• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 12
  • Tagged with
  • 38
  • 23
  • 18
  • 17
  • 11
  • 8
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Biogasprocessen : Bestämning av verkningsgrad

Thomassen, Martin January 2010 (has links)
<p>Biogas is increasingly used for fuel in for example vehicles and it´s produced in a biogas processconsisting of the steps of pretreatment, digestion and gas cleaning. The pretreatment is a method usedto increase the gas production and / or destroy pathogens. The digestion is the stage when anaerobicmicroorganisms convert bio-mass of a substrate to a raw gas containing about 65% of methane. Thegas cleaning is used to increase the methane content to about 97% so the gas can be used for motors invehicles. The biogas part of the Ekeby sewage plant in Eskilstuna is using multiple substrates. Sewagesludge is mostly used but also other substrates, like food waste. The time for processing is in average25 days before the content is taken out for drying and finally for use as cover material. The producedgas will be cleaned in a water scrubber before pressurization and after that used as fuel for vehicles.The usage of support energy in the biogas process is essentially district heating, electricity and oil. Theoverall efficiency term is the energy produced in the gas minus the supporting energy divided with theenergy from possible biogas production of the substrates. For calculation of a continuous process thefact that there is always a part of the substrates which not will be digested has to be considered.Another thing to think about is that the inserted energy as material will not be converted to gasimmediately, several days is needed. In 2009 the overall efficiency in Ekeby biogas plant was inaverage 70.5%, and the value was higher during the summer than the winter. Calculation of overallefficiency of a biogas plant will always involve some uncertainties because differences of thecomposition of the substrates, the condition of the micro-organisms, digestion of many substrates atthe same time etc.</p>
12

Förnybar Energi : Solcellsanläggning på industribyggnad / Renewable Energy : Solar plant on industrial building

Vestlund, Tim, Andersson, Martin January 2013 (has links)
Examensarbetet har som mål att ta fram idéer om hur en solcellsanläggning kan se ut för takytorna på Holtab AB. Utvecklingen för att värna om miljön går hastigt framåt och både privatpersoner och företag har börjat att arbete med att göra sin insats för miljön. Holtab är intresserade utav att göra en insats och därför är de intresserade utav solcellstekniken och vill därför ha en undersökning om hur det skulle kunna se ut och fungera. Examensarbetet innehåller undersökningar, analyser, jämförelser och beräkningar och presenterar en idé om hur en solcellsanläggning skulle kunna tillämpas för ett optimalt effektuttag till minimal kostnad.
13

Combined solar and pellet heating systems for single-family houses : How to achieve decreased electricity usage, increased system efficiency and increased solar gains

Persson, Tomas January 2006 (has links)
In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.
14

Biogasprocessen : Bestämning av verkningsgrad

Thomassen, Martin January 2010 (has links)
Biogas is increasingly used for fuel in for example vehicles and it´s produced in a biogas processconsisting of the steps of pretreatment, digestion and gas cleaning. The pretreatment is a method usedto increase the gas production and / or destroy pathogens. The digestion is the stage when anaerobicmicroorganisms convert bio-mass of a substrate to a raw gas containing about 65% of methane. Thegas cleaning is used to increase the methane content to about 97% so the gas can be used for motors invehicles. The biogas part of the Ekeby sewage plant in Eskilstuna is using multiple substrates. Sewagesludge is mostly used but also other substrates, like food waste. The time for processing is in average25 days before the content is taken out for drying and finally for use as cover material. The producedgas will be cleaned in a water scrubber before pressurization and after that used as fuel for vehicles.The usage of support energy in the biogas process is essentially district heating, electricity and oil. Theoverall efficiency term is the energy produced in the gas minus the supporting energy divided with theenergy from possible biogas production of the substrates. For calculation of a continuous process thefact that there is always a part of the substrates which not will be digested has to be considered.Another thing to think about is that the inserted energy as material will not be converted to gasimmediately, several days is needed. In 2009 the overall efficiency in Ekeby biogas plant was inaverage 70.5%, and the value was higher during the summer than the winter. Calculation of overallefficiency of a biogas plant will always involve some uncertainties because differences of thecomposition of the substrates, the condition of the micro-organisms, digestion of many substrates atthe same time etc.
15

Elnätet och dess anpassning för elektriska fordon : En studie av hur ett lokalnät påverkas av ett ökat antal elektriska fordon / The power grid and its adjustment to electrical vehicles : A study of how a local power grid is affected by an increased number of electric vehicles

Arntsson, Timmy January 2015 (has links)
The availability of non-renewable fuels is decreasing and therefore the prices of both petrol and diesel has increased in recent years. As a result more and more chooses to invest in cars powered by alternative fuels and the focus has long been on electric vehicles. However, this means greater weight on utility companies around the world which now have to adjust to a higher demand. The purpose of this study is to investigate how a local network are affected by electric car chargers and be able to describe the degree to which a low-voltage can be loaded with electric car chargers for commercial and private use, in order to provide recommendations for the future dimension of the local networks. Few studies have been conducted regarding electric cars from a network and supply perspective, but have instead been focused on energy storage in the actual vehicle. Therefore, this study has been processed with an electricity grid perspective. The intent of the study has been answered by both a measurement and several simulations. The study is based on Karlstad’s local electrical network and the commercial charging station Tesla in Våxnäs, Karlstad. The parameters of power quality for which this study has taken into account are load of the transformers, load loss, power factor, efficiency, voltage levels, voltage drop and asymmetry. The methodological conditions have led to a result that can be used as a basis for an expansion of electric cars, big or small. The measurement was of great support to get an overall view of how the characteristics of a charging session appeared and how the quality parameters were affected during high as well as low power charging. Limitations within the simulation program have led to the calculations to carry out in a more extreme scenario when it comes to the load. A result since the simulation time for constant power was minimum one hour. Based on the measurement and simulations of the charging station for commercial use is dimensioned well to cope with the current use of electric vehicle charging. More municipalities should follow Karlstad’s example for the development of commercial charging stations. In the countryside great problems occurred, especially with voltage drop at an increased use of home chargers for electric cars. The same problems emerged in the city part of the network. The study also showed serious problems with asymmetry in the city. The report concluded, therefore, several recommendations for the future dimension of local networks for private homes, for example that the local network should be divided into multiple trails.
16

Stopptidsanalys i hyvelanläggningen vid VIDA Vislanda / Stop time analysis in the planing facility at VIDA Vislanda

Isaksson, Eddie, Klitsch, Robert January 2015 (has links)
VIDA Vislanda har ett behov av att veta hur effektiv produktionen är på deras nya hyvleri. Därför är arbetets syfte att undersöka stopptidslängder samt bakomliggande orsaker till stoppen på företaget. Det ingår även i arbetet att lämna förslag på åtgärder som kan leda till förbättringar i verksamhetsgrad samt reduktion av stopptid. VIDA Vislanda vill veta vilken verkningsgrad, verklig löpmeter ut och verkligt stycketal ut för varje enskild dimension och längd. Resultatet presenteras efter detta önskemål men den totala verkningsgraden för hela mätperioden har också beräknats, till 52 %. Om VIDA åtgärdar de största återkommande stopporsakrna enligt våra förbättringsförslag kommer stopporsakerna att minska och således verkningsgraden att öka. / VIDA Vislanda has a need to know how efficient production is on their new planing mill. Therefore, work to investigate the stopping time lengths and the underlying causes of stoppages at the company is needed. It is also part of the work to submit proposals on measures that could lead to improvements in activity rates and reduction of downtime. VIDA Vislanda wants to know the efficiency, real meters out and real units out for each dimension and length. The results are presented after this request, but the overall efficiency of the entire measurement period was also calculated, to 52%. If VIDA addresses the major recurring causes of stoppages with our proposed improvements it will decrease the stoppages and thus increase efficiency.
17

Litteraturstudie, modellering och simulering av kugginteraktioner i planetväxlar / Literature study, modelling and simulation of gear interactions in planetary gear drives

Alm Grundström, Henrik January 2015 (has links)
Detta arbete sammanfattar en del av den forskning som gjorts på kugghjul och planetväxlar med avseende på egenskaper som lastfördelning, verkningsgrad och ingreppsstyvheter. En jämförelse görs mellan olika metoder för beräkning av ingreppsstyvheter vilken visar på stora skillnader. En planetväxel av typ D simuleras i flerkroppsdynamikprogramvaran MSC ADAMS där egenskaper som lastfördelning, vridstyvhet och utväxling undersöks.
18

Kontroll av pannverkningsgrad Dåva kraftvärmeverk / Evaluation of boiler efficiency Dåva CHP plant

Rönnberg, Mathias January 2014 (has links)
Umeå Energi AB har bestämt att en kontroll av pannverkningsgraden för kraftvärmepannan Dåva 2 skall genomföras. I dagsläget genomförs en beräkning av verkningsgraden månadsvis med den direkta beräkningsmetoden. Resultatet varierar dock kraftigt månad till månad varav en undersökning med indirekt beräkningsmetod är av intresse. Arbetet genomförs för att ge en mer noggrant beräknad verkningsgrad samt utreda förlustfaktorer kopplad till pannan. Då pannverkningsgraden i vanliga fall inte inkluderar rökgaskondensering beräknades också totalverkningsgraden för att ge en mer rättvis bild av pannan samt för att illustrera dess relevans. Arbetet genomfördes för två olika driftsfall, hög och låg last, för att undersöka hur verkningsgraden varierar beroende på driftsfall. Arbetet inleddes genom att studera de standarder som finns inom området för att utreda vilka faktorer som skulle beräknas samt vilka kriterier som skulle följas. Det framgick att en hel del provtagningar och analyser skulle genomföras på bland annat bränsle, aska och rökgaser. Detta krävde i sin tur en noggrann planering varav ett provtagningsschema skapades. Samtliga provtagningar genomfördes vid bägge driftsfallen och proverna skickades på analys, därefter kunde verkningsgraden beräknas. Resultatet tyder på hög totalverkningsgrad med något lägre pannverkningsgrad. Beroende på driftsfall varierar pannverkningsgraden mellan 74% vid hög last och 72% vid låg last. Totalverkningsgraden ligger på 92% vid hög last och 91% vid låg last. Den förlustfaktor som är av störst magnitud är rökgasförluster som beror av rökgasernas fukthalt och temperatur. Rökgasförlusterna varierar mellan 24% till 26% för pannverkningsgraden och 6.6% till 7.2% för totalverkningsgraden. Utöver rökgasförlusterna ligger strålningsförlusterna på runt 0.7% vid bägge driftsfallen. Förbränningsförlusterna är mycket låga och varierar mellan 0.52% och 0.53% vilket i kombination med de låga askförlusterna (0.006%-0.04%) tyder på mycket bra förbränning. På grund av de höga verkningsgraderna framkom inga självklara effektiviseringsåtgärder. Då rökgasförlusterna är de största förlustfaktorerna är därför åtgärder mot dessa av störst betydelse för verkningsgraden. Ett alternativ för att öka verkningsgraden ytterligare är att minska fukthalten på de utgående rökgaserna. De är i dagsläget runt 9% och står för majoriteten av rökgasförlusterna. En sänkning av denna fukthalt kan erhållas genom att sänka temperaturen på rökgaserna och på så vis kondensera mer fukt ur rökgaserna. Detta innebär att temperaturen på kondensatet i rökgaskondenseringsanläggningen måste sänkas, vilket i sin tur innebära att antingen sänka fjärrvärmereturen som kyler kondensatet, alternativt installera en värmepump mellan kondensatet och fjärrvärmereturen. Detta kräver dock en djupare utredning för att fastställa om dessa effektiviseringsåtgärder är genomförbara rent tekniskt samt om de är ekonomiskt försvarbara. / Umeå Energi AB has decided that an evaluation of boiler efficiency should be performed on their CHP-plant Dåva 2. Calculation of the efficiency using the input-output method is currently carried out monthly but the results vary greatly over time whereby an evaluation of the efficiency using the energy balance method was of interest. This was done to give a more accurate efficiency and to evaluate boiler losses. Due to the fact that the boiler efficiency doesn’t usually include flue gas condensation two different efficiency were calculated, boiler efficiency and total efficiency.  The boiler and total efficiency was determined for the CHP during two different loads, high and low. This was done to investigate how the efficiency varies with different loads. The work was initiated by studying the standards in the field of efficiency calculations to evaluate which factors and criteria to be calculated and followed.  It was shown that a lot of samplings and analysis was to be performed which demanded accurate sampling interval. A sampling schedule was therefore constructed to be followed. All sampling was then performed at both loads and the efficiency calculations could begin. The results indicate a high total efficiency with somewhat lower boiler efficiency. The boiler efficiency varied depending on the load by 74% on high load and 72% on low load. The total efficiency was 92% on high load and 91% on low load. The greatest losses were all connected to flue gas losses. Losses like moisture in flue gas or hot dry flue gas. The flue gas losses varied between 24% to 26% for the boiler efficiency and 6.6% to 7.2% for the total efficiency on high and low loads. Besides flue gas losses the next greatest loss is radiation losses, about 0.7% for both high and low loads. Losses due to incomplete combustion were very low and varied between 0.52% and 0.53% for high and low load which in combination with the low ash loses (0.006%-0.04%) indicates very good combustion. Due to the relatively high efficiencies, no obvious solutions for decreased energy losses were found. The greatest energy losses are flue gas losses and a solution to this will influence the efficiency the most. One solution to increase the efficiency is to reduce the moisture content of the flue gas. At this time the moisture content is at 9% and contributes the most to the flue gas losses. Reducing the moisture content can be done by lowering the flue gas temperature. This will increase the amount of moisture that is condensed in the flue gas condenser. To achieve this, the flue gas condensate temperature needs to be decreased. This can be done by either lowering the temperature on the district heating return which is cooling the flue gas condensate or install a heat pump between the flue gas condensate and the district heating return. These solutions require a more in depth analysis to evaluate if this is technically possible and if it is economically viable.
19

Analys av verkningsgrad hos vattenplacerade solcellsmoduler : En jämförelse med landplacerade solcellsmoduler och mot en teoretisk modell

Qvist, Emil, Englund-Karlsson, Simon January 2018 (has links)
No description available.
20

Framtagande av alternativ metod för kontinuerlig beräkning av pannverkningsgrad i förbränningsanläggningar : Utredande studie av tillförlitligheten vid kontinuerlig beräkning av pannverkningsgrad med den indirekta metoden på Säbyverkets pannor 11 - 13 / Alternative method for continuous calculation of boiler efficiency at incineration plants

Segelsjö Duvernoy, Marcus January 2021 (has links)
This thesis studied a new method for continuous calculation of boiler efficiency at Säbyverket:s boiler 11, 12 and 13 located in Jakobsberg, Sweden. Säbyverket three boilers are supplying peak power to Stockholms “Nordvästra nät” with district heat during lack of power in the district heating grid. The plant was originally designed to run on oil, but new regulations and environmental knowledge caused E.on who own the plant to convert boiler 12 to a multifuel boiler burning wood powder mainly and bio-oil secondary.  Boiler 11 and 13 changed to be operated with bio-oil. Recent data on the boiler efficiency after the conversion showed boiler efficiencies not in line with the expected efficiency. Therefore, a study was conducted to forward a different method of calculating boiler efficiency at Säbyverket. The requirement of the new method was that it should be calculated in a way that avoided existing uncertainties.  Today’s method was based on the direct method for calculating boiler efficiency for boiler 11 and 13. Due to difficulties in calculating mass flow for solid-state fuel, boiler 12 had a method based partly on the indirect method, and partly based on the direct method. A new method for the three boilers based on the indirect method was produced. Comparing results showed that the current method for boiler 11 resulted in a way to low calculated boiler efficiency compared to the new indirect method. While boiler 12 method was confirmed giving the same results with the two methods. Boiler 13 had a double-calculated density when calculating the delivered power from the oil fuel. This caused a calculated boiler efficiency over 100 %. When compensating for this factor the two different methods gave the same mean result. However, the new method based on the indirect method was significantly more stable when calculating boiler efficiency with a sampling time with mean-minute values. Results from the calculations show that the method for calculating boiler efficiency for boiler 11 and 13 should be changed to the new method described in the report. However, no improvements could be achieved by changing the method for boiler 12. Therefore, it is recommended to keep the existing method for calculating boiler efficiency for boiler 12. / Säbyverket tre pannor byggdes mellan 1977 - 1982 och bestod ursprungligen av tre stycken fossiloljeeldade fartygspannor om 47 MW var. På grund av hårdare miljökrav samt ett hårdare miljöarbete av E.on, konverterades panna 11 och 13 till bioolja 2006 respektive 2016. Panna 12 konverterades till en tvåbränsleeldad panna med träpulver som primärbränsle och bioolja som sekundärbränsle år 2003. Beräkningen av pannverknignsgrad var efter konvertering opålitlig framförallt för panna 11 och 13, den beräknade pannverknigsraden visade på pannverknignsgrader som inte var överensstämde med det förväntade resultatet. På grund av osäkerheten som fanns i beräkningarna ämnade examensarbetet att reda ut om en alternativ metod för beräkning av pannverknignsgrad skulle ge en pålitligare beräkning av pannverkningsdgraden. En ny metod togs därför fram för beräkning av pannverknigsrad baserat på den indirekta metoden. Metoden beräknar pannverkningsgraden genom förluster, istället för kvoten mellan levererad och tillförd effekt vilket dagens metod baseras på. En stor fördel med den indirekta metoden är att den kan beräknas relativt. Detta betyder således att tillförd bränslemängd inte behöver vara känd indata vid beräkning. Eftersom fastbränsleflöden är svåra att mäta är detta en fördel för framförallt panna 12. Eftersom panna 12 eldar två bränslen itererades respektive massandel bränsle fram för beräkning av pannverkningsgraden. Den nya metoden beräknar följande förlustfaktorer: Rökgasförluster, oförbränt i fast rest (askförluster), oförbränt i gasfas och strålning och ledningsförlsuter.  Resultatet från de två olika metoderna visade att nuvarande metod för panna 11 beräknade en för låg pannverkningsgrad i jämförelse med den nya metoden. Panna 12 visade samma resultat vid beräknad pannverkningsgrad med de två olika metoderna. Dagens metod för Panna 13 dubbelräknade densiteten vid beräkning av massbränsleflödet, detta resulterade i en beräknad pannverkningsgrad över 100 % då den tillförda effekten minskade med en faktor om 0,9. Vid kompensering av den dubbelräknade densiteten var den beräknade medelverkningsgraden samma för de två metoderna. Den nya metoden resulterade dock i ett stabilare resultat vid beräkning av pannverkningsgrad med mindre svängningar i jämförelse med dagens metod.  E.on rekommenderas att byta metod för beräkning av pannverkningsgrad för panna 11 och 13. Den nya framtagna metoden resulterar i en förbättrad och stabilare beräkning av pannverkningsgraden jämfört med dagens metod. Panna 12:s metod bedöms vara lika nogrann som den nya metoden, således rekommenderas det att behålla dagens metod för panna 12. En korrigering i beräkningssystemet för beräkning av massbränsleflödet från huvudoljeledningen bör göras för panna 13. Detta genom att ta bort termen Olja.dens vid beräkning av P13_Molja för korrekt mätning. Detta bör göras även om ny metod appliceras. Metoden ska även vara applicerbar på andra av E.on:s anläggningar. Kravet är att bränslet ska vara homogent och den mätutrustning som är beskriven i rapporten ska vara installerad i anläggningen.

Page generated in 0.0942 seconds