreur de calcul, défauts de mise en œuvre, etc.). Or, pour pouvoir généraliser la construction de bâtiments à basse consommation et la rénovation, il faut pouvoir garantir aux maîtres d'ouvrage une performance réelle de leur bâtiment après travaux. Le fait de mesurer in situ la performance intrinsèque d'isolation thermique de l'enveloppe permet de contribuer à cette garantie. Il existe à l’échelle internationale de nombreuses méthodes basées sur le suivi des consommations et des conditions thermiques intérieures et extérieures. Certaines ont déjà fait leurs preuves sur le terrain, mais sont souvent soit contraignantes, soit peu précises. Et surtout, les calculs d’incertitude associés sont souvent rudimentaires. L’objectif de ce travail financé par le CSTB est de consolider scientifiquement une nouvelle méthode de mesure de la qualité d’isolation globale d’un bâtiment à réception des travaux (méthode ISABELE). Dans le premier chapitre, un état de l'art sur les méthodes existantes a été réalisé afin de dégager des pistes d'amélioration sur la base d'une synthèse comparative. La piste prioritaire identifiée porte sur le calcul d'incertitude (un point central du problème). La propagation des erreurs aléatoires par un approche bayésienne ainsi que des erreurs systématiques par une approche plus classique feront l'objet de la méthodologie globale proposée dans le second chapitre. L'une des importantes sources d'incertitude porte sur l'évaluation du débit d'infiltration. La caractérisation de cette incertitude et de l'impact sur le résultat de mesure fera l'objet du troisième chapitre, avec un comparatif de différentes approches expérimentales (règle du pouce, modèles aérauliques, gaz traceur). Enfin, une amélioration de la prise en compte de la dynamique thermique du bâtiment au cours du test sera proposée dans le dernier chapitre. Son fondement repose sur l'adaptation du modèle thermique inverse en fonction du bâtiment et des conditions du test. Pour cela, une sélection parmi une banque de modèles simplifiés est réalisée sur la base de critères statistiques et du principe de parcimonie. Ces différentes dispositions ont été testés sur une large série de mesures menées sur un même bâtiment à ossature bois (chalet OPTIMOB). La robustesse et la précision du résultat de mesure ont ainsi pu être légèrement améliorées. La méthode de calcul du débit d'infiltration, ni trop simple ni trop complexe, a pu également être validée. Enfin, le temps de mesure minimal nécessaire a pu être déterminé en fonction de la classe d'inertie du bâtiment. / The global context of energy savings and greenhouse gases emissions control led to significant efforts in France to boost the thermal insulation in buildings in order to reduce heating consumption. Nevertheless, the stated thermal performance before construction or refurbishment is rarely achieved in practice, for many reasons (calculation errors, defects in materials or workmanship, etc.). Yet, guaranteeing the real thermal performance of buildings on the spot is crucial to enhance the refurbishment market and the construction of energy efficient buildings. To do so, measurement techniques of the intrinsinc thermal insulation performance indicators are needed. Such techniques already exist worldwide, and consist in processing the measurement data from the indoor and outdoor thermal conditions and the heat consumption. Some of them have already proved themselves in the field, but are either binding or very imprecise. And above all, the related uncertainty calculations are often rough. The objective of this thesis funded by CSTB is to consolidate a novel measurement method of the thermal insulation quality of a whole building after reception of work (ISABELE method). In the first chapter, a state of the art of the existing methods allows to identify possible ways to pursue this goal from a comparative synthesis. The primary reflection is about the uncertainty calculation method (which is a central issue). The second chapter presents a global methodology to combine the propagation of random and systematic errors from bayesian and classical approaches. One of the most important uncertainty sources deals with the infiltration air flow evaluation during the test. The third chapter investigates the characterization of this uncertainty, as well as its impact on the final result, depending on the chosen experimental approach (rule of thumb, simplified aeraulic models, tracer gases). Lastly, an improvement of the inclusion of the bluiding thermal dynamics during the test will be proposed in the last chapter. The basis of this improvement is to adapt the inverse model according to the building type and the test conditions. To do so, the proposed algorithm selects a model form a variety of simplified greybox models based on statistical criteria and parcimony. All these contributions have been tested on a large serie of measurements on a same timber-framed building (OPTIMOB shed). The robustness and precision of the results have been slightly improved. The intial infiltration air flow calculation, neither too simple of too complicated, has also been validated. Finaly, a better ordrer of magnitude of the minimal test duration has been determined, depending on the building inertia.
222

Développement d'un environnement de simulation de systèmes complexes. Application aux bâtiments

Ebert, Rolf 25 November 1993 (has links) (PDF)
Ce travail présente l'application de concepts modernes du génie logiciel au développement d'un environnement de simulation modulaire de systèmes thermiques complexes. Une application stricte des idées de la Conception Orientée Objet permet la réalisation d'un environnement modulaire, souple et efficace. Une analyse hiérarchique du système à étudier nous fournit un graphe de dépendance entre les composants du système. Chaque composant est confiné dans un objet informatique et a son propre modèle de calcul. Le travail essentiel du simulateur est la résolution des conditions de connexion entre les composants. La structure hiérarchique est conservée et exploitée pour une parallélisation des calculs pendant la simulation numérique. Pour une meilleure capitalisation des modèles développés, nous nous reposons sur une « modélothèque » à partir de laquelle l'utilisateur peut récupérer des modèles pour construire son propre système de simulation. Des exemples d'application de notre environnement de simulation pour des problèmes thermiques de bâtiment sont présentés.
223

Réduction de modèles thermiques par amalgame modal

Oulefki, Abdelhakim 09 February 1993 (has links) (PDF)
On présente la méthode d'amalgame modal. Il s'agit d'une approche pour réduire un modèle d'état modal quelconque. La méthode est ici appliquée dans le cadre de la thermique. Le principe repose sur une partition judicieuse de l'espace d'état modal en quelques sous espaces disjoints. La dynamique de chaque sous espace est ensuite approchée au mieux par un pseudo-élément propre. L'optimalité de la démarche est prouvée au sens d'un critère d'écart quadratique de qualité. Le modèle obtenu conserve des liens formels avec le modèle d'origine. Du point de vue algorithmique, la méthode est automatique : on peut chercher le meilleur modèle réduit respectant une contrainte de précision et/ou de taille. La méthode est performante en temps de calcul. La réduction par amalgame modal est comparée à celles d'autres méthodes. Des exemples de réduction de modèles modaux 1D, 2D et 3D sont donnés.
224

Analyse des variations de la température du proche sous-sol : interprétation ; application à certains problèmes géotechniques

Barret, Marc 18 October 1984 (has links) (PDF)
La première partie est consacrée à un rappel théorique des propliétés thermiques des matériaux, à des notions sur les flux et transferts thermiques ainsi qu'à la définition du modèle étu* dié où les variations de température sont des ondes thermiques sinusoïdales et où les transferts se font uniquement par conduction. On étudie ensuite les facteurs influençant les échanges thermiques de ce modèle, et notamment la conductivité et la diffusivité. Dans la deuxième partie, après avoir examiné des exemples de données, on montre la nécessité de les traiter pour parvenir à l'extraction de certains paramètres du modèle choisi. Les outils de traitement sont l'analyse spectrale, globale et par fenêtre mobile, et le filtrage fréquentiel numérique. Quelques méthodes de calcul de la diffusivité, du flux thermique conductif et du stock de chaleur sont alors exposées ainsi que les conditions de leur validité, tant d'un point de vue théorique que lors d'applications numériques sur données réelles et synthétiques. Deux exemples d'application géotechnique sont présentés dans la troisième partie où l'on utilise la température du proche sous-sol. .. Le premier exemple concerne le problème de la fiabilité des données transmises par un câble enterré lors de variations temporelles de la température. Il apparaît alors nécessaire de connaÎtre la diffusivité thermique des terrains rencontrés. Celie-ci est calculée à partir d'enregistrements de température par les méthodes présentées dans la deuxième partie. La différence de comportement thermique entre les terrains est ainsi mise en évidence. ..Dans le deuxième exemple, on cherche à déceler des circulations d'eau dans le proche sous-sol par les anomalies qu'elles sont susceptibles d'y provoquer .
225

Conception et réalisation d'un microsystème pour la mesure d'encrassement organique, minéral et biologique dans les procédés - : intégration des régimes thermiques périodiques. / Microsystem conception and realisation to monitor organic, mineral and biologic fouling in processes : integration of periodic thermal regime

Crattelet, Jonathan 17 December 2010 (has links)
Dans les industries de procédés, les opérations de pompage et de transformation sont fondamentales et omniprésentes. Durant ces opérations unitaires (incluant des transferts de chaleur, de matière et de quantités de mouvement), les produits évoluent (réactions chimiques et biochimiques, croissances microbiennes, traitements thermiques, etc.) induisant dans de nombreux cas des phénomènes d'encrassement avec des cinétiques et des intensités variables. Les recherches issues de l’INRA ont conduit à la mise au point d’un capteur d’encrassement basé sur une analyse thermique différentielle et locale. Ce dernier permet le contrôle en continu et en ligne du niveau d’encrassement d’un équipement et a été protégé par brevet. L’entreprise Neosens a acquis une licence d’exploitation exclusive sur ce brevet afin de développer et commercialiser le produit dont les limites sont maintenant connues.Dans ce travail, nous visons à atteindre deux objectifs majeurs en vue de répondre aux nouvelles problématiques posées. Le premier doit permettre la mise au jour d’un capteur d’encrassement en utilisant les technologies microsystèmes. Le second vise la validation d’un nouveau mode de fonctionnement et d’une méthode pour le contrôle de l’encrassement. Ce travail s'appuie naturellement sur les travaux antérieurs et les principales phases de recherche ont porté sur la conception, la réalisation et l'intégration d'éléments sensibles sur les bases technologiques des microsystèmes, l'intégration des régimes thermiques permanent et périodique associés au traitement en ligne du signal et à la validation expérimentale aux échelles laboratoire, pilote et industrielles des géométries et configurations nouvelles.Les travaux de recherche ont permis de fiabiliser et d’améliorer considérablement les performances métrologiques. Le microsystème réalisé apparaît comme complémentaire du capteur existant en termes de limites de détection et de quantification. / In industrial processes including agro and bioprocess, fouling is considered to be a complex and misunderstood phenomenon. Unit operations (including heat, mass and momentum transfers) are carried out in continuous, batch or fed-batch processes. During these operations, the products may evolve (chemical and biochemical reactions, microorganisms growth and activity, etc.) and fouling may occur with a wide range of kinetics from minutes up to years and dimensions from micrometers up to centimeters. Research issued from INRA led to develop a fouling sensor based on local differential thermal analysis and to patent this system. The device enables on-line and continuous monitoring of fouling propensity. Neosens company acquired an exclusive licence and develop and commercialize the sensor whose operating limits are known. In this work, our scientific and technological objectives are to break new locks through: (i) the realization of a fouling sensor based on microsystems technologies, (ii) the investigation and validation of an alternative thermal working mode and a method for fouling monitoring. Based on the previous work, our research deals with conception, realisation and integration of components based on microsystems technologies, integration of permanent and periodic thermal regimes with on-line data treatment and experimental validation at laboratory, pilot-plant and industrial scales for new geometries and configurations.This work led to metrology improvement and reliability. The resulting microsensor seems to be a complement of previous sensor regarding detection and quantification limits
226

Etude de fiabilité des modules d'électronique de puissance à base de composant SiC pour applications hautes températures

Zhang, Ludi 17 January 2012 (has links)
Les environnements ont tendance à être plus sévères (plus chauds et quelquefois plus froids). À ce titre, l’électronique de puissance haute température est un enjeu majeur pour le futur. Concernant les technologies d’assemblage à haute température, les brasures haute température comme l'alliage 88Au/12Ge, 97Au/3Si et 5Sn/95Pb pourraient supporter ces niveaux de contraintes thermiques, qui sont actuellement développées pour répondre à ces exigences. Nous avons effectué les caractérisations électriques, mécaniques et thermomécaniques des matériaux d’assemblage. Une étude thermique a réalisée par des méthodes expérimentales et des simulations numériques, l’étude numérique est réalisée sous ANSYS dans le but d’estimer les influences des différents paramètres sur la performance thermique de l’assemblage. En plus, les cyclages thermiques passif de grande amplitude sont effectués pour analyser la fiabilité des modules de puissance dans ces conditions d’utilisation. / The environments tend to be more severe (hotter and sometimes colder). As such, the high temperature power electronics is a major challenge for the future. Concerning the technologies for high temperature assembly, high temperature brazing alloy as 88Au / 12Ge, 97Au / 3Si and 5Sn / 95Pb could support these levels of thermal stresses, which are being developed to answer these requirements. We performed the electric, mechanical and thermomechanical characterizations for the materials of assembly. A thermal study was realized by experimental methods and numerical simulations, the numerical study is carried out in ANSYS in order to estimate the influences of the various parameters on the thermal performance of the assembly. In addition, the passive thermal cycles of large amplitude are conducted to analyze the reliability of the power modules in these conditions.
227

Etude expérimentale d’un amortisseur thermique composite MCP-NTC / Experimental study of a composite PCM-CNT thermal damper

Kinkelin, Christophe 18 October 2016 (has links)
L’amortisseur thermique étudié dans le cadre de cette thèse a pour objectif de limiter les pics de température des composants électroniques fonctionnant en régime transitoire au moyen d’une structure composite consistant en un réseau de nanotubes de carbone (NTC) rempli de matériau à changement de phase (MCP) solide-liquide, le tout étant contenu dans un boîtier en silicium (Si). Ce système passif vise à augmenter l’inertie thermique volumique du composant grâce à la chaleur latente du MCP tout en maintenant une bonne conductance thermique grâce aux NTC. Un dispositif expérimental polyvalent a été développé spécifiquement pour caractériser les différentes générations d’échantillons fabriqués par les partenaires du projet THERMA3D. L’excitation thermique de l’échantillon est réalisée au moyen d’un laser en face amont et la réponse thermique est mesurée par caméra infrarouge simultanément sur les faces amont et aval. L’application d’une peinture sélectionnée sur l’échantillon permet d’accéder à sa température après un étalonnage dédié. Des méthodes d’estimation de paramètres ont été développées pour quantifier les deux caractéristiques essentielles de l’amortisseur thermique que sont sa capacité de stockage thermique et sa résistance thermique. Les sensibilités de la résistance thermique aux caractéristiques de la connexion Si/NTC et à la longueur des NTC ont été étudiées et les résistances thermiques d’interface Si/NTC ont été identifiées comme dominantes au sein du système. Des essais de cyclage thermique ont permis d’évaluer la fiabilité de l’ensemble de manière accélérée. Le comportement du MCP et la qualité du matériau de scellement ont été analysés par voie optique. Par ailleurs, la plus élevée des deux résistances thermiques d’interface Si/NTC a été localisée grâce à la visualisation infrarouge du réseau de NTC à travers le silicium semi-transparent. Enfin, une méthode de contrôle non destructif de la qualité de l’interface Si/NTC a été développée pour les amortisseurs thermiques de dernière génération. / The purpose of the studied thermal damper is to smooth the temperature peaks of transient electronic components via a composite structure consisting of an array of carbon nanotubes (CNT) filled with solid-liquid phase change material (PCM), the whole being embedded in a silicon (Si) casing. This passive system is intended to increase the thermal inertia per unit of volume of the electronic component thanks to the latent heat of the PCM while maintaining a high thermal conductance thanks to the CNT. A versatile test bench was specifically developed in order to characterize the different generations of samples fabricated by the partners of the THERMA3D project. The thermal excitation of the front side of the sample is generated by a laser and the thermal response is measured simultaneously on the front and back sides by an infrared camera. A selected paint can be deposited on the sample in order to access its temperature by means of a dedicated calibration. Parameter estimation methods were developed in order to quantify both main characteristics of the thermal damper: its heat storage capacity and its thermal resistance. The sensitivities of the thermal resistance to the features of the Si/CNT connection and to the length of the CNT were studied and it was found out that the interfacial thermal resistances Si/CNT are dominant in the system. Thermal cycling tests enabled to assess the reliability of the thermal damper in an accelerated manner. The behavior of the PCM and the quality of the sealing material were optically analyzed. Besides, the infrared visualization of the CNT array through the semi-transparent silicon enabled to identify the highest of both Si/CNT interfacial thermal resistances. Finally, a non-destructive testing method for the evaluation of the quality of Si/CNT interfaces was developed for the latest generation of thermal dampers.
228

Modélisation et caractérisation thermique de machines électriques synchrones à aimants permanents / Thermal modelling of permanent magnet synchronous machine

Guedia Guemo, Gilles Romuald 27 February 2014 (has links)
Les machines électriques synchrones à aimants permanents sont susceptibles de rencontrer un disfonctionnement suite à un échauffement non maîtrisé. L’objectif de cette étude est de développer un modèle thermique générique et prédictif pouvant simuler diverses situations d’intérêts: régime permanent, régime transitoire, mode dégradé, entrefer immergé, haute vitesse. Pour cela, la méthode nodale est utilisée pour développer le modèle thermique générique. En parallèle, un banc d’essai et un prototype sont conçus pour valider le modèle. L’étude de sensibilité des résultats du modèle à certains paramètres montrent que certains coefficients de convection, certaines conductances de contact et la conductivité thermique radiale du bobinage ont une influence considérable sur les résultats du modèle. Cependant ces paramètres sont mal connus, car ils sont issus des formules empiriques ou des abaques. Grâce au prototype et au modèle développé, ces paramètres sont identifiés. Trois méthodes d’identification sont testées pour aboutir à une stratégie d’identification: les algorithmes génétiques, la méthode de Gauss-Newton et la méthode de Levenberg-Marquardt. Plusieurs essais sont effectués sur le prototype instrumenté. La mesure des températures à des lieux précis du prototype permet d’identifier les paramètres mal connus et de valider le modèle. / Permanent magnet synchronous machines are likely to break down due to poorly controlled heating. The goal of this study was to develop a generic and predictive thermal model to calculate the temperature of machines during the design phase simulating temperatures at various states. These states include: steady state, transient state, fault mode, axial circulating of a cooling fluid in the air-gap and high speed. The lumped parameter method was used to develop this generic thermal model. Meanwhile, a test bench and a prototype instrumented with thermocouples were manufactured to validate the model at the same time. Sensitivity studies of the results of the model to some parameters demonstrated that some convective coefficients, contact conductances and the thermal conductivity of the winding in the radial direction influenced the model. However, these parameters are poorly known, because empirical formulas or abacus are used to calculate them. Using, the prototype and the developed model, these parameters were identified. Three methods of identification were tested in order to find a strategy for the identification: the genetic algorithms method, the Gauss-Newton method and the Levenberg-Marquardt method. Many tests were done on the prototype. The measure of the temperatures on the specific place allows to identify these parameters and to validate the model.
229

Comportement thermo-hygrique de blankets aérogels de silice et applications à l’isolation des bâtiments / Thermo-hygric behavior of silica aerogel blankets and applications to building insulation

Nocentini, Kévin 14 December 2018 (has links)
En Europe, le secteur du bâtiment est le plus énergivore et représente environ 40 % de l’énergie totale consommée. A court terme, la façon la plus efficace de baisser cette consommation est de réduire les déperditions thermiques à travers l’enveloppe du bâtiment en augmentant son isolation thermique, tout en minimisant la perte de surface habitable. Dans ce contexte, les travaux de thèse portent sur l’étude et la mise au point pour pré-industrialisation de matériaux super-isolants composites à base d'aérogel de silice. Le matériau composite étudié fait partie de la famille des blankets aérogels et est obtenu via un procédé de séchage ambiant innovant. Grâce à leur faible conductivité thermique et leurs propriétés mécaniques renforcées, les blankets aérogels sont d’un grand intérêt pour l’isolation thermique qui nécessite de fines épaisseurs d’isolants. Les travaux de thèse visent dans un premier temps à effectuer une analyse des propriétés thermophysiques des blankets aérogels étudiés à la sortie du moule de fabrication et vis-à-vis de leur mise en œuvre lorsqu’ils sont soumis à différentes sollicitations (mécaniques, hygriques ...). Des travaux de modélisation du transfert de chaleur dans le blanket aérogel sont développés afin d’étudier les relations entre le transfert thermique et les paramètres morphologiques du matériau. Dans un second temps, les travaux de thèse portent sur l’étude des performances à attendre d’un système d’isolation basé sur le blanket aérogel mis en œuvre sur un bâtiment, à la fois par l’analyse du comportement thermique d’une cellule test en climat réel, ainsi que par la conduite de simulations numériques de bâtiments prenant en compte plusieurs techniques constructives, configurations de murs, et ce, pour plusieurs climats européens. Les résultats obtenus montrent que les blankets aérogels étudiés ont une très faible conductivité thermique –0,016 W.m-1.K-1– et ont un fort potentiel d’application dans l’isolation thermique du bâtiment. / Buildings are the largest energy end-use sector and account for about 40 % of the total final energy consumption in the EU-28. A short-term strategy to efficiently reduce this consumption is to decrease thermal losses through the building envelope by improving its thermal insulation, while minimizing the reduction of the available indoor living space. In this context, the thesis deals with the study and development for pre-industrialization of super-insulating composite materials based on silica aerogel. The studied material is part of the aerogel blanket family and is obtained by an innovative ambient drying process. With a very low thermal conductivity and reinforced mechanical properties, aerogel blankets are of great interest for applications where they can offer a cost advantage due to a space-saving effect. Firstly, the thesis work aims at performing analyses of the thermo-physical properties of the studied aerogel blankets at the exit of the molding and drying processes, and during application, when they are subjected to different environmental stresses (mechanical, hygric …). Heat transfer modeling is developed to study the relationship between the morphological parameters of the material and thermal transfer within it. Secondly, the thesis work focuses on the study of the expected performances of an insulating system based on the aerogel blanket, by the study of the thermal behavior of an experimental building monitored under actual climate, as well as the use of whole building energy numerical simulations taking into account several constructive techniques, different wall configurations, for various European climates. The results obtained show that the aerogel blankets studied have a thermal conductivity as low as 0.016 W.m-1.K-1 and have promising applications for building thermal insulation needs.
230

Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMS

Newby, Pascal January 2014 (has links)
Résumé : L’isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Elle permet de réduire la consommation d’énergie, améliorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les systèmes sur puce. Il existe quelques matériaux et techniques d’isolation pour les MEMS, mais ils sont limités. En effet, soit ils ne proposent pas un niveau d’isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles à intégrer. Une approche intéressante pour l’isolation, démontrée dans la littérature, est de fabriquer des pores de taille nanométrique dans le silicium par gravure électrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivité thermique par un facteur de 100 à 1000, le transformant en isolant thermique. Cette solution est idéale pour l’intégration dans les procédés de fabrication existants des MEMS, car on garde le silicium qui est déjà utilisé pour leur fabrication, mais en le nanostructurant localement, on le rend isolant là où on en a besoin. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d’intégration des semiconducteurs poreux est un atout majeur, nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. Nous avons identifié deux approches pour atteindre cet objectif : i) améliorer le Si poreux ou ii) développer un nouveau matériau. La première approche consiste à amorphiser le Si poreux en l’irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l’amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. Cette technique réduit sa conductivité thermique jusqu’à un facteur de trois, et peut être combinée avec une pré-oxydation afin d’atteindre une réduction d’un facteur cinq. Donc cette méthode permet de réduire la porosité du Si poreux, et d’atténuer ainsi les problèmes de fragilité mécanique causés par la porosité élevée, tout en gardant un niveau d’isolation égal. La seconde approche est de développer un nouveau matériau. Nous avons choisi le SiC poreux : le SiC massif a des propriétés physiques supérieures à celles du Si, et donc à priori le SiC poreux devrait conserver cette supériorité. La fabrication du SiC poreux a déjà été démontrée dans la littérature, mais avec peu d’études détaillées du procédé. Sa conductivité thermique et tenue mécanique n’ont pas été caractérisées, et sa tenue en température que de façon incomplète. Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l’avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nous avons montré qu’elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication sur silicium. D’après nos résultats il est stable jusqu’à au moins 1000°C et nous avons obtenu des résultats qualitatifs encourageants quant à sa tenue mécanique. Nos résultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut être intégré dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don’t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate. A potentially interesting technique for thermal insulation, which has been demonstrated in the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to 1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400◦C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material. The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation. The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised. We have carried out a systematic study of the effects of HF concentration and current on the porosification process. We have implemented a thermal conductivity measurement setup using the “3 omega” method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000◦C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.

Page generated in 0.2181 seconds