• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 10
  • 10
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 324
  • 324
  • 145
  • 122
  • 116
  • 99
  • 73
  • 66
  • 62
  • 58
  • 57
  • 54
  • 52
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

A 2D/3D Feature-Level Information Fusion Architecture For Remote Sensing Applications

Schierl, Jonathan 11 August 2022 (has links)
No description available.
292

Enhancing Deep Active Learning Using Selective Self-Training For Image Classification

Panagiota Mastoropoulou, Emmeleia January 2019 (has links)
A high quality and large scale training data-set is an important guarantee to teach an ideal classifier for image classification. Manually constructing a training data- set  with  appropriate  labels  is  an  expensive  and  time  consuming  task.    Active learning techniques have been used to improved the existing models by reducing the  number  of  required  annotations.    The  present  work  aims  to  investigate the  way  to  build  a  model  for  identifying  and  utilizing  potential  informative and  representativeness  unlabeled  samples.    To  this  end,  two  approaches  for deep image classification using active learning are proposed, implemented and evaluated.  The two versions of active leaning for deep image classification differ in  the  input  space  exploration  so  as  to  investigate  how  classifier  performance varies  when  automatic  labelization  on  the  high  confidence  unlabeled  samples is  performed.    Active  learning  heuristics  based  on  uncertainty  measurements on low confidence predicted samples,  a pseudo-labelization technique to boost active  learning  by  reducing  the  number  of  human  interactions  and  knowledge transferring  form  pre-trained  models,  are  proposed  and  combined  into  our methodology.  The experimental results on two benchmark image classification data-sets  verify  the  effectiveness  of  the  proposed  methodology.    In  addition, a  new  pool-based  active  learning  query  strategy  is  proposed.     Dealing  with retraining-based algorithms we define a ”forgetting event” to have occurred when an  individual  training  example  transitions  the  maximum  predicted  probability class over the course of retraining. We integrated the new approach with the semi- supervised learning method in order to tackle the above challenges and observedgood performance against existing methods. / En  högkvalitativ  och  storskalig  träningsdataset  är  en  viktig  garanti  för  att  bli en  idealisk  klassificerare  för  bildklassificering.     Att  manuellt  konstruera  en träningsdatasats  med  lämpliga  etiketter  är  en  dyr  och  tidskrävande  uppgift. Aktiv  inlärningstekniker  har  använts  för  att  förbättra  de  befintliga  modellerna genom att minska antalet nödvändiga annoteringar. Det nuvarande arbetet syftar till  att  undersöka  sättet  att  bygga  en  modell  för  att  identifiera  och  använda potentiella informativa och representativa omärkta prover.   För detta ändamål föreslås, genomförs och genomförs två metoder för djup bildklassificering med aktivt  lärande  utvärderas.      De  två  versionerna  av  aktivt  lärande  för  djup bildklassificering  skiljer  sig  åt  i  undersökningen  av  ingångsutrymmet  för  att undersöka hur klassificeringsprestanda varierar när automatisk märkning på de omärkta  proverna  med  hög  konfidens  utförs.   Aktiv  lärande  heuristik  baserad på  osäkerhetsmätningar  på  förutsagda  prover  med  låg  konfidens,  en  pseudo- märkningsteknik för att öka aktivt lärande genom att minska antalet mänskliga interaktioner  och  kunskapsöverföring  av  förutbildade  modeller,  föreslås  och kombineras   i   vår   metod.      Experimentella   resultat   på   två   riktmärken   för bildklassificering datauppsättningar verifierar effektiviteten hos den föreslagna metodiken.   Dessutom föreslås en ny poolbaserad aktiv inlärningsfrågestrategi. När  vi  använder  omskolningsbaserade  algoritmer  definierar  vi  en  ”glömmer händelse” som skulle ha inträffat när ett individuellt träningsexempel överskrider den maximala förutsagda sannolikhetsklassen under omskolningsprocessen.  Vi integrerade den nya metoden med den semi-övervakad inlärning för att hanteraovanstående utmaningar och observeras bra prestanda mot befintliga metoder.
293

A Comparative Analysis of Machine Learning Algorithms in Binary Facial Expression Recognition

Nordén, Frans, von Reis Marlevi, Filip January 2019 (has links)
In this paper an analysis is conducted regarding whether a higher classification accuracy of facial expressions are possible. The approach used is that the seven basic emotional states are combined into a binary classification problem. Five different machine learning algorithms are implemented: Support vector machines, Extreme learning Machine and three different Convolutional Neural Networks (CNN). The utilized CNN:S were one conventional, one based on VGG16 and transfer learning and one based on residual theory known as RESNET50. The experiment was conducted on two datasets, one small containing no contamination called JAFFE and one big containing contamination called FER2013. The highest accuracy was achieved with the CNN:s where RESNET50 had the highest classification accuracy. When comparing the classification accuracy with the state of the art accuracy an improvement of around 0.09 was achieved on the FER2013 dataset. This dataset does however include some ambiguities regarding what facial expression is shown. It would henceforth be of interest to conduct an experiment where humans classify the facial expressions in the dataset in order to achieve a benchmark.
294

Unsupervised Domain Adaptation for Regressive Annotation : Using Domain-Adversarial Training on Eye Image Data for Pupil Detection / Oövervakad domänadaptering för regressionsannotering : Användning av domänmotstående träning på ögonbilder för pupilldetektion

Zetterström, Erik January 2023 (has links)
Machine learning has seen a rapid progress the last couple of decades, with more and more powerful neural network models continuously being presented. These neural networks require large amounts of data to train them. Labelled data is especially in great demand, but due to the time consuming and costly nature of data labelling, there exists a scarcity for labelled data, whereas there usually is an abundance of unlabelled data. In some cases, data from a certain distribution, or domain, is labelled, whereas the data we actually want to optimise our model on is unlabelled and from another domain. This falls under the umbrella of domain adaptation and the purpose of this thesis is to train a network using domain-adversarial training on eye image datasets consisting of a labelled source domain and an unlabelled target domain, with the goal of performing well on target data, i.e., overcoming the domain gap. This was done on two different datasets: a proprietary dataset from Tobii with real images and the public U2Eyes dataset with synthetic data. When comparing domain-adversarial training to a baseline model trained conventionally on source data and a oracle model trained conventionally on target data, the proposed DAT-ResNet model outperformed the baseline on both datasets. For the Tobii dataset, DAT-ResNet improved the Huber loss by 22.9% and the Intersection over Union (IoU) by 7.6%, and for the U2Eyes dataset, DAT-ResNet improved the Huber loss by 67.4% and the IoU by 37.6%. Furthermore, the IoU measures were extended to also include the portion of predicted ellipsis with no intersection with the corresponding ground truth ellipsis – referred to as zero-IoUs. By this metric, the proposed model improves the percentage of zero-IoUs by 34.9% on the Tobii dataset and by 90.7% on the U2Eyes dataset. / Maskininlärning har sett en snabb utveckling de senaste decennierna med mer och mer kraftfulla neurala nätverk-modeller presenterades kontinuerligt. Dessa neurala nätverk kräver stora mängder data för att tränas. Data med etiketter är det framförallt stor efterfrågan på, men på grund av det är tidskrävande och kostsamt att etikettera data så finns det en brist på sådan data medan det ofta finns ett överflöd av data utan etiketter. I vissa fall så är data från en viss fördelning, eller domän, etiketterad, medan datan som vi faktiskt vill optimera vår modell efter saknar etiketter och är från en annan domän. Det här faller under området domänadaptering och målet med det här arbetet är att träna ett nätverk genom att använda domänmoststående träning på dataset med ögonbilder som har en källdomän med etiketter och en måldomän utan etiketter, där målet är att prestera bra på data från måldomänen, i.e., att lösa ett domänadapteringsproblem. Det här gjordes på två olika dataset: ett dataset som ägs av Tobii med riktiga ögonbilder och det offentliga datasetet U2Eyes med syntetiska bilder. När domänadapteringsmodellen jämförs med en basmodell tränad konventionellt på källdata och en orakelmodell tränad konventionellt på måldata, så utklassar den presenterade DAT-ResNet-modellen basmodellen på båda dataseten. På Tobii-datasetet så förbättrade DAT-ResNet förlusten med 22.9% och Intersection over Union (IoU):n med 7.6%, och på U2Eyes-datasetet, förbättrade DAT-ResNet förlusten med 67.4% och IoU:n med 37.6%. Dessutom så utökades IoU-måtten till att också innefatta andelen av förutspådda ellipser utan något överlapp med tillhörande grundsanningsellipser – refererat till som noll-IoU:er. Enligt detta mått så förbättrar den föreslagna modellen noll-IoU:erna med 34.9% på Tobii-datasetet och 90.7% på U2Eyes-datasetet.
295

Adaptive Model-Based Temperature Monitoring for Electric Powertrains : Investigation and Comparative Analysis of Transfer Learning Approaches / Adaptiv modellbaserad temperaturövervakning för elektriska drivlinor : Undersökning och jämförande analys av metoder för överföring av lärande

Huang, Chenzhou January 2023 (has links)
In recent years, deep learning has been widely used in industry to solve many complex problems such as condition monitoring and fault diagnosis. Powertrain condition monitoring is one of the most vital and complicated problems in the automation industry since the condition of the drive affects its health, performance, and reliability. Traditional methods based on thermal modeling require expertise in drive geometry, heat transfer, and system identification. Although the data-driven deep learning methods could avoid physical modeling, they commonly face another predicament: models trained and tested on the same dataset cannot be applied to other different situations. In real applications, where the monitoring devices are different and the working environment changes constantly, poor model generalization will lead to unreliable predictions. Transfer learning, which adapts the model from the source domain to the target domain, can improve model generalization and enhance the reliability and accuracy of the predictions in real-world scenarios. This thesis investigates the applicability of mainstream transfer learning approaches in the context of drive condition monitoring using multiple datasets with different probability distributions. Through the comparison and discussion of models and results, the scope of their application, as well as their advantages and disadvantages are expounded. Finally, it is concluded that in the drive condition monitoring under the industrial background, the target domain data has enough labels, and it is not necessary to maintain the performance of the model in the source domain. In this case, fine-tuning based on the model trained in the source domain is the best method for this scenario. / Under de senaste åren har djupinlärning använts i stor utsträckning inom industrin för att lösa många komplexa problem såsom tillståndsövervakning och feldiagnos. Övervakning av drivlinans tillstånd är ett av de viktigaste och mest komplicerade problemen inom automationsindustrin eftersom driftens tillstånd påverkar dess hälsa, prestanda och tillförlitlighet. Traditionella metoder baserade på termisk modellering kräver expertis inom drivgeometri, värmeöverföring och systemidentifiering. Även om de datadrivna djupinlärningsmetoderna skulle kunna undvika fysisk modellering står de ofta inför en annan situation: modeller som tränats och testats på samma datauppsättning kan inte tillämpas på andra situationer. I verkliga applikationer, där övervakningsenheterna är olika och arbetsmiljön förändras ständigt, kommer dålig modellgeneralisering att leda till opålitliga förutsägelser. Transfer learning, som anpassar modellen från källdomänen till måldomänen, kan förbättra modellgeneraliseringen och öka tillförlitligheten och noggrannheten i förutsägelserna i verkliga scenarier. Denna avhandling undersöker tillämpligheten av traditionella överföringsinlärningsmetoder i samband med övervakning av drivtillstånd med hjälp av flera datauppsättningar med olika sannolikhetsfördelningar. Genom jämförelse och diskussion av modeller och resultat förklaras omfattningen av deras tillämpning, liksom deras fördelar och nackdelar. Slutligen dras slutsatsen att måldomändata vid övervakning av drivtillståndet under industriell bakgrund har tillräckligt med etiketter och att det inte är nödvändigt att upprätthålla modellens prestanda inom källdomänen. I det här fallet är finjustering baserad på modellen utbildad i källdomänen den bästa metoden för detta scenario. / Viime vuosina syväoppimista on käytetty laajalti teollisuudessa monien monimutkaisten ongelmien, kuten kunnonvalvonnan ja vikadiagnoosin, ratkaisemiseen. Voimansiirron kunnonvalvonta on yksi automaatioteollisuuden tärkeimmistä ja monimutkaisimmista ongelmista, koska taajuusmuuttajan kunto vaikuttaa sen kuntoon, suorituskykyyn ja luotettavuuteen. Perinteiset lämpömallinnukseen perustuvat menetelmät edellyttävät käyttögeometrian, lämmönsiirron ja järjestelmän tunnistamisen asiantuntemusta. Vaikka dataan perustuvat syväoppimismenetelmät voisivat välttää fyysisen mallinnuksen, ne kohtaavat usein toisen ahdingon: samalla tietojoukolla koulutettuja ja testattuja malleja ei voida soveltaa muihin erilaisiin tilanteisiin. Todellisissa sovelluksissa, joissa valvontalaitteet ovat erilaisia ja työympäristö muuttuu jatkuvasti, huono mallin yleistäminen johtaa epäluotettaviin ennusteisiin. Siirto-oppiminen, joka mukauttaa mallin lähdealueelta kohdealueelle, voi parantaa mallin yleistämistä ja parantaa ennusteiden luotettavuutta ja tarkkuutta todellisissa skenaarioissa. Tässä väitöskirjassa tutkitaan valtavirran siirto-oppimisen lähestymistapojen soveltuvuutta taajuusmuuttajan kunnonvalvonnan kontekstissa käyttämällä useita tietojoukkoja erilaisilla todennäköisyysjakaumilla. Mallien ja tulosten vertailun ja keskustelun avulla selitetään niiden soveltamisala sekä niiden edut ja haitat. Lopuksi päätellään, että taajuusmuuttajan kunnonvalvonnassa teollisen taustan alla kohdealueen tiedoilla on tarpeeksi tarroja, eikä mallin suorituskykyä tarvitse ylläpitää lähdealueella. Tässä tapauksessa lähdetoimialueella koulutettuun malliin perustuva hienosäätö on paras tapa tähän skenaarioon.
296

Improving Training of Differentiable Neural Computers on Time Series / Att Förbättra Träningen av Differentierbara Neurala Datorer på Tidserier

Persson, Isak January 2022 (has links)
Memory Augmented Neural Networks (MANN) is a hot research area within deep learning. One of the most promising MANN is the Differentiable Neural Network (DNC) which is able to learn, in a fully differentiable way, how to represent and store data into an external memory. Due to its memory, it performs exceptionally well on tasks where long-term memory is required. However, not a lot of research has been done on DNCs applied to time series and is also considered to be difficult to train. This work focuses on how to improve the training of a DNC on time series by taking advantage of the external memory and manipulating it in training. Three methods are presented. The first method reuses the memory between epochs which can help when there is a risk of overfitting. The second method is based on the first but has a bi-directional training scheme which drastically improves the stability of the convergence and can potentially produce better performing DNC. The last method presented is a transfer learning method where the memory is being transferred. This method is a versatile transfer learning method that can be applied when the source and target input feature spaces are different. It is also not dependent on the architecture of the DNC other than the size of the memory. These methods were applied and tested to time series in the telecom domain. Specifically, they were tested on four time series, two for predicting read and write latency, and two for predicting round trip time for signals. The results of the methods were fairly consistent on all the time series. / Minnesförstärkta neurala nätverk (MANNs) är en trendig forskningsområde inom djupinlärning. En av de mest lovande MANN är Differentierbara Neurala Datorer (DNCs) som kan lära sig representera och lagra data in till ett externt minne. På grund av sitt externa minne, så är den exceptionellt bra på att lösa problem som kräver långtids minne. Det finns däremot inte mycket forskning på DNCs applicerat på tidserier och att den är svår att träna. Arbetet i denna uppsatts har fokuserat på hur man kan förbättra träning av DNC på tidserier genom att utnyttja det externa minnet och manipulera det under träningen. Arbetet presenterar tre styckna metoder. Första metoden återanvänder minnet mellan epoker och kan hjälpa när det finns risk att överanpassar sig till träningsdatan. Den andra metoden är baserad på den första men har ett dubbelriktat tränings system som kan tydligt förbättra stabiliteten av konvergensen och kan ibland producera bättre presterande DNC. Den sista metoden är en metod som överför lärande genom att överföra minnet av en tränad DNC. Denna metod är mångsidig då den inte är beror på källans och målets ingångs datautrymme. Den beror inte heller på arkitekturen av DNC annat än storleken på minnet. Dessa metoder var applicerade och testade på tidsseries inom telekom domänen. Dom var testade på fyra tidsserier, två styckena för att förutspå läs- och skriv latens, och två för att förutspå tid för tur och retur för signaler. Resultaten för metoderna vara relativt konsekventa med alla tidsseries.
297

Matching Sticky Notes Using Latent Representations / Matchning av klisterlappar med hjälp av latent representation

García San Vicent, Javier January 2022 (has links)
his project addresses the issue of accurately identifying repeated images of sticky notes. Due to environmental conditions and the 3D location of the camera, different pictures taken of sticky notes may look distinct enough to be hard to determine if they belong to the same note. More specifically, this thesis aims to create latent representations of these pictures of sticky notes to encode their content so that all the pictures of the same note have a similar representation that allows to identify them. Thus, those representations must be invariant to light conditions, blur and camera position. To that end, a Siamese neural architecture will be trained based on data augmentation methods. The method consists of learning to embed two augmented versions of the same image into similar representations. This architecture has been trained with unsupervised learning and fine-tuned with supervised learning to detect if two representations belong or not to the same note. The performance of ResNet, EfficientNet and Vision Transformers in encoding the images into their representations has been compared with different configurations. The results show that, while the most complex models overfit small amounts of data, the simplest encoders are capable of properly identifying more than 95% of the sticky notes in grey scale. Those models can create invariant representations that are close to each other in the latent space for pictures of the same sticky note. Gathering more data could result in an improvement of the performance of the model and the possibility of applying it to other fields such as handwritten documents. / Detta projekt tar upp frågan om att identifiera upprepade bilder av klisterlappar. På grund av miljöförhållanden och kamerans 3D-placering kan olika bilder som tagits till klisterlappar se tillräckligt distinkta ut för att det ska vara svårt att avgöra om de faktiskt tillhör samma klisterlappar. Mer specifikt är syftet med denna avhandling att skapa latenta representationer av bilder av klisterlappar som kodar deras innehåll, så att alla bilder av en klisterlapp har en liknande representation som gör det möjligt att identifiera dem. Sålunda måste representationerna vara oföränderliga för ljusförhållanden, oskärpa och kameraposition. För det ändamålet kommer en enkel siamesisk neural arkitektur att tränas baserad på dataförstärkningsmetoder. Metoden går ut på att lära sig att göra representationerna av två förstärkta versioner av en bild så lika som möjligt. Genomatt tillämpa vissa förbättringar av arkitekturen kan oövervakat lärande användas för att träna nätverket. Prestandan hos ResNet, EfficientNet och Vision Transformers när det gäller att koda bilderna till deras representationer har jämförts med olika konfigurationer. Resultaten visar att även om de mest komplexa modellerna överpassar små mängder data, kan de enklaste kodarna korrekt identifiera mer än 95% av klisterlapparna. Dessa modeller kan skapa oföränderliga representationer som är nära i det latenta utrymmet för bilder av samma klisterlapp. Att samla in mer data kan resultera i en förbättring av modellens prestanda och möjligheten att tillämpa den på andra områden som till exempel handskrivna dokument.
298

Real-time adaptation of robotic knees using reinforcement control

Daníel Sigurðarson, Leifur January 2023 (has links)
Microprocessor-controlled knees (MPK’s) allow amputees to walk with increasing ease and safety as technology progresses. As an amputee is fitted with a new MPK, the knee’s internal parameters are tuned to the user’s preferred settings in a controlled environment. These parameters determine various gait control settings, such as flexion target angle or swing extension resistance. Though these parameters may work well during the initial fitting, the MPK experiences various internal & external environmental changes throughout its life-cycle, such as product wear, changes in the amputee’s muscle strength, temperature changes, etc. This work investigates the feasibility of using a reinforcement learning (RL) control to adapt the MPK’s swing resistance to consistently induce the amputee’s preferred swing performance in realtime. Three gait features were identified as swing performance indicators for the RL algorithm. Results show that the RL control is able to learn and improve its tuning performance in terms of Mean Absolute Error over two 40-45 minute training sessions with a human-in-the-loop. Additionally, results show promise in using transfer learning to reduce strenuous RL training times. / Mikroprocessorkontrollerade knän (MPK) gör att amputerade kan utföra fysiska aktiviteter med ökad lätthet och säkerhet allt eftersom tekniken fortskrider. När en ny MPK monteras på en amputerad person, anpassas knäts interna parametrar till användarens i ett kontrollerad miljö. Dessa parametrar styr olika gångkontrollinställningar, såsom flexionsmålvinkel eller svängförlängningsmotstånd. Även om parametrarna kan fungera bra under den initiala anpassningen, upplever den MPK olika interna och yttre miljöförändringar under sin hela livscykel, till exempel produktslitage, förändringar i den amputerades muskelstyrka, temperaturförändringar, etc. Detta arbete undersöker möjligheten av, med hjälp av en förstärkningsinlärningskontroll (RL), att anpassa MPK svängmotstånd för att konsekvent inducera den amputerades föredragna svängprestanda i realtid. Tre gångegenskaper identifierades som svingprestandaindikatorer för RL-algoritmen. Resultaten visar att RL-kontrollen kan lära sig och förbättra sin inställningsprestanda i termer av Mean Absolute Error under två 40-45 minuters träningspass med en människa-i-loopen. Dessutom är resultaten lovande när det gäller att använda överföringsinlärning för att minska ansträngande RL-träningstider.
299

Remote sensing representation learning for a species distribution modeling case study

Elkafrawy, Sara 08 1900 (has links)
Les changements climatiques et les phénomènes météorologiques extrêmes sont devenus des moteurs importants de changements de la biodiversité, posant une menace pour la perte d’habitat et l’extinction d’espèces. Comprendre l’état actuel de la biodiversité et identifier les zones hautement adaptées (still strugling with this expression, high suitability for who or what?) sont essentiels afin de lutter contre la perte de biodiversité et guider les processus décisionnels en lien avec les études scientifiques (added scientifiques, as in scientific surveys), les mesures de protection et les efforts de restauration. Les modèles de distribution des espèces (MDE ou SDM en anglais) sont des outils statistiques permettant de prédire la distribution géographique potentielle d’une espèce en fonction de variables environnementales et des données recueillies à cet endroit. Cependant, les MDE conventionnels sont souvent confrontés à des limitations dues à la résolution spatiale et à la couverture restreinte des variables environnementales, lesquelles sont obtenues suite à des mesures au sol ou à l’aide de stations météorologiques. Pour mieux comprendre la distribution des espèces à des fins de conservation, le défi GeoLifeCLEF 2022 a été organisé. Cette compétiion comprend un vaste ensemble de données composé de 1,6 million géo-observations liées à la présence de 17 000 espèces végétales et animales. L’objectif principal de ce défi est d’explorer le potentiel des données de télédétection afin de prédire la présence d’espèces à des géolocalisations spécifiques. Dans ce mémoire, nous étudions diverses techniques d’apprentissage automatique et leur performance en lien avec le défi GeoLifeCLEF 2022. Nous explorons l’efficacité d’algorithmes bien connus en apprentissage par transfert, établissons un cadre d’apprentissage non supervisé et étudions les approches d’apprentissage auto-supervisé lors de la phase d’entraînement. Nos résultats démontrent qu’un ajustement fin des encodeurs pré-entraînés sur différents domaines présente les résultats les plus prometteurs lors de la phase de test. / Climate change and extreme weather events have emerged as significant drivers of biodiversity changes, posing a threat of habitat loss and species extinction. Understanding the current state of biodiversity and identifying areas with high suitability for different species are vital in combating biodiversity loss and guiding decision-making processes for protective measures and restoration efforts. Species distribution models (SDMs) are statistical tools for predicting a species' potential geographic distribution based on environmental variables and occurrence data. However, conventional SDMs often face limitations due to the restricted spatial resolution and coverage of environmental variables derived from ground-based measurements or weather station data. To better understand species distribution for conservation purposes, the GeoLifeCLEF 2022 challenge was introduced. This competition encompasses a large dataset of 1.6 million geo-observations linked to the presence of 17,000 plant and animal species. The primary objective of this challenge is to explore the potential of remote sensing data in forecasting species' presence at specific geolocations. In this thesis, we investigate various machine learning techniques and their performance on the GeoLifeCLEF 2022 challenge. We explore the effectiveness of standard transfer learning algorithms, establish an unsupervised learning framework, and investigate self-supervised learning approaches for training. Our findings demonstrate that fine-tuning pre-trained encoders on different domains yields the most promising test set performance results.
300

Image-Based Classification Solutions for Robust Automated Molecular Biology Labs / Bildbaserade klassificeringslösningar för robusta automatiserade molekylärbiologiska labb

Teo, Arnold January 2023 (has links)
Single-cell genomics (SCG) are methods for investigating heterogeneity between biological cells, among these is Smart-seq which sequences from RNA molecules. A more recent version of this method is Smart-seq3xpress which is currently in the process of being automated by the Sandberg lab at Karolinska Institutet. As part of this automated lab system, microwell plates are moved by a robot arm between molecular biology instuments. The purpose of this project was to create and integrate an image-based classification solution to validate the placement of these plates. This was done by building upon the VGG-16 convolutional neural network (CNN) model and specialising it through transfer learning to train models which classify microwell plate placement as correct or incorrect. These models were then integrated into the automated lab pipeline so that the system could self-correct or warn lab personnel of misplacement, removing the need for constant human supervision. / Enskild cellgenomik (eng. single-cell genomics) är metoder för att undersöka heterogenitet mellan biologiska celler, bland dessa metoder är Smart-seq vilken sekvenserar från RNA molekyler. En nyare version av denna metod är Smart-seq3xpress vilken nu håller på att automatiseras av Sandberglabbet vid Karolinska Institutet. Som del av detta automatiserade labbsystem förflyttas mikrobrunnplattor av en robotarm mellan molekylärbiologiska mätinstrument. Syftet med detta projekt var att skapa samt integrera en bildbaserad klassificeringslösning för att säkerställa placeringen av dessa plattor. Detta gjordes genom att bygga på djupinlärningsmodellen VGG-16 och specialisera den med överförd inlärning för att kunna träna modeller vilka klassificerar om mikrobrunnplattornas placeringar är korrekta eller inkorrekta. Sedan integrerades dessa modeller som en del av det automatiserade labbsystemet sådan att systemet kunde självkorrigera eller varna labbpersonal vid felplaceringar, och därmed ta bort behovet av konstant mänsklig tillsyn.

Page generated in 0.0978 seconds