• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 10
  • 10
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 324
  • 324
  • 145
  • 122
  • 116
  • 99
  • 73
  • 66
  • 62
  • 58
  • 57
  • 54
  • 52
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Topics on Machine Learning under Imperfect Supervision

Yuan, Gan January 2024 (has links)
This dissertation comprises several studies addressing supervised learning problems where the supervision is imperfect. Firstly, we investigate the margin conditions in active learning. Active learning is characterized by its special mechanism where the learner can sample freely over the feature space and exploit mostly the limited labeling budget by querying the most informative labels. Our primary focus is to discern critical conditions under which certain active learning algorithms can outperform the optimal passive learning minimax rate. Within a non-parametric multi-class classification framework,our results reveal that the uniqueness of Bayes labels across the feature space serves as the pivotal determinant for the superiority of active learning over passive learning. Secondly, we study the estimation of central mean subspace (CMS), and its application in transfer learning. We show that a fast parametric convergence rate is achievable via estimating the expected smoothed gradient outer product, for a general class of covariate distribution that admits Gaussian or heavier distributions. When the link function is a polynomial with a degree of at most r and the covariates follow the standard Gaussian, we show that the prefactor depends on the ambient dimension d as d^r. Furthermore, we show that under a transfer learning setting, an oracle rate of prediction error as if the CMS is known is achievable, when the source training data is abundant. Finally, we present an innovative application involving the utilization of weak (noisy) labels for addressing an Individual Tree Crown (ITC) segmentation challenge. Here, the objective is to delineate individual tree crowns within a 3D LiDAR scan of tropical forests, with only 2D noisy manual delineations of crowns on RGB images available as a source of weak supervision. We propose a refinement algorithm designed to enhance the performance of existing unsupervised learning methodologies for the ITC segmentation problem.
262

[pt] MODELAGEM DE OBJETOS GEOLÓGICOS: IA PARA DETECÇÃO AUTOMÁTICA DE FALHAS E GERAÇÃO DE MALHAS DE QUADRILÁTEROS / [en] MODELING OF GEOBODIES: AI FOR SEISMIC FAULT DETECTION AND ALL-QUADRILATERAL MESH GENERATION

AXELLE DANY JULIETTE POCHET 14 December 2018 (has links)
[pt] A exploração segura de reservatórios de petróleo necessita uma boa modelagem numérica dos objetos geológicos da sub superfície, que inclui entre outras etapas: interpretação sísmica e geração de malha. Esta tese apresenta um estudo nessas duas áreas. O primeiro estudo é uma contribuição para interpretação de dados sísmicos, que se baseia na detecção automática de falhas sísmicas usando redes neurais profundas. Em particular, usamos Redes Neurais Convolucionais (RNCs) diretamente sobre mapas de amplitude sísmica, com a particularidade de usar dados sintéticos para treinar a rede com o objetivo final de classificar dados reais. Num segundo estudo, propomos um novo algoritmo para geração de malhas bidimensionais de quadrilaterais para estudos geomecânicos, baseado numa abordagem inovadora do método de quadtree: definimos novos padrões de subdivisão para adaptar a malha de maneira eficiente a qualquer geometria de entrada. As malhas obtidas podem ser usadas para simulações com o Método de Elementos Finitos (MEF). / [en] Safe oil exploration requires good numerical modeling of the subsurface geobodies, which includes among other steps: seismic interpretation and mesh generation. This thesis presents a study in these two areas. The first study is a contribution to data interpretation, examining the possibilities of automatic seismic fault detection using deep learning methods. In particular, we use Convolutional Neural Networks (CNNs) on seismic amplitude maps, with the particularity to use synthetic data for training with the goal to classify real data. In the second study, we propose a new two-dimensional all-quadrilateral meshing algorithm for geomechanical domains, based on an innovative quadtree approach: we define new subdivision patterns to efficiently adapt the mesh to any input geometry. The resulting mesh is suited for Finite Element Method (FEM) simulations.
263

Large-Context Question Answering with Cross-Lingual Transfer

Sagen, Markus January 2021 (has links)
Models based around the transformer architecture have become one of the most prominent for solving a multitude of natural language processing (NLP)tasks since its introduction in 2017. However, much research related to the transformer model has focused primarily on achieving high performance and many problems remain unsolved. Two of the most prominent currently are the lack of high performing non-English pre-trained models, and the limited number of words most trained models can incorporate for their context. Solving these problems would make NLP models more suitable for real-world applications, improving information retrieval, reading comprehension, and more. All previous research has focused on incorporating long-context for English language models. This thesis investigates the cross-lingual transferability between languages when only training for long-context in English. Training long-context models in English only could make long-context in low-resource languages, such as Swedish, more accessible since it is hard to find such data in most languages and costly to train for each language. This could become an efficient method for creating long-context models in other languages without the need for such data in all languages or pre-training from scratch. We extend the models’ context using the training scheme of the Longformer architecture and fine-tune on a question-answering task in several languages. Our evaluation could not satisfactorily confirm nor deny if transferring long-term context is possible for low-resource languages. We believe that using datasets that require long-context reasoning, such as a multilingual TriviaQAdataset, could demonstrate our hypothesis’s validity.
264

Duplicate Detection and Text Classification on Simplified Technical English / Dublettdetektion och textklassificering på Förenklad Teknisk Engelska

Lund, Max January 2019 (has links)
This thesis investigates the most effective way of performing classification of text labels and clustering of duplicate texts in technical documentation written in Simplified Technical English. Pre-trained language models from transformers (BERT) were tested against traditional methods such as tf-idf with cosine similarity (kNN) and SVMs on the classification task. For detecting duplicate texts, vector representations from pre-trained transformer and LSTM models were tested against tf-idf using the density-based clustering algorithms DBSCAN and HDBSCAN. The results show that traditional methods are comparable to pre-trained models for classification, and that using tf-idf vectors with a low distance threshold in DBSCAN is preferable for duplicate detection.
265

Multi-object detection and tracking in video sequences / Détection et suivi multi-objets dans des séquences vidéo

Mhalla, Ala 04 April 2018 (has links)
Le travail développé dans cette thèse porte sur l'analyse de séquences vidéo. Cette dernière est basée sur 3 taches principales : la détection, la catégorisation et le suivi des objets. Le développement de solutions fiables pour l'analyse de séquences vidéo ouvre de nouveaux horizons pour plusieurs applications telles que les systèmes de transport intelligents, la vidéosurveillance et la robotique. Dans cette thèse, nous avons mis en avant plusieurs contributions pour traiter les problèmes de détection et de suivi d'objets multiples sur des séquences vidéo. Les techniques proposées sont basées sur l’apprentissage profonds et des approches de transfert d'apprentissage. Dans une première contribution, nous abordons le problème de la détection multi-objets en proposant une nouvelle technique de transfert d’apprentissage basé sur le formalisme et la théorie du filtre SMC (Sequential Monte Carlo) afin de spécialiser automatiquement un détecteur de réseau de neurones convolutionnel profond (DCNN) vers une scène cible. Dans une deuxième contribution, nous proposons une nouvelle approche de suivi multi-objets original basé sur des stratégies spatio-temporelles (entrelacement / entrelacement inverse) et un détecteur profond entrelacé, qui améliore les performances des algorithmes de suivi par détection et permet de suivre des objets dans des environnements complexes (occlusion, intersection, fort mouvement). Dans une troisième contribution, nous fournissons un système de surveillance du trafic, qui intègre une extension du technique SMC afin d’améliorer la précision de la détection de jour et de nuit et de spécialiser tout détecteur DCNN pour les caméras fixes et mobiles. Tout au long de ce rapport, nous fournissons des résultats quantitatifs et qualitatifs. Sur plusieurs aspects liés à l’analyse de séquences vidéo, ces travaux surpassent les cadres de détection et de suivi de pointe. En outre, nous avons implémenté avec succès nos infrastructures dans une plate-forme matérielle intégrée pour la surveillance et la sécurité du trafic routier. / The work developed in this PhD thesis is focused on video sequence analysis. Thelatter consists of object detection, categorization and tracking. The development ofreliable solutions for the analysis of video sequences opens new horizons for severalapplications such as intelligent transport systems, video surveillance and robotics.In this thesis, we put forward several contributions to deal with the problems ofdetecting and tracking multi-objects on video sequences. The proposed frameworksare based on deep learning networks and transfer learning approaches.In a first contribution, we tackle the problem of multi-object detection by puttingforward a new transfer learning framework based on the formalism and the theoryof a Sequential Monte Carlo (SMC) filter to automatically specialize a Deep ConvolutionalNeural Network (DCNN) detector towards a target scene. The suggestedspecialization framework is used in order to transfer the knowledge from the sourceand the target domain to the target scene and to estimate the unknown target distributionas a specialized dataset composed of samples from the target domain. Thesesamples are selected according to the importance of their weights which reflectsthe likelihood that they belong to the target distribution. The obtained specializeddataset allows training a specialized DCNN detector to a target scene withouthuman intervention.In a second contribution, we propose an original multi-object tracking frameworkbased on spatio-temporal strategies (interlacing/inverse interlacing) and aninterlaced deep detector, which improves the performances of tracking-by-detectionalgorithms and helps to track objects in complex videos (occlusion, intersection,strong motion).In a third contribution, we provide an embedded system for traffic surveillance,which integrates an extension of the SMC framework so as to improve the detectionaccuracy in both day and night conditions and to specialize any DCNN detector forboth mobile and stationary cameras.Throughout this report, we provide both quantitative and qualitative results.On several aspects related to video sequence analysis, this work outperformsthe state-of-the-art detection and tracking frameworks. In addition, we havesuccessfully implemented our frameworks in an embedded hardware platform forroad traffic safety and monitoring.
266

Extractive Multi-document Summarization of News Articles

Grant, Harald January 2019 (has links)
Publicly available data grows exponentially through web services and technological advancements. To comprehend large data-streams multi-document summarization (MDS) can be used. In this research, the area of multi-document summarization is investigated. Multiple systems for extractive multi-document summarization are implemented using modern techniques, in the form of the pre-trained BERT language model for word embeddings and sentence classification. This is combined with well proven techniques, in the form of the TextRank ranking algorithm, the Waterfall architecture and anti-redundancy filtering. The systems are evaluated on the DUC-2002, 2006 and 2007 datasets using the ROUGE metric. Where the results show that the BM25 sentence representation implemented in the TextRank model using the Waterfall architecture and an anti-redundancy technique outperforms the other implementations, providing competitive results with other state-of-the-art systems. A cohesive model is derived from the leading system and tried in a user study using a real-world application. The user study is conducted using a real-time news detection application with users from the news-domain. The study shows a clear favour for cohesive summaries in the case of extractive multi-document summarization. Where the cohesive summary is preferred in the majority of cases.
267

Reinforcement Learning from Demonstration

Suay, Halit Bener 25 April 2016 (has links)
Off-the-shelf Reinforcement Learning (RL) algorithms suffer from slow learning performance, partly because they are expected to learn a task from scratch merely through an agent's own experience. In this thesis, we show that learning from scratch is a limiting factor for the learning performance, and that when prior knowledge is available RL agents can learn a task faster. We evaluate relevant previous work and our own algorithms in various experiments. Our first contribution is the first implementation and evaluation of an existing interactive RL algorithm in a real-world domain with a humanoid robot. Interactive RL was evaluated in a simulated domain which motivated us for evaluating its practicality on a robot. Our evaluation shows that guidance reduces learning time, and that its positive effects increase with state space size. A natural follow up question after our first evaluation was, how do some other previous works compare to interactive RL. Our second contribution is an analysis of a user study, where na"ive human teachers demonstrated a real-world object catching with a humanoid robot. We present the first comparison of several previous works in a common real-world domain with a user study. One conclusion of the user study was the high potential of RL despite poor usability due to slow learning rate. As an effort to improve the learning efficiency of RL learners, our third contribution is a novel human-agent knowledge transfer algorithm. Using demonstrations from three teachers with varying expertise in a simulated domain, we show that regardless of the skill level, human demonstrations can improve the asymptotic performance of an RL agent. As an alternative approach for encoding human knowledge in RL, we investigated the use of reward shaping. Our final contributions are Static Inverse Reinforcement Learning Shaping and Dynamic Inverse Reinforcement Learning Shaping algorithms that use human demonstrations for recovering a shaping reward function. Our experiments in simulated domains show that our approach outperforms the state-of-the-art in cumulative reward, learning rate and asymptotic performance. Overall we show that human demonstrators with varying skills can help RL agents to learn tasks more efficiently.
268

Weakly supervised learning of deformable part models and convolutional neural networks for object detection / Détection d'objets faiblement supervisée par modèles de pièces déformables et réseaux de neurones convolutionnels

Tang, Yuxing 14 December 2016 (has links)
Dans cette thèse, nous nous intéressons au problème de la détection d’objets faiblement supervisée. Le but est de reconnaître et de localiser des objets dans les images, n’ayant à notre disposition durant la phase d’apprentissage que des images partiellement annotées au niveau des objets. Pour cela, nous avons proposé deux méthodes basées sur des modèles différents. Pour la première méthode, nous avons proposé une amélioration de l’approche ”Deformable Part-based Models” (DPM) faiblement supervisée, en insistant sur l’importance de la position et de la taille du filtre racine initial spécifique à la classe. Tout d’abord, un ensemble de candidats est calculé, ceux-ci représentant les positions possibles de l’objet pour le filtre racine initial, en se basant sur une mesure générique d’objectness (par region proposals) pour combiner les régions les plus saillantes et potentiellement de bonne qualité. Ensuite, nous avons proposé l’apprentissage du label des classes latentes de chaque candidat comme un problème de classification binaire, en entrainant des classifieurs spécifiques pour chaque catégorie afin de prédire si les candidats sont potentiellement des objets cible ou non. De plus, nous avons amélioré la détection en incorporant l’information contextuelle à partir des scores de classification de l’image. Enfin, nous avons élaboré une procédure de post-traitement permettant d’élargir et de contracter les régions fournies par le DPM afin de les adapter efficacement à la taille de l’objet, augmentant ainsi la précision finale de la détection. Pour la seconde approche, nous avons étudié dans quelle mesure l’information tirée des objets similaires d’un point de vue visuel et sémantique pouvait être utilisée pour transformer un classifieur d’images en détecteur d’objets d’une manière semi-supervisée sur un large ensemble de données, pour lequel seul un sous-ensemble des catégories d’objets est annoté avec des boîtes englobantes nécessaires pour l’apprentissage des détecteurs. Nous avons proposé de transformer des classifieurs d’images basés sur des réseaux convolutionnels profonds (Deep CNN) en détecteurs d’objets en modélisant les différences entre les deux en considérant des catégories disposant à la fois de l’annotation au niveau de l’image globale et l’annotation au niveau des boîtes englobantes. Cette information de différence est ensuite transférée aux catégories sans annotation au niveau des boîtes englobantes, permettant ainsi la conversion de classifieurs d’images en détecteurs d’objets. Nos approches ont été évaluées sur plusieurs jeux de données tels que PASCAL VOC, ImageNet ILSVRC et Microsoft COCO. Ces expérimentations ont démontré que nos approches permettent d’obtenir des résultats comparables à ceux de l’état de l’art et qu’une amélioration significative a pu être obtenue par rapport à des méthodes récentes de détection d’objets faiblement supervisées. / In this dissertation we address the problem of weakly supervised object detection, wherein the goal is to recognize and localize objects in weakly-labeled images where object-level annotations are incomplete during training. To this end, we propose two methods which learn two different models for the objects of interest. In our first method, we propose a model enhancing the weakly supervised Deformable Part-based Models (DPMs) by emphasizing the importance of location and size of the initial class-specific root filter. We first compute a candidate pool that represents the potential locations of the object as this root filter estimate, by exploring the generic objectness measurement (region proposals) to combine the most salient regions and “good” region proposals. We then propose learning of the latent class label of each candidate window as a binary classification problem, by training category-specific classifiers used to coarsely classify a candidate window into either a target object or a non-target class. Furthermore, we improve detection by incorporating the contextual information from image classification scores. Finally, we design a flexible enlarging-and-shrinking post-processing procedure to modify the DPMs outputs, which can effectively match the approximate object aspect ratios and further improve final accuracy. Second, we investigate how knowledge about object similarities from both visual and semantic domains can be transferred to adapt an image classifier to an object detector in a semi-supervised setting on a large-scale database, where a subset of object categories are annotated with bounding boxes. We propose to transform deep Convolutional Neural Networks (CNN)-based image-level classifiers into object detectors by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We have evaluated both our approaches extensively on several challenging detection benchmarks, e.g. , PASCAL VOC, ImageNet ILSVRC and Microsoft COCO. Both our approaches compare favorably to the state-of-the-art and show significant improvement over several other recent weakly supervised detection methods.
269

Classifying Hate Speech using Fine-tuned Language Models

Brorson, Erik January 2018 (has links)
Given the explosion in the size of social media, the amount of hate speech is also growing. To efficiently combat this issue we need reliable and scalable machine learning models. Current solutions rely on crowdsourced datasets that are limited in size, or using training data from self-identified hateful communities, that lacks specificity. In this thesis we introduce a novel semi-supervised modelling strategy. It is first trained on the freely available data from the hateful communities and then fine-tuned to classify hateful tweets from crowdsourced annotated datasets. We show that our model reach state of the art performance with minimal hyper-parameter tuning.
270

Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains / Semi-supervised learning for multi-object detection in video sequences : Application to the analysis of urban flow

Maâmatou, Houda 05 April 2017 (has links)
Depuis les années 2000, un progrès significatif est enregistré dans les travaux de recherche qui proposent l’apprentissage de détecteurs d’objets sur des grandes bases de données étiquetées manuellement et disponibles publiquement. Cependant, lorsqu’un détecteur générique d’objets est appliqué sur des images issues d’une scène spécifique les performances de détection diminuent considérablement. Cette diminution peut être expliquée par les différences entre les échantillons de test et ceux d’apprentissage au niveau des points de vues prises par la(les) caméra(s), de la résolution, de l’éclairage et du fond des images. De plus, l’évolution de la capacité de stockage des systèmes informatiques, la démocratisation de la "vidéo-surveillance" et le développement d’outils d’analyse automatique des données vidéos encouragent la recherche dans le domaine du trafic routier. Les buts ultimes sont l’évaluation des demandes de gestion du trafic actuelles et futures, le développement des infrastructures routières en se basant sur les besoins réels, l’intervention pour une maintenance à temps et la surveillance des routes en continu. Par ailleurs, l’analyse de trafic est une problématique dans laquelle plusieurs verrous scientifiques restent à lever. Ces derniers sont dus à une grande variété dans la fluidité de trafic, aux différents types d’usagers, ainsi qu’aux multiples conditions météorologiques et lumineuses. Ainsi le développement d’outils automatiques et temps réel pour l’analyse vidéo de trafic routier est devenu indispensable. Ces outils doivent permettre la récupération d’informations riches sur le trafic à partir de la séquence vidéo et doivent être précis et faciles à utiliser. C’est dans ce contexte que s’insèrent nos travaux de thèse qui proposent d’utiliser les connaissances antérieurement acquises et de les combiner avec des informations provenant de la nouvelle scène pour spécialiser un détecteur d’objet aux nouvelles situations de la scène cible. Dans cette thèse, nous proposons de spécialiser automatiquement un classifieur/détecteur générique d’objets à une scène de trafic routier surveillée par une caméra fixe. Nous présentons principalement deux contributions. La première est une formalisation originale de transfert d’apprentissage transductif à base d’un filtre séquentiel de type Monte Carlo pour la spécialisation automatique d’un classifieur. Cette formalisation approxime itérativement la distribution cible inconnue au départ, comme étant un ensemble d’échantillons de la base spécialisée à la scène cible. Les échantillons de cette dernière sont sélectionnés à la fois à partir de la base source et de la scène cible moyennant une pondération qui utilise certaines informations a priori sur la scène. La base spécialisée obtenue permet d’entraîner un classifieur spécialisé à la scène cible sans intervention humaine. La deuxième contribution consiste à proposer deux stratégies d’observation pour l’étape mise à jour du filtre SMC. Ces stratégies sont à la base d’un ensemble d’indices spatio-temporels spécifiques à la scène de vidéo-surveillance. Elles sont utilisées pour la pondération des échantillons cibles. Les différentes expérimentations réalisées ont montré que l’approche de spécialisation proposée est performante et générique. Nous avons pu y intégrer de multiples stratégies d’observation. Elle peut être aussi appliquée à tout type de classifieur. De plus, nous avons implémenté dans le logiciel OD SOFT de Logiroad les possibilités de chargement et d’utilisation d’un détecteur fourni par notre approche. Nous avons montré également les avantages des détecteurs spécialisés en comparant leurs résultats avec celui de la méthode Vu-mètre de Logiroad. / Since 2000, a significant progress has been recorded in research work which has proposed to learn object detectors using large manually labeled and publicly available databases. However, when a generic object detector is applied on images of a specific scene, the detection performances will decrease considerably. This decrease may be explained by the differences between the test samples and the learning ones at viewpoints taken by camera(s), resolution, illumination and background images. In addition, the storage capacity evolution of computer systems, the "video surveillance" democratization and the development of automatic video-data analysis tools have encouraged research into the road-traffic domain. The ultimate aims are the management evaluation of current and future trafic requests, the road infrastructures development based on real necessities, the intervention of maintenance task in time and the continuous road surveillance. Moreover, traffic analysis is a problematicness where several scientific locks should be lifted. These latter are due to a great variety of traffic fluidity, various types of users, as well multiple weather and lighting conditions. Thus, developing automatic and real-time tools to analyse road-traffic videos has become an indispensable task. These tools should allow retrieving rich data concerning the traffic from the video sequence and they must be precise and easy to use. This is the context of our thesis work which proposes to use previous knowledges and to combine it with information extracted from the new scene to specialize an object detector to the new situations of the target scene. In this thesis, we propose to automatically specialize a generic object classifier/detector to a road traffic scene surveilled by a fixed camera. We mainly present two contributions. The first one is an original formalization of Transductive Transfer Learning based on a sequential Monte Carlo filter for automatic classifier specialization. This formalization approximates iteratively the previously unknown target distribution as a set of samples composing the specialized dataset of the target scene. The samples of this dataset are selected from both source dataset and target scene further to a weighting step using some prior information on the scene. The obtained specialized dataset allows training a specialized classifier to the target scene without human intervention. The second contribution consists in proposing two observation strategies to be used in the SMC filter’s update step. These strategies are based on a set of specific spatio-temporal cues of the video surveillance scene. They are used to weight the target samples. The different experiments carried out have shown that the proposed specialization approach is efficient and generic. We have been able to integrate multiple observation strategies. It can also be applied to any classifier / detector. In addition, we have implemented into the Logiroad OD SOFT software the loading and utilizing possibilities of a detector provided by our approach. We have also shown the advantages of the specialized detectors by comparing their results to the result of Logiroad’s Vu-meter method.

Page generated in 0.0926 seconds